Видео:№768. Точки М и N — середины сторон АВ и АС треугольника ABC. Выразите векторыСкачать

Ваш ответ
Видео:№432. Точки М и N — середины сторон AD и ВС параллелограмма ABCD. Докажите, что прямыеСкачать

решение вопроса
Видео:Геометрия Точки M, N, K и P – середины сторон AB, BC, CD и AD параллелограмма ABCD соответственноСкачать

Похожие вопросы
- Все категории
- экономические 43,277
- гуманитарные 33,618
- юридические 17,900
- школьный раздел 606,754
- разное 16,824
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
Видео:В треугольнике отмечены середины M и N сторон BC и AC ... | ОГЭ 2017 | ЗАДАНИЕ 12 | ШКОЛА ПИФАГОРАСкачать

Повторение. Решение задач (стр. 2 )
![]() | Из за большого объема этот материал размещен на нескольких страницах: 1 2 3 4 5 6 7 8 |
1. Векторы могут использоваться для решения геометрических задач. Рассмотрим вспомогательную задачу.
2. Разобрать решение задачи 1 на с. 208 учебника по рис. 264.
IV. Решение задач.
1. Решить задачу 2. Точки M и N – середины сторон AB и CD четырехугольника ABCD. Докажите, что
Пусть О – произвольная точка. Согласно задаче 1 из п. 84 имеем 


Примечание. Результат задачи 2 можно использовать при доказательстве теоремы о средней линии трапеции на следующем уроке.
2. Решить задачу 3. Точка С лежит на отрезке AB, причем АС : СВ =
= 2 : 3. Докажите, что для любой точки О справедливо равенство
По условию AC : CB = 2 : 3, поэтому
Но
Следовательно, 
Примечание. Задача 3 является частным случаем более общей задачи 806.
3. Решить задачу № 000 на доске и в тетрадях.
4. Решить задачу № 000 на доске и в тетрадях.
Так как точка А1 – середина стороны ВС, то 
Далее
5. При наличии времени решить задачу 4.
Точки K, L, M, N – середины сторон AB, BC, CD, DE пятиугольника ABCDE, а точки P и Q – середины отрезков KM и LN. Докажите, что PQ || AE и PQ = 1/4 AE.
Пусть О – произвольная точка. Согласно задаче 1 из п. 84

Аналогично, 
Из этих равенств следует, что
Отсюда следует, что PQ || AE и PQ = 
Домашнее задание: повторить материал пунктов 76–84; разобрать решения задачи 2 из п. 84 и задачи № 000 и записать в тетрадь; решить задачу № 000.
Урок 8
Средняя линия трапеции
Цели: ввести понятия средней линии трапеции; доказать теорему о средней линии трапеции с помощью векторов; упражнять учащихся в решении задач.
I. Проверка усвоения учащимися материала.
1. Устно ответить на вопросы:
1) Какие векторы называются коллинеарными? Изобразите на рисунке сонаправленные векторы 



2) Какой вектор называется произведением данного вектора на данное число?
3) Могут ли векторы 

4) Сформулируйте основные свойства умножения вектора на число.
2. Решить задачу на доске и в тетрадях по готовому чертежу:
Точки M и N лежат соответственно на сторонах AD и BC четырехугольника ABCD, причем AM : MD = BN : NC =
= 3 : 4.
Докажите, что середины отрезков AB, MN и CD лежат на одной прямой.
Пусть K1 – середина AB, K2 – середина MN, K3 – середина CD. Согласно задаче 2 из п. 84 имеем



Таким образом, векторы 

II. Объяснение нового материала.
1. Определение трапеции. Виды трапеций.
2. Определение средней линии трапеции.
3. Доказательство теоремы о средней линии трапеции (проводит сам учитель).
При доказательстве теоремы целесообразно использовать результат задачи 2, решенной на предыдущем уроке.
Доказательство можно оформить на доске и в тетрадях в виде следующей краткой записи:
Дано: ABCD – трапеция, AD || BC, M – середина стороны AB; N – середина стороны CD (рис. 266 учебника).
Доказать: MN || AD, MN = 
1) Согласно рассмотренной в классе задаче 1 
2) Так как 

3) Так как 

MN = 
III. Закрепление изученного материала (решение задач).
1. Решить на доске и в тетрадях задачу № 000.
Пусть a и b – основания трапеции, тогда а + b = 48 – (13 + 15) =
= 20 (см); средняя линия MN = 
2. Решить задачу № 000.
3. Решить задачу № 000 на доске и в тетрадях.
Пусть BK – перпендикуляр, проведенный к основанию AD данной трапеции.
Но AK = 
= AD –
отрезок KD равен средней линии трапеции. Значит, средняя линия трапеции равна 7 см.
IV. Проверочная самостоятельная работа.
Точка K делит отрезок MN в отношении MK : KN = 3 : 2. Выразите вектор 


Точка A делит отрезок EF в отношении EA : AF = 2 : 5. Выразите вектор 


Домашнее задание: изучить материал пункта 85; ответить на вопросы 18–20, с. 214 учебника; решить задачи №№ 000, 794, 796.
Основные требования к учащимся:
В результате изучения параграфа учащиеся должны знать, какой вектор называется произведением вектора на число; уметь формулировать свойства умножения вектора на число; знать, какой отрезок называется средней линией трапеции; уметь формулировать и доказывать теорему о средней линии трапеции; уметь решать задачи типа №№ 000–787; 793–799.
МЕТОД КООРДИНАТ (10 часов)
Урок 1
Разложение вектора по двум данным
неколлинеарным векторам
Цели: доказать лемму о коллинеарных векторах и теорему о разложении вектора по двум неколлинеарным векторам и закрепить их знание в ходе решения задач.
I. Анализ результатов самостоятельной работы.
II. Устная работа.
1. Устно решить задачи по заранее заготовленному чертежу на доске:
Дан параллелограмм ABCD с диагоналями AC и BD, пересекающимися в точке О, а также отрезки MP и NQ, соединяющие соответственно середины сторон AB и CD, BC и AD. Требуется выразить:
1) вектор 

2) вектор 

3) вектор 

4) вектор 

2. Вопрос учащимся:
можно ли для любой пары коллинеарных векторов подобрать такое число, что один из векторов будет равен произведению второго вектора на это число?
III. Изучение нового материала.
1. Формулировка леммы о коллинеарных векторах. Для понимания учащимися формулировки леммы полезно обсудить, во-первых, почему важно условие 
2. Доказательство леммы.
3. Решить задачу по рисунку параллелограмма ABCD на доске (тем самым подвести учащихся к мысли о возможности выражения вектора через два данных неколлинеарных вектора):
Точки M и Q – середины сторон AB и AD параллелограмма ABCD. Выразите:
1) вектор 


2) вектор 


3) вектор 


4) вектор 


4. Рассмотреть теорему о разложении вектора по двум данным неколлинеарным векторам, в ходе ее доказательства полезно обратить внимание на роль леммы в доказательстве.
IV. Закрепление изученного материала (решение задач).
1. Решить задачи № 000 (а, б); № 000 (б, в).
2. Решить задачи № 000 (по готовому чертежу) и № 000 (а, б).
Задание на дом: изучить материал пункта 86; решить задачи №№ 911 (в, г), 912 (ж, е, з), 916 (в, г).
Урок 2
Координаты вектора
Цели: ввести понятие координат вектора и рассмотреть правила действий над векторами с заданными координатами.
I. Проверка домашнего задания.
1. Устно решить задачи:
1) назвать числа х и у, удовлетворяющие равенству: 

2. На доске двое учащихся решают задачи №№ 000 (в) и 912 (и, к).
II. Изучение нового материала.
1. Напомнить задание прямоугольной системы координат и начертить ее.
2. Ввести координатные векторы 

3. Нулевой вектор можно представить в виде 

4. Координаты равных векторов соответственно равны.
5. Рассмотреть правила, позволяющие по координатам векторов находить координаты их суммы, разности и произведения вектора на число (доказательства указанных правил учащиеся могут рассмотреть самостоятельно).
6. Записать в тетрадях правила:


1) 
2) 
3) 
III. Закрепление изученного материала (решение задач).
1. Решить задачу № 000 на доске и в тетрадях.
2. Устно по рисунку 276 решить задачу № 000.
3. Решить задачу № 000 (самостоятельно).
4. Решить задачу № 000 (а, в) на доске и в тетрадях.
5. Устно решить задачи № 000–925, используя правила, записанные в тетрадях.
6. Записать утверждение задачи № 000 без доказательства:
1) Если два вектора коллинеарны, то координаты одного вектора пропорциональны координатам другого: если 

2) Если координаты одного вектора пропорциональны координатам другого вектора, то эти векторы коллинеарны.
7. Решить задачу № 000.
Используем условие коллинеарности векторов: 
1) 


2) 


IV. Самостоятельная работа контролирующего характера.
Решить задачи № 000 (а, г); № 000 (г); № 000 (а, б); № 000 (а, в);
№ 000 (а).
Решить задачи №№ 000 (в, д); 920 (д); 988 (в, г); 921 (б, г); 914 (б).
Домашнее здание: подготовиться к устному опросу по карточкам, повторить материал пунктов 76–87; ответить на вопросы 1–20, с. 213–214 и на вопросы 1–8, с. 249 учебника; решить задачи №№ 000, 795; 990 (а) (для векторов 

Урок 3
Связь между координатами вектора
и координатами его начала и конца.
Простейшие задачи в координатах
Цели: рассмотреть связь между координатами вектора и координатами его начала и конца; разобрать задачи о нахождении координат середины отрезка, о вычислении длины вектора по его координатам и нахождении расстояния между двумя точками.
1. Указать ошибки, сделанные учащимися при выполнении работы.
2. Решить на доске задачи, вызвавшие затруднения у учащихся.
II. Изучение нового материала (лекция).
1. Рассмотреть по учебнику рис. 277 и рис. 278 и ввести понятие радиус-вектора 
Без доказательства записать в тетрадях утверждения:
а) координаты точки М равны соответствующим координатам ее радиус-вектора;
б) каждая координата вектора равна разности соответствующих координат его конца и начала:
џ Устно решить задачу № 000.
2. Введение системы координат дает возможность изучать геометрические фигуры и их свойства с помощью уравнений и неравенств и, таким образом, использовать в геометрии методы алгебры. Такой подход к изучению свойств геометрических фигур называется методом координат.
3. Рассмотрим три вспомогательные задачи.
1) Координаты середины отрезка.
Используя формулу из п. 




Вывод: каждая координата середины отрезка равна полусумме соответствующих координат его концов.
џ Устно решить задачу № 000.
2) Вычисление длины вектора по его координатам.
Используя рис. 280 учебника, вывести формулу 
џ Устно решить задачу № 000.
3) Расстояние между двумя точками.
Пусть точка M1 (x1; y1) и точка M2 (x2; y2); тогда вектор 
y2 – y1); следовательно, длина этого вектора может быть найдена по формуле 

d =
џ Решить задачу № 000 (а, б) на доске и в тетрадях.
III. Закрепление изученного материала (решение задач).
1. Решить задачу № 000.
Найти расстояние от точки М (3; –2): а) до оси абсцисс; точка В (x; y) лежит на оси абсцисс; тогда расстояние равно 2; б) расстояние до оси ординат равно 3; в) до начала координат равно d =
2. Решить задачу № 000 на доске и в тетрадях.
MN =
NP =
MP =
PΔMNP = 
Задание на дом: изучить материал пунктов 88, 89; решить задачи №№ 000, 952.
Урок 4
Простейшие задачи в координатах.
Решение задач
Цели: закрепить знания учащихся в ходе решения задач; учить решать задачи в координатах.
I. Повторение изученного материала.
1. Двое учащихся по карточкам работают у доски:
1) Вывести формулы координат середины отрезка.
2) Решить задачу № 000.
1) Вывести формулу расстояния между двумя точками.
2) Решить задачу № 000.
2. С остальными учащимися проводится устная работа по решению задач:
1) Найдите координаты вектора 




2) Найдите координаты вектора 




3) Найдите координаты середины отрезка DK, если D (–6; 4), K (2; –8).
4) Найдите длину отрезка CP, если С (3; –2), P (–5; 4).
5) Найдите длину вектора 



6) Найдите координаты вектора 3



II. Решение задач.
1. Решить задачу № 000 (а).
Найдем длины сторон треугольника АВС по формуле
d = 
AB =
BC =
AC =
Так как АВ = АС, то по определению равнобедренного треугольника АВС – равнобедренный. Найдем его площадь; проведем высоту АМ 
SΔABC = 
x = 

Значит, точка М (3; –1).
Найдем длину отрезка AM =
Площадь треугольника АВС равна S = 
2. Решить задачу № 000 (б).
d = 

3. Решить задачу № 000 (б) на доске и в тетрадях.
Пусть точка М (0; y) лежит на оси ординат; по условию МС = MD;
(4 – 0)2 + (–3 – y)2 = (8 – 0)2 + (1 – y)2;
Значит, точка М (0; 5).
4. Решить задачу № 000 (б) на доске и в тетрадях.
Найдем координаты точки пересечения диагоналей четырехугольника О (x; y): для диагонали NQ имеем:
x = 
y = 
Для диагонали МР имеем:
x = 

Значит, диагонали MP и NQ точкой пересечения делятся пополам; по признаку параллелограмма MNPQ – параллелограмм.
MP =
NQ =
Ответ: 4 

5. Решить задачу № 000 (а).
AB =
CD =
BC =
AD =
Так как AB = CD = 4 и BC = AD = 2, то по II признаку параллелограмма ABCD – параллелограмм. Найдем диагонали АС и BD параллелограмма ABCD: AC =
BD =
Если диагонали равны AC = BD, то ABCD – прямоугольник.
III. Итоги урока.
Домашнее здание: повторить материал пунктов 88 и 89; решить задачи №№ 000 (б), 949 (а), 951 (б), 953.
Урок 5
Уравнение линии на плоскости.
Уравнение окружности
Цели: познакомить учащихся с понятием уравнения линии на плоскости; вывести уравнение окружности и научить записывать уравнение окружности.
I. Математический диктант (10–15 мин).
1. Найдите координаты середины отрезка AB, если A (–2; 3), B (6; –3).
2. Найдите длину отрезка EH, если E (–3; 8), H (2; –4).
3. Какая фигура состоит из множества всех точек плоскости, каждая из которых равноудалена от двух данных точек?
4. Принадлежит ли точка A (–6; 2) графику функции y = – 0,5x?
5. Функция задана уравнением y = 2x – 3. Какая линия служит графиком этой функции?
6. На окружности радиуса 7 см даны точки А и В, расстояние между которыми равно 13 см. лежит ли центр окружности на прямой АВ?
7. Вершины треугольника ABC имеют следующие координаты: А (8; –3); В (5; 1); С (12; 0). Докажите, что 

1. Найдите координаты середины отрезка CD, если C (3; –4), D (–3; 6).
2. Найдите длину отрезка KB, если K (–6; –3), B (2; 3).
3. Прямая l является серединным перпендикуляром к основанию AB треугольника ABC и проходит через вершину C. Определите вид треугольника ABC.
4. Принадлежит ли точка В (2; –8) графику функции y = – 4x?
5. Функция задана уравнением y = 5 – x. Какая линия служит графиком этой функции?
6. Какой фигурой является множество точек, равноудаленных от данной точки?
7. Вершины четырехугольника ABCD имеют следующие координаты: А (–3; –1); В (1; 2); С (5; –1), D (1; –4). Докажите, что этот четырехугольник – ромб.
II. Объяснение нового материала.
1. Разобрать пятое задание диктанта, обратив внимание учащихся на то, что им уже известны графики некоторых функций. В частности, графиком линейной функции y = kx + b является прямая линия, а уравнение y = kx + b называется уравнением этой прямой.
2. Вспомнить уравнения параболы и гиперболы и их графики.
3. Понятие уравнения произвольной линии дается в ознакомитель-ном плане. При этом важно добиться понимания учащимися следующего: чтобы установить, что данное уравнение является уравнением данной линии, нужно доказать, что: 1) координаты любой точки линии удовлетворяют данному уравнению и 2) координаты любой точки, не лежащей на данной линии, не удовлетворяют этому уравнению.
4. Введение уравнения окружности радиуса r с центром С в заданной прямоугольной системе координат (рис. 286):
где C (x0; y0). Уравнение окружности радиуса r с центром в начале координат О (0; 0) имеет вид: x2 + y2 = r2.
5. Не любое уравнение второй степени с двумя переменными задает окружность. Например, уравнение 4х2 + у2 = 4 в прямоугольной системе координат не окружность, а эллипс (с этой фигурой учащиеся знакомились в курсе черчения), уравнение х2 + у2 = 0 задает единственную точку – начало координат, а уравнению х2 + у2 = –4 не удовлетворяют координаты ни одной точки, поэтому это уравнение не задает никакой фигуры.
Видео:Пятнадцатое задание ОГЭ по математике(12) #огэ #огэ2023 #огэпоматематике #математика #огэматематикаСкачать

Точки m и n середины сторон bc и ad четырехугольника abcd точки p и k
БАЗА ЗАДАНИЙ
Задание № 16. Планиметрия с доказательством.
1. Прямая, проходящая через вершину B прямоугольника ABCD перпендикулярно диагонали AC, пересекает сторону AD в точке M, равноудалённой от вершин B и D.
а) Докажите, что ∠ABM =∠DBС = 30°.
б) Найдите расстояние от центра прямоугольника до прямой CM, если BC = 9.
2. К окружности, вписанной в квадрат ABCD, проведена касательная, пересекающая стороны AB и AD в точках M и N соответственно.
а) Докажите, что периметр треугольника AMN равен стороне квадрата.
б) Прямая MN пересекает прямую CD в точке P. В каком отношении делит сторону BC прямая, проходящая через точку P и центр окружности, если AM : MB = 1 : 3?
Ответ: б) 1:3
3. Диагонали AC и BD четырёхугольника ABCD, вписанного в окружность, пересекаются в точке P, причём BC=CD.
а) Докажите, что AB:BC = AP:PD.
б) Найдите площадь треугольника COD, где O— центр окружности, вписанной в треугольник ABD, если дополнительно известно, что BD — диаметр описанной около четырёхугольника ABCD окружности, AB = 6, а BC = 6√2.
Ответ: б) 18√3
4. В треугольнике ABC точки A 1 , B 1 , C 1 — середины сторон BC, AC и A B соответственно, AH— высота, ∠BAC = 60°, ∠BCA = 45°.
а) Докажите, что точки A1, B1, C1, H— лежат на одной окружности.
б) Найдите A1 H, если BC = 2√3.
5. Две окружности касаются внутренним образом в точке A, причём меньшая проходит через центр большей. Хорда BC большей окружности касается меньшей в точке P. Хорды AB и AC пересекают меньшую окружность в точках K и M соответственно.
а) Докажите, что прямые KM и BC параллельны.
б) Пусть L— точка пересечения отрезков KM и AP. Найдите AL, если радиус большей окружности равен 10, а BC = 16.
Ответ: б) √10
6. Две окружности касаются внутренним образом в точке A, причём меньшая окружность проходит через центр O большей. Диаметр BC большей окружности вторично пересекает меньшую окружность в точке M, отличной от A. Лучи AO и AM вторично пересекают большую окружность в точках P и Q соответственно. Точка C лежит на дуге AQ большей окружности, не содержащей точку P.
а) Докажите, что прямые PQ и BC параллельны.
б) Известно, что sin ∠AOC=√15/4. Прямые PC и AQ пересекаются в точке K. Найдите отношение QK:KA.
Ответ: б) 1:4
7. Две окружности касаются внутренним образом в точке K, причём меньшая проходит через центр большей. Хорда MN большей окружности касается меньшей в точке C. Хорды KM и KN пересекают меньшую окружность в точках A и B соответственно, а отрезки KC и AB пересекаются в точке L.
а) Докажите, что CN:CM = LB:LA.
б) Найдите MN, если LB:LA = 2:3, а радиус малой окружности равен √23.
Ответ: б) 115/6
8. Дан прямоугольный треугольник ABC с прямым углом C. На катете AC взята точка M. Окружность с центром O и диаметром CM касается гипотенузы в точке N.
а) Докажите, что прямые MN и BO параллельны.
б) Найдите площадь четырёхугольника BOMN, если CN = 4 и AM:MC = 1:3.
9. Точка B лежит на отрезке AC. Прямая, проходящая через точку A, касается окружности с диаметром BC в точке M и второй раз пересекает окружность с диаметром AB в точке K. Продолжение отрезка MB пересекает окружность с диаметром AB в точке D.
а) Докажите, что прямые AD и MC параллельны.
б) Найдите площадь треугольника DBC, если AK = 3 и MK = 12.
10. Точка M лежит на стороне BC выпуклого четырёхугольника ABCD, причём B и C — вершины равнобедренных треугольников с основаниями AM и DM соответственно, а прямые AM и MD перпендикулярны.
а) Докажите, что биссектрисы углов при вершинах B и C четырёхугольника ABCD пересекаются на стороне AD.
б) Пусть N— точка пересечения этих биссектрис. Найдите площадь четырёхугольника ABCD, если известно, что BM:MC=1:3, а площадь четырёхугольника, стороны которого лежат на прямых AM, DM, BN и CN, равна 18.
11. В равнобедренном тупоугольном треугольнике ABC на продолжение боковой стороны BC опущена высота AH. Из точки H на сторону AB и основание AC опущены перпендикуляры HK и HM соответственно.
а) Докажите, что отрезки AM и MK равны.
б) Найдите MK, если AB = 5, AC = 8.
Ответ: б) 2,88
12. Точка O — центр окружности, описанной около остроугольного треугольника ABC, I — центр вписанной в него окружности, H — точка пересечения высот. Известно, что ∠BAC = ∠OBC+∠OCB.
а) Докажите, что точка H лежит на окружности, описанной около треугольника BOC.
б) Найдите угол OHI, если ∠ABC = 55°.
13. Точки P, Q, W делят стороны выпуклого четырёхугольника ABCD в отношении AP:PB = CQ:QB = CW:WD = 3:4, радиус окружности, описанной около треугольника PQW, равен 10, PQ = 16, QW = 12, угол PWQ— острый.
а) Докажите, что треугольник PQW— прямоугольный.
б) Найдите площадь четырёхугольника ABCD.
14. Окружность проходит через вершины В и С треугольника АВС и пересекает АВ и АС в точках C 1 , B 1 соответственно.
а) Докажите, что треугольник АВC подобен треугольнику AB 1 C 1 .
б) Вычислите длину стороны ВС и радиус данной окружности, если ∠ А = 45°, B 1 C 1 =6 и площадь треугольника AB 1 C 1 в восемь раз меньше площади четырёхугольника BCB 1 C 1 .
15. Дана трапеция ABCD с основаниями AD и BC. Диагональ BD разбивает её на два равнобедренных треугольника с основаниями AD и CD.
а) Докажите, что луч AC— биссектриса угла BAD.
б) Найдите CD, если известны диагонали трапеции: AC = 15 и BD = 8,5.
16. В прямоугольном треугольнике АВС с прямым углом С точки М и N – середины катетов АС и ВС соответственно, СН – высота.
а) Докажите, что прямые MH и NH перпендикулярны
б) Пусть Р – точка пересечения прямых АС и NH, а Q – точка пересечения прямых ВС и MH. Найдите площадь треугольника PQM, если АН = 12 и ВН = 3.
17. В треугольнике АВС угол АВС равен 60°. Окружность, вписанная в треугольник, касается стороны AC в точке M.
а) Докажите, что отрезок BM не больше утроенного радиуса вписанной в треугольник окружности.
б) Найдите sin ∠BMC если известно, что отрезок ВМ в 2,5 раза больше радиуса вписанной в треугольник окружности.
Ответ: б) 0,65
18. В треугольнике АВС проведены высоты АК и СМ. На них из точек М и К опущены перпендикуляры МЕ и КН соответственно.
а) Докажите, что прямые ЕН и АС параллельны.
б) Найдите отношение ЕН:АС, если угол АВС равен 30.
Ответ: б) 3:4
19. Окружность, вписанная в треугольник KLM, касается сторон KL, LM, MK в точках A, B и C соответственно.
а) Докажите, что KC = (KL+KM-LM)/2 .
б) Найдите отношение LB:BM, если известно, что KC:CM = 3:2 и ∠ MKL = 60.
Ответ: б) 5:2
20. Дана равнобедренная трапеция ABCD с основаниями AD и BC. Окружность с центром O, построенная на боковой стороне AB как на диаметре, касается боковой стороны CD и второй раз пересекает большее основание AD в точке H, точка Q — середина CD.
а) Докажите, что четырёхугольник DQOH — параллелограмм.
б) Найдите AD, если ∠BAD = 75° и BC =1.
Ответ: б) 3
21. Квадрат ABCD вписан в окружность. Хорда CE пересекает его диагональ BD в точке K.
а) Докажите, что CK*CE = AB*CD.
б) Найдите отношение CK к KE, если ∠ ECD = 15.
Ответ: б) 2:1
22. В прямоугольном треугольнике ABC точки M и N – середины гипотенузы AB и катета BC соответственно. Биссектриса ∠ BAC пересекает прямую MN в точке L
а) Докажите, что треугольники AML и BLC подобны.
б) Найдите отношение площадей этих треугольников, если cos ∠BAC = 7/25.
Ответ: б) 25:36
23. Окружность касается стороны AC остроугольного треугольника ABC и делит каждую из сторон AB и BC на три равные части.
а) Докажите, что треугольник ABC равнобедренный.
б) Найдите, в каком отношении высота этого треугольника делит сторону BC.
Ответ: б) 5:4
24. На катетах AC и BC прямоугольного треугольника ABC как на диаметрах построены окружности, второй раз пересекающиеся в точке M. Точка Q лежит на меньшей дуге MB окружности с диаметром BC. Прямая CQ второй раз пересекает окружность с диаметром AC в точке P.
а) Докажите, что прямые PM и QM перпендикулярны.
б) Найдите PQ, если AM = 1, BM = 3, а Q – середина дуги MB.
25. Окружность, построенная на медиане BM равнобедренного треугольника ABC как на диаметре, второй раз пересекает основание BC в точке K.
а) Докажите, что отрезок BK втрое больше отрезка CK.
б) Пусть указанная окружность пересекает сторону AB в точке N. Найдите AB, если BK = 24 и BN = 23.
26. В прямоугольной трапеции ABCD с прямым углом при вершине A расположены две окружности. Одна из них касается боковых сторон и большего основания AD, вторая – боковых сторон, меньшего основания BC и первой окружности.
а) Прямая, проходящая через центр окружностей, пересекает основание AD в точке P. Докажите, что AP/PD = sin ∠D.
б) Найдите площадь трапеции, если радиусы окружностей равны 3 и 1.
27. В трапецию ABCD с основаниями AD и BC вписана окружность с центром O.
а) Докажите, что sin ∠AOD = sin ∠ BOS.
б) Найдите площадь трапеции, если ∠ BAD = 90, а основания равны 5 и 7.
28. Дана трапеция с диагоналями равными 8 и 15. Сумма оснований равна 17.
а) Докажите, что диагонали перпендикулярны.
б) Найдите площадь трапеции.
🎥 Видео
№68. Точки М и N — середины ребер АВ и АС тетраэдра ABCD. Докажите, что прямая MN параллельнаСкачать

ОГЭ. Геометрия. Из открытого банка заданий ОГЭ (ФИПИ). Медианы №1Скачать

Геометрия Точки M, K, N, P являются соответственно серединами сторон AB, BC, CD и AD квадрата ABCDСкачать

Геометрия Точки M и K – середины сторон AB и AC треугольника ABC соответственно. Найдите периметрСкачать

№346. Точки М и N — середины оснований АВ и CD трапеции ABCD, а О — произвольнаяСкачать

№382. Диагонали параллелограмма ABCD пересекаются в точке О. Докажите, что четырехугольникСкачать

1707 точка M и N являются серединами сторон AB и BC треугольника ABCСкачать

№166. Отрезки АВ и CD пересекаются в их общей середине О. Точки М и N — середины отрезков АС и BD.Скачать

СЕЧЕНИЯ. СТРАШНЫЙ УРОК | Математика | TutorOnlineСкачать

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Красивая задача №3 из ЕГЭ-2022. Параллелограмм Вариньона |ЕГЭ по математике профильного уровняСкачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

№ 401-500 - Геометрия 9 класс МерзлякСкачать

№158. Через вершину В ромба ABCD проведена прямая ВМ, перпендикулярная к его плоскости. НайдитеСкачать

№555. Точки М, N и Р лежат соответственно на сторонах АВ, ВС и СА треугольника ABC, причем MN||AC,Скачать


































