- Определение силы
- Сила – это векторная величина
- Скользящие векторы
- Силы в теоретической механике
- Статика и эквивалентные преобразования сил
- Единицы измерения силы
- Силы в теоретической механике
- Основные понятия и аксиомы статики
- Основные определения
- Аксиомы статики
- Связи и их реакции
- Сложение сил. Система сходящихся сил
- Сложение двух сил
- Сложение системы сил
- Разложение сил
- Аналитический способ задания сил
- Аналитический способ сложения сил
- Равновесие плоской системы сходящихся сил
- Момент силы относительно центра или точки
- Теорема Вариньона о моменте равнодействующей
- Теоретическая механика. В помощь студенту
- Статика твердого тела
- Кинематика
- Динамика
- Примеры решения задач
- Решение примеров по теме: «Статика твердого тела»
- Пример 1. Условия равновесия
- Решение примеров по теме: «Кинематика»
- Пример 2. Уравнение траектории точки
- Решение примеров по теме: «Динамика»
- Пример 3. Основной закон динамики точки
- 💥 Видео
Видео:Момент силы. Определение, размерность и знаки. Плечо силыСкачать
Определение силы
В инерциальной системе отсчета, не взаимодействующие между собой, материальные точки движутся с постоянными скоростями. Пусть – радиус-вектор одной из свободных точек. Тогда вектор ее скорости есть постоянный вектор, не зависящий от времени t . Следовательно его проекции на оси прямоугольной системы координат являются постоянными, не зависящими от времени величинами: . Если мы определим вектор ускорения точки:
,
то он равен нулю: . Это означает, что его проекции на оси координат равны нулю: .
Как показывает опыт, можно создать условия, при которых материальные точки будут взаимодействовать друг с другом. Тогда их скорости не будут постоянными – движение при взаимодействии является ускоренным. У рассматриваемой нами точки, вектор скорости будет зависеть от времени, а вектор ускорения будет отличен от нуля. Тогда удобно ввести новую векторную физическую величину, пропорциональную вектору ускорения точки. Такую величину называют силой. Она определяется по формуле:
,
где m – еще одна физическая величина, называемая массой точки.
Сила , действующая на материальную точку с радиус-вектором со стороны других точек – это мера воздействия других точек на рассматриваемую точку, в результате которой она получает ускорение относительно инерциальной системы отсчета. Величина силы определяется по формуле:
(1) ,
где m – масса точки – величина, зависящая от свойств самой точки.
Формула (1) называется вторым законом Ньютона. По существу, она является определением новой физической величины – силы. Такое определение согласуется с нашим жизненным опытом, согласно которому, чем больше мы прилагаем усилий, тем быстрее разгоняется груз (например, при толкании ядра в легкой атлетике). Однако, в отличие от жизненного опыта, формула (1) дает строгое математическое определение.
Изучая движения материальных точек, мы можем экспериментально определить их ускорения, а затем по формуле (1) найти зависимость силы от положений точек системы. Так мы устанавливаем законы, описывающие взаимодействие материальных точек. Изучая и систематизируя экспериментальные данные, мы получаем правила, которые позволяют нам определять зависимость силы от времени и от координат в сложных случаях, основываясь на более простых. Так если нам известна зависимость вектора от времени и от координат: , то формула (1) представляет собой систему дифференциальных уравнений:
Решая ее, можно найти закон движения точки.
Видео:Момент силы относительно точки и осиСкачать
Сила – это векторная величина
В формуле (1): , m есть скаляр, то есть число, не зависящее от координат и времени. Ускорение есть вектор. Тогда сила является вектором. Это означает, что если мы выберем прямоугольную систему координат , то сила имеет три проекции на ее оси: . То есть, в математическом смысле, сила определяется тремя числами – тремя компонентами или проекциями на оси координат. Разумеется, если мы будем рассматривать движение в плоскости, то есть в двухмерном пространстве, то в нем прямоугольная система координат имеет только две оси . Тогда и сила, как и любой вектор в этой системе, имеет только две проекции (или компоненты).
Поскольку сила – это вектор, то к ней применимы все формулы, применяемые к векторам в аналитической геометрии.
Видео:Техническая механика/ Определение равнодействующей. Плоская система сходящихся сил.Скачать
Скользящие векторы
Теперь рассмотрим абсолютно твердое тело. Законы его движения имеют более сложный вид. Они описываются двумя векторными уравнениями:
(2) ;
(3) .
Здесь – ускорение центра масс тела; M – его масса; – момент импульса тела относительно произвольно выбранного центра C ; – внешние силы, действующие на тело, приложенные в точках .
Вместо того, чтобы пытаться в лоб решать эти уравнения, давайте попробуем вывести некоторые закономерности, заключенные в этих уравнениях. Для этого упростим задачу. Рассмотрим тело в некоторый момент времени t . И пусть, для этого момента времени, нам известны действующие на него силы и точки их приложения .
Уравнение (2) не зависит от точек приложения Ak сил. Для его составления требуется знать только проекции сил на оси координат . А вот в уравнение (3) входят точки приложения. Они входят в виде векторов, проведенных из некоторого центра C в точку Ak . Причем входят в виде векторного произведения .
Согласно одному из свойств, векторное произведение векторов, имеющих одинаковое направление, равно нулю. Поэтому . Тогда если к вектору прибавить любой вектор, параллельный , то векторное произведение не изменится:
.
Здесь – произвольная постоянная, имеющая размерность м/Н.
Отсюда следует важный вывод. Если точку приложения силы переместить на любое расстояние вдоль линии действия силы, то уравнения движения твердого тела не изменятся. В связи с этим, вместо обычного в математическом определении вектора, можно ввести новый математический объект, называемый скользящим вектором. Скользящий вектор по существу есть множество, состоящее из двух векторов – самого вектора силы (так называемый образующий вектор) и его точки приложения относительно выбранного центра системы отсчета . В связи с этим, приводим следующие определения.
Скользящий вектор – это множество, состоящее из образующего вектора и точки его приложения, обладающее тем свойством, что точку приложения можно перемещать вдоль прямой, проведенной через точку приложения параллельно образующему вектору. То есть два скользящих вектора считаются равными, если равны образующие векторы и точки их приложения расположены на одной прямой, параллельной образующему вектору.
Наряду со скользящим вектором, мы можем ввести понятия закрепленных и свободных векторов.
Закрепленный вектор – это множество, состоящее из образующего вектора и точки его приложения. Два фиксированных вектора считаются равными только в том случае, если равны их образующие векторы и совпадают точки приложения. Закрепленный вектор также называют связанным или фиксированным вектором. Свободный вектор – это множество, состоящее из образующего вектора и точки его приложения. Два свободных вектора считаются равными, если равны образующие векторы, не зависимо от точек приложения.
Таким образом, свободный вектор не зависит от точки приложения, и является просто вектором. Для справок также приведем определение вектора.
Вектор в трехмерном пространстве – это три числа, называемые компонентами, связанные с предварительно выбранной прямоугольной системой координат, которые при поворотах этой системы вокруг ее центра O , и при отражении осей, преобразуются по тому же закону, что и координаты произвольной точки A , не совпадающей с O . Компоненты вектора также называются проекциями вектора на оси координат.
Видео:§4.3. Главный вектор и главный момент сил инерцииСкачать
Силы в теоретической механике
Если мы рассматриваем деформации в телах, то все приложенные силы нужно рассматривать как связанные векторы, поскольку внутренние напряжения и деформации зависят от точек приложения сил. Но если мы считаем тело абсолютно твердым, и нам нужно определить только траекторию его движения, то, как показано выше, силы являются скользящими векторами. То есть в теоретической механике мы можем обращаться с силами более свободно, чем при решении других задач – точки приложения сил можно перемещать вдоль линий их действия.
Таким образом, в теоретической механике, над силами мы можем выполнять следующие преобразования.
1) Переносить точку приложения силы на любое расстояние вдоль линии ее действия.
2) Раскладывать силу по правилу параллелограмма на две или более сил, каждая из которых приложена в той точке, что исходная сила – то есть можно заменить исходную силу на несколько сил, векторная сумма которых равна исходной.
3) Несколько сил, приложенных к одной точке можно объединять в одну, применяя правило параллелограмма – то есть можно заменить несколько сил, приложенных в одной точке их векторной суммой, приложенной в той же точке.
Такие преобразования называются эквивалентными преобразованиями сил. А системы, полученные в результате таких преобразований, называются эквивалентными системами сил. На странице «Аксиомы статики» приводится иллюстрация подобных преобразований. См. «Пример решения задачи, используя аксиомы статики». Таким образом, в теоретической механике, силы являются некоторыми расчетными величинами. Их можно преобразовывать для того, чтобы получить более простую систему сил и упростить уравнения движения тел.
Рассмотрим следующий пример. Пусть мы имеем тело, на которое действует сила тяжести Земли. Эта сила приложена ко всем точкам. На любую малую часть тела, массой , действует сила тяжести , где – ускорение свободного падения. То есть на тело действует система сил, равномерно распределенных по его объему. Решать уравнения движения с такими силами неудобно. Поэтому в начале, проще выполнить эквивалентные преобразования. В результате таких преобразований все силы тяжести малых элементов тела можно заменить одной силой , приложенной к центру масс тела с радиус-вектором . Тем самым мы пришли к уравнениям движения, в которых на тело действует одна сила. Естественно, что это не реальная сила, действующая в центре масс, а расчетная величина, эквивалентная распределенным по объему тела силам.
Здесь мы разбили тело на материальные точки, каждая из которых имеет массу и положение в пространстве, задаваемое радиус-вектором . Тогда – масса тела. Суммирование выполняется по всем точкам, составляющим тело.
Видео:Момент силыСкачать
Статика и эквивалентные преобразования сил
Снова рассмотрим уравнения движения твердого тела:
(2) ;
(3) .
Пусть в момент времени t нам известны внешние силы , действующие на тело. Далее мы можем попытаться упростить систему сил, сведя ее эквивалентными преобразованиями к новой системе . В следующий момент времени, силы могут измениться и нам потребуется выполнять новые эквивалентные преобразования. В этом, конечно, ничего хорошего нет. Но, возможно, нам удастся найти эквивалентные преобразования аналитическим способом, то есть получить аналитическое выражение для новых сил , пригодное для любого момента времени. Тогда вместо (2) и (3) мы получим систему уравнений с более простой системой сил:
(2′) ;
(3′) .
Теперь из уравнений (2) и (3) вычтем уравнения (2′) и (3′):
(4) ;
(5) .
Но это есть ни что иное, как уравнения статики, в которых к исходной системе сил добавили эквивалентную систему, изменив направления на противоположные.
Отсюда следует вывод, что для получения эквивалентной системы сил, нужно к исходной системе, добавить новую систему сил так, чтобы тело находилось в равновесии. Тогда эквивалентная система будет совпадать с новой, в которой направления сил заменены на противоположные.
Видео:Построение проекции вектора на осьСкачать
Единицы измерения силы
В СИ единицей измерения силы является Ньютон. Обозначается Н. Международное обозначение N. Сила F с абсолютным значением в 1 Ньютон обозначается так:
F = 1 Н .
Из уравнения (1) получаем:
.
В СГС единицей измерения силы является дин. Обозначается дин. Международное обозначение dyn.
; .
В МКГСС единицей измерения силы является килограмм-сила. Это основная единица этой системы (наряду с метром и секундой). Обозначается кгс или кГ. Международное обозначение kgf или kgF.
.
Автор: Олег Одинцов . Опубликовано: 05-09-2019
Видео:Теоретическая механика. Нахождение реакций связей на при плоской системе сил. Задача 1, часть 1Скачать
Силы в теоретической механике
Содержание:
Основные понятия и аксиомы статики
Под равновесием понимается состояние покоя тела по отношению к другим материальным телам.
Абсолютно твердое тело — это тело, расстояние между любыми двумя точками которого всегда остается постоянным.
Чтобы твердое тело под действием некоторой системы сил находилось в равновесии (в покое), необходимо, чтобы эти силы удовлетворяли определенным условиям равновесия данной системы сил.
Основными задачами статики являются:
- 1. Сложение сил и приведение системы сил, действующих на твердое тело, к простейшему виду.
- 2. Определение условий равновесия систем сил, действующих на твердое тело.
Состояние равновесия или движение тела зависит от характера его механических взаимодействий с другими телами.
Сила — это величина количественной меры механического взаимодействия материальных тел.
Рассматриваемые в механике величины разделяют на векторные и скалярные.
Скалярные величины характеризуются только численными значениями.
Векторные величины характеризуются численными значениями и направлением в пространстве.
Сила является векторной величиной и ее действие на тело определяется численной величиной, или мерой силы, направлением силы, точкой приложением силы.
Сила (в механике) измеряется в Ньютонах ().
Основные определения
Прямая, вдоль которой направлена сила, называется линией действия силы.
Совокупность сил, действующих на какое-либо тело называется системой сил.
Тело, не связанное с другими телами, которому из данного положения можно сообщить любое перемещение в пространстве, называется свободным.
Если одну систему сил, действующую на тело, можно заменить другой системой, не изменяя при этом состояние данной системы, то такие две системы сил называются эквивалентными.
Система сил, под действием которой свободное твердое тело может находиться в покос, называется уравновешенной или эквивалентной нулю.
Равнодействующая сила — это сила, которая одна заменяет действие данной системы сил на твердое тело.
Сила, равная равнодействующей силе по модулю, но противоположно направленная по той же прямой, называется уравновешивающей.
Силы бывают внешними и внутренними:
Внешние силы действуют со стороны других материальных тел.
Внутренние — это силы, с которыми частицы данного тела действуют друг на друга.
Сила, приложенная к телу в какой-либо точке, называется сосредоточенной.
Силы, действующие на все точки данного объема или данной части поверхности тела, называются распределенными.
Возможно вам будут полезны данные страницы:
Аксиомы статики
Все теоремы и уравнения статики выводятся из нескольких исходных положений, принимаемых без математических доказательств. Эти положение называются аксиомами статики.
- Аксиома 1. Если на свободное, абсолютно твердое тело действуют две силы, то твердое тело может находиться в равновесии тогда и только тогда, когда эти силы будут равны по модулю () и направлены вдоль одной прямой в противоположные стороны (рис. 1.1). Следовательно, тело, на которое действует только одна сила, находиться в равновесии не может.
- Аксиома 2. Действие данной системы сил на абсолютно твердое тело не изменится, если к ней прибавить или отнять уравновешивающую систему сил.
Следствие из 1-й и 2-й аксиом таково: действие силы на абсолютно твердое тело не изменится, если перенести точку приложения силы вдоль ее линии действия в любую другую точку тела.
Этим принципом можно пользоваться тогда, когда определяются условия равновесия той или иной конструкции и не рассматриваются возникающие в ее частях внутренние усилия. Следовательно, при определении внутренних усилий переносить точку приложения силы вдоль линии действия нельзя.
- Аксиома 3. Две силы, приложенные к телу в одной точке, имеют равнодействующую, изображаемую диагональю параллелограмма, построенную на этих силах как на сторонах (рис. 1.2).
- Аксиома 4. При всяком действии силы материального тела на другое имеет место такое же по величине, противоположное по направлению противодействие (рис. 1.3).
- Аксиома 5. Равновесие деформируемого тела, находящегося под действием данной системы сил, не нарушится, если тело считать абсолютно твердым.
Связи и их реакции
Тело, которое из данного положения может совершать любые перемещения в пространстве, называется свободным.
Тело, перемещению которого препятствуют другие скрепленные или соединенные с ним тела, называется несвободным.
Все то, что ограничивает перемещение данного тела в пространстве, называется связью.
Сила, с которой данная связь действует на тело, препятствуя его перемещениям, называется реакцией связи.
Реакция связи направлена в сторону, противоположную той, куда связь не даст перемещаться телу (при решении задач очень важно правильно определить направление реакций связи).
1. Гладкая поверхность или опора. Реакция гладкой поверхности или опоры направлена по общей нормали к поверхностям соприкасающихся тел в точке их касания и приложена в этой точке (рис. 1.4).
2. Нить. Реакция натянутой нити направлена вдоль нити к точке ее подвеса (рис. 1.5).
3. Цилиндрический шарнир. Реакция цилиндрического шарнира может иметь любое направление в плоскости, перпендикулярной к оси шарнира (рис. 1.6).
4. Шаровой шарнир и подпятник. Реакция шарового шарнира и подпятника может иметь любое направление в пространстве (рис. 1.7).
Аксиома связей. Всякое несвободное тело можно рассматривать как свободное, если отбросить связи и заменить их действие реакциями этих связей (рис. 1.8).
Реакции связи — это исходные данные, которые необходимо знать при расчете конструкций на прочность.
Сложение сил. Система сходящихся сил
Величина геометрической суммы сил называется главным вектором системы сил. Геометрическая сумма — это нсравнодсйствующая сил, т.е. для многих систем равнодействующих вообще не существует, а геометрическую сумму можно вычислить для любой системы сил.
Сложение двух сил
Геометрическая сумма двух сил и находится или по правилу параллелограмма или посредством построения силового треугольника (рис. L9).
Модуль определяется как сторона треугольника из равенства
где — угол между силами,
Углы и находятся по теореме синусов. Учитывая, что получаем
Сложение системы сил
Правило параллепипеда. Геометрическая сумма трех сил и не лежащих в одной плоскости, изображается диагональю параллепипеда (рис. 1.10), построенного на этих силах.
Геометрическая сумма любой системы сил определяется или последовательным сложением сил системы по правилу параллелограмма, или построением силового многоугольника. Рассмотрим второй способ как наиболее простой.
Для нахождения суммы сил методом силового многоугольника выполняются следующие построения: все силы в выбранном масштабе откладываются последовательно одна за другой (рис. 1.11). Соединяя начало первого вектора с концом последнего вектора, получаем главный вектор (.геометрическую сумму слагаемых сил). В каком порядке откладываются силы, значения не имеет, так как величина R не изменится:
Необходимо учесть, что при построении векторного многоугольника у всех векторов стрелки должны быть направлены в одну сторону, а у вектора — в противоположную.
Сходящимися называются силы, линии действия которых пересекаются в одной точке.
Последовательно применяя аксиому параллелограмма сил, получаем, что система сходящихся сил имеет равнодействующую, равную геометрической сумме (главному вектору ) этих сил и приложенную в точке их пересечения.
Разложение сил
Разложение сил — это разложение равнодействующей силы на систему сил. Эта задача является неопределенной и имеет однозначное решение лишь при задании дополнительных условий.
Разложение силы по двум заданным направлениям. Для того чтобы разложить силу необходимо знать направление, по которым будет выполнено разложение.
Например, по направлению прямых и Сила является диагональю в параллелограмме, а силы, на которые она раскладывается, сторонами этого параллелограмма. Аналогичное разложение можно выполнить с помощью силового треугольника (рис. 1.12).
Разложение силы по трем заданным направлениям. Решение этой задачи сводится к построению такого параллепипеда, у которого диагональю является данная сила а ребра параллельны заданным направлениям.
Пример. Кронштейн состоит из стержней и соединенных со стеной и друг с другом шарнирами. к шарниру подвешен груз весом Пренебрегая весом стержней, найти силу, сжимающую стержни. Реакции стержней направлены вдоль стержней ( и ). Приложим в точке силу и разложим по направлениям стержней и
Из треугольника получим, что
Из того же треугольника найдем, что стержень растягивается с
Далее рассмотрим проекцию силы на ось и на плоскость.
Проекцией силы на ось называется скалярная величина, равная величине отрезка, заключенного между проекциями начала и конца силы. Проекция имеет знак плюс, сели перемещение от ее начала к концу происходит в положительном направлении оси (совпадает по направлению), и знак минус, если в отрицательном (рис. 1.13).
Из вышесказанного определения следует, что проекции силы на любые параллельные и одинаково направленные оси равны друг другу.
Проекции силы на ось записываются с индексом, соответствующим данной оси:
На рисунке видно, что
Проекция силы на ось равна произведению модуля силы на косинус угла между направлением силы и положительным направлением оси.
Проекция силы будет положительной, если этот угол — острый, и отрицательной, если тупой.
Если сила перпендикулярна к оси, то ее проекция на ось равна нулю. Проекцией силы на плоскость называется вектор заключенный между проекциями начала и конца силы на эту плоскость.
Проекция силы на плоскость есть величина векторная, так как она характеризуется численным значением и направлением в плоскости (рис. 1.14):
Аналитический способ задания сил
Для аналитического задания силы необходимо выбрать систему координатных осей В механике пользуются правой системой координат.
Величины модуля силы углов которые сила образует с осями координат, определяют данную силу Точки приложения силы задаются координатами (рис. 1.15).
Для решения задач статики более удобно задавать силу ее проекциями:
Возведя равенство 1 почленно в квадрат и складывая их получим
Когда все рассматриваемые силы лежат в одной плоскости, то каждую из сил можно задать се проекциями на две оси и
Аналитический способ сложения сил
Сложение сил. Переход от зависимостей между векторами к зависимостям между их проекциями осуществляется с помощью следующей теоремы геометрии: проекция вектора силы на какую-либо ось равна алгебраической сумме проекций слагаемых векторов на ту же ось (рис. 1.16).
Если вектор силы
где
Для любой системы сил равнодействующая (или главный вектор ) будет равна Согласно теореме будем иметь следующее:
Зная получим
Формулы (1.1) и (1.2) позволяют решить задачу о сложении сил аналитически. Для сил, лежащих в одной плоскости, формулы (1.1) и (1.2) примут вид
Равновесие плоской системы сходящихся сил
Твердое тело, на которое действуют взаимно уравновешивающие внешние силы, может не только находиться в покое, но и совершать движение «по инерции». Например, поступательное равномерное или прямолинейное движение тела. Отсюда можно сделать следующие выводы:
- 1. Условиям равновесия статики удовлетворяют силы, действующие как на покоящееся тело, так и на тело, движущееся «по инерции».
- 2. В покос тело будет находиться лишь в том случае, если оно было в покос и до момента приложения к нему уравновешенных сил.
- 3. Для равновесия приложенной к твердому телу системы сходящихся сил необходимо и достаточно, чтобы равнодействующая сил была равна нулю.
- 4. Условия, которым при этом должны удовлетворять сами силы, можно выразить в геометрической или аналитической форме.
Геометрическое условие равновесия. Для равновесия системы сходящихся сил необходимо и достаточно, чтобы силовой многоугольник, построенный на этих силах, был замкнут.
Аналитическое условие равновесия. Так как то равнодействующая только в том случае, когда
Для равновесия плоской системы сходящихся сил необходимо и достаточно, чтобы суммы проекций этих сил на каждую из двух координатных осей были равны нулю:
Теорема о трех силах. Если свободное твердое тело находится в равновесии под действием трех непараллельных сил, лежащих в одной плоскости, то линии действия этих сил должны пересекаться в одной точке.
При решении задач о равновесии несвободного тела реакции наложенных связей являются величинами неизвестными. Соответствующая задача статики может быть решена только тогда, когда число неизвестных реакций связей не превышает числа уравнений равновесия, содержащих эти реакции. Такие задачи называются статически определимыми.
Задачи, в которых число неизвестных реакций связей больше числа уравнений равновесия, содержащих эти реакции, называются статически неопределимыми (рис. 1.17).
Например, груз подвешен на трех стержнях. В этом случае для плоской системы сходящихся сил можно составить только два уравнения равновесия, а неизвестных усилий будет три. Поэтому данная система статически неопределима.
Момент силы относительно центра или точки
Под действием силы твердое тело может наряду с поступательным перемещением совершать вращение вокруг того или иного центра.
Вращательный эффект силы характеризуется ее моментом.
Моментом силы относительно центра называется произведение модуля силы на длину плеча, взятое с соответствующим знаком (рис. 1.18):
где — плечо, т.е. перпендикуляр, опущенный из центра на линию действия силы, или наикратчайшее расстояние от центра до линии действия сиы.
Правило знаков для момента. Момент имеет знак плюс, если сила стремится повернуть тело против хода часовой стрелки.
Момент имеет знак минус, если сила стремится повернуть тело по ходу часовой стрелки.
Основные свойства момента силы:
- 1. Момент силы не изменится при переносе точки приложения силы вдоль ее линии действия.
- 2. Момент силы относительно центра равен нулю только тогда, когда сила равна нулю или когда линия действия силы проходит через центр (плечо равно нулю).
Теорема Вариньона о моменте равнодействующей
Момент равнодействующей плоской системы сходящихся сил относительно любого центра равен алгебраической сумме моментов слагаемых сил относительно того же центра.
Аналитические условия равновесия сходящихся сил можно выразить не только через проекции этих сил, но и через моменты (рис. 1.19). На основании теоремы Вариньона можно записать еще одну форму условий равновесия плоской системы сходящихся сил:
где и — любые точки, не лежащие на одной прямой с точкой в которой сходятся силы.
На странице -> решение задач по теоретической механике собраны решения задач и заданий с решёнными примерами по всем темам теоретической механики.
Услуги по теоретической механике:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Видео:Статика. Пара сил. Лекция (17)Скачать
Теоретическая механика. В помощь студенту
Теоретическая механика – это раздел механики, в котором излагаются основные законы механического движения и механического взаимодействия материальных тел.
Теоретическая механика является наукой, в которой изучаются перемещения тел с течением времени (механические движения). Она служит базой других разделов механики (теория упругости, сопротивление материалов, теория пластичности, теория механизмов и машин, гидроаэродинамика) и многих технических дисциплин.
Механическое движение — это изменение с течением времени взаимного положения в пространстве материальных тел.
Механическое взаимодействие – это такое взаимодействие, в результате которого изменяется механическое движение или изменяется взаимное положение частей тела.
Видео:ВекторыСкачать
Статика твердого тела
Статика — это раздел теоретической механики, в котором рассматриваются задачи на равновесие твердых тел и преобразования одной системы сил в другую, ей эквивалентную.
- Основные понятия и законы статики
Сила как вектор характеризуется точкой приложения, направлением действия и абсолютным значением. Единица измерения модуля силы – Ньютон.
Распределенная нагрузка задается силой, действующей на единицу объема (поверхности, длины).
Размерность распределенной нагрузки – Н/м 3 (Н/м 2 , Н/м).
Принятое обозначение: .
.
.
Принятое обозначение: .
Под действием пары сил тело будет совершать вращательное движение.
Проекция положительна, если направление отрезка совпадает с положительным направлением оси.
Равномерное и прямолинейное движение материальной точки является движением по инерции. Под состоянием равновесия материальной точки и твердого тела понимают не только состояние покоя, но и движение по инерции. Для твердого тела существуют различные виды движения по инерции, например равномерное вращение твердого тела вокруг неподвижной оси.
Эти две силы называются уравновешивающимися.
Вообще силы называются уравновешивающимися, если твердое тело, к которому приложены эти силы, находится в покое.
Следствие. Не нарушая состояния твердого тела, силу можно переносить по ее линии действия в любую точку тела.
Две системы сил называются эквивалентными, если одну из них можно заменить другой, не нарушая состояния твердого тела.
диагонали.
По модулю равнодействующая равна:
Следует иметь в виду, что действие — сила, приложенная к телу Б, и противодействие — сила, приложенная к телу А, не уравновешиваются, так как они приложены к разным телам.
Не следует при этом забывать, что условия равновесия, являющиеся необходимыми и достаточными для твердого тела, являются необходимыми, но недостаточными для соответствующего нетвердого тела.
- Связи и их реакции
- Гладкая поверхность ограничивает перемещение по нормали к поверхности опоры. Реакция направлена перпендикулярно поверхности.
- Шарнирная подвижная опора ограничивает перемещение тела по нормали к опорной плоскости. Реакция направлена по нормали к поверхности опоры.
- Шарнирная неподвижная опора противодействует любому перемещению в плоскости, перпендикулярной оси вращения.
- Шарнирный невесомый стержень противодействует перемещению тела вдоль линии стержня. Реакция будет направлена вдоль линии стержня.
- Глухая заделка противодействует любому перемещению и вращению в плоскости. Ее действие можно заменить силой, представленной в виде двух составляющих и парой сил с моментом.
- Момент силы относительно точки
- Абсолютное значение момента равно произведению модуля силы на кратчайшее расстояние h от центра вращения до линии действия силы. Расстояние h называют плечом силы.
- Момент считают положительным, если сила стремится вращать плечо h против хода часовой стрелки и отрицательным при вращении по ходу часовой стрелки.
- Свойства момента силы относительно точки:
1) Момент силы не изменится при переносе точки приложения силы вдоль линии действия силы.
2) Момент силы равен нулю, если линия действия силы проходит через точку приложения силы.
3) Момент равнодействующей силы относительно точки равен сумме моментов слагаемых сил относительно этой точки.
,
где
- Момент силы относительно оси
- Момент силы относительно оси — это момент проекции этой силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с плоскостью.
Момент считается положительным, если с положительного конца оси поворот, который сила стремится совершить, виден происходящим против хода часовой стрелки, и отрицательным – если по ходу часовой стрелки. - Чтобы найти момент силы относительно оси, нужно:
1) Провести плоскость перпендикулярную оси z.
2) Спроецировать силу на эту плоскость и вычислить величину проекции .
3) Провести плечо h из точки пересечения оси с плоскостью на линию действия проекции силы и вычислить его длину.
4) Найти произведение этого плеча и проекции силы с соответствующим знаком. - Свойства момента силы относительно оси.
Момент силы относительно оси равен нулю, если:
1) , то есть сила параллельна оси.
2) h=0, то есть линия действия силы пересекает ось.
- Момент пары сил
- Момент пары сил равен произведению одной силы на кратчайшее расстояние между линиями действия сил пары, которое называется плечом пары (пара сил оказывает на тело вращающее действие)
,
где: — силы, составляющие пару;
h — плечо пары.
Момент пары считают положительным, если силы стремятся вращать плечо против хода часовой стрелки. - Свойства пары сил.
1) Сумма проекций сил пары на любую ось равна нулю.
2) Не изменяя момента пары можно одновременно соответственно изменять значение сил и плечо пары.
3) Пару можно переносить в плоскости ее действия при этом действие пары на тело не изменится.
- Преобразование сходящейся системы сил
- Равнодействующая двух сходящихся сил находится на основании аксиомы о параллелограмме сил.
Геометрическая сумма любого числа сходящихся сил может быть определена путем последовательного сложения двух сил – способ векторного многоугольника.
Вывод: система сходящихся сил () приводится к одной равнодействующей силе . - Аналитически равнодействующая сила может быть определена через ее проекции на оси координат:
Согласно теореме: проекция равнодействующей на ось равна сумме проекций слагаемых сил на эту ось: , или в общем виде
С учетом равнодействующая определяется выражением:
. - Направление вектора равнодействующей определяется косинусами углов между вектором и осями x, y, z:
- Преобразование произвольной системы сил
- Теорема: силу, приложенную к твердому телу, можно, не изменяя оказываемого ею действия, перенести параллельно в другую точку тела, прибавляя при этом пару сил с моментом, равным моменту переносимой силы относительно точки, в которую она переносится.
В результате указанного преобразования получается сходящаяся система сил и сумма моментов пар сил. Действие сходящейся системы сил заменяют действием суммарной силы, действие моментов — суммарным моментом.
Суммарный вектор — это главный вектор системы сил.
Суммарный момент — это главный момент системы сил.
Вывод: произвольная система сил в результате тождественного преобразования приводится к главному вектору и главному моменту системы сил. - Аналитически главный вектор и главный момент системы сил могут быть определены через их проекции на оси координат:
,
- Условия равновесия систем сил
- Равновесие системы сходящихся сил
Действие системы сходящихся сил эквивалентно действию одной равнодействующей силы.
Для равновесия тела необходимо и достаточно, чтобы равнодействующая равнялась нулю .
Из формулы следует, что для равновесия пространственной системы сходящихся сил необходимо и достаточно, чтобы сумма проекций всех сил на оси X,Y,Z равнялась нулю: - Для равновесия плоской сходящейся системы сил необходимо и достаточно, чтобы сумма проекций всех сил на оси X,Y равнялась нулю:
- Равновесие произвольной системы сил.
- Действие произвольной системы сил эквивалентно действию главного вектора и главного момента. Для равновесия необходимо и достаточно выполнения условия:
. - Для равновесия произвольной системы сил необходимо и достаточно, чтобы суммы проекций всех сил на оси X,Y,Z и суммы моментов всех сил относительно осей X,Y,Z равнялись нулю:
- Для равновесия плоской произвольной системы сил необходимо и достаточно, чтобы сумма проекций главного вектора на оси X,Y, и алгебраическая сумма моментов сил относительно центра О были равны нулю:
Видео:Основные определения статикиСкачать
Кинематика
Кинематика — раздел теоретической механики, в котором рассматриваются общие геометрические свойства механического движения, как процесса, происходящего в пространстве и во времени. Движущиеся объекты рассматривают как геометрические точки или геометрические тела.
- Основные понятия кинематики
- Способы задания движения точки
- Задать движение точки — значит задать изменение ее положения по отношению к выбранной системе отсчета. Существуют три основные системы отсчета: векторная, координатная, естественная.
- В векторной системе положение точки относительно начала отсчета задается радиус-вектором.
Закон движения: . - В системе координат OXYZ положение точки задается тремя координатами X, Y, Z.
Закон движения: x = x(t), y = y(t); z = z(t). - В естественной системе отсчета положение точки задается расстоянием S от начала отсчета до этой точки вдоль траектории.
Закон движения: .
Движение точки, при естественном способе задания движения, определено если известны:
1) Траектория движения.
2) Начало и направление отсчета дуговой координаты.
3) Уравнение движения.
При естественном способе задания движения, в отличии от других способов, используются подвижные координатные оси, движущиеся вместе с точкой по траектории. Такими осями являются:
Касательная (τ) – направлена в сторону возрастания дуговой координаты по касательной к траектории.
Главная нормаль (n) – направлена в сторону вогнутости кривой.
Бинормаль (b) – направлена перпендикулярно к осям τ, n.
- Определение кинематических характеристик точки
- Траектория точки
В векторной системе отсчета траектория описывается выражением: .
В координатной системе отсчета траектория определяется по закону движения точки и описывается выражениями z = f(x,y) — в пространстве, или y = f(x) – в плоскости.
В естественной системе отсчета траектория задается заранее. - Определение скорости точки в векторной системе координат
При задании движения точки в векторной системе координат отношение перемещения к интервалу времени называют средним значением скорости на этом интервале времени: .
Принимая интервал времени бесконечно малой величиной, получают значение скорости в данный момент времени (мгновенное значение скорости): .
Вектор средней скорости направлен вдоль вектора в сторону движения точки, вектор мгновенной скорости направлен по касательной к траектории в сторону движения точки.
Вывод:скорость точки – векторная величина, равная производной от закона движения по времени.
Свойство производной:производная от какой либо величины по времени определяет скорость изменения этой величины. - Определение скорости точки в координатной системе отсчета
Скорости изменения координат точки:
.
Модуль полной скорости точки при прямоугольной системе координат будет равен:
.
Направление вектора скорости определяется косинусами направляющих углов:
,
где — углы между вектором скорости и осями координат. - Определение скорости точки в естественной системе отсчета
Скорость точки в естественной системе отсчета определяется как производная от закона движения точки: .
Согласно предыдущим выводам вектор скорости направлен по касательной к траектории в сторону движения точки и в осях определяется только одной проекцией .
- Ускорение точки
- По определению ускорение характеризует изменение скорости, то есть скорость изменения скорости.
- Ускорения точки в векторной системе отсчета
На основании свойства производной:
.
Вектор скорости может изменяться по модулю и направлению.
Вектор ускорения направлен по линии приращения вектора скорости, т. е. в сторону искривления траектории. - Ускорение точки в координатной системе отсчета
Ускорение изменения координат точки равно производной по времени от скоростей изменения этих координат:
.
Полное ускорение в прямоугольной системе координат будет определяться выражением:
.
Направляющие косинусы вектора ускорения:
. - Ускорение точки в естественной системе отсчета Приращение вектора скорости можно разложить на составляющие, параллельные осям естественной системы координат:
.
Разделив левую и правую части равенства на dt, получим:
,
где — тангенциальное ускорение;
— нормальное ускорение;
R — радиус кривизны траектории в окрестности точки.
- Кинематика твердого тела
- В кинематике твердых тел решаются две основные задачи:
1) задание движения и определение кинематических характеристик тела в целом;
2) определение кинематических характеристик точек тела. - Поступательное движение твердого тела
Поступательное движение — это движение, при котором прямая, проведенная через две точки тела, остается параллельной ее первоначальному положению.
Теорема:при поступательном движении все точки тела движутся по одинаковым траекториям и имеют в каждой момент времени одинаковые по модулю и направлению скорости и ускорения.
Вывод:поступательное движение твердого тела определяется движением любой его точки, в связи с чем, задание и изучение его движения сводится к кинематике точки. - Вращательное движение твердого тела вокруг неподвижной оси
Вращательное движение твердого тела вокруг неподвижной оси — это движение твердого тела, при котором две точки, принадлежащие телу, остаются неподвижными в течение всего времени движения.
Положение тела определяется углом поворота . Единица измерения угла – радиан. (Радиан — центральный угол окружности, длина дуги которого равна радиусу, полный угол окружности содержит 2π радиана.)
Закон вращательного движения тела вокруг неподвижной оси .
Угловую скорость и угловое ускорение тела определим методом дифференцирования:
— угловая скорость, рад/с;
— угловое ускорение, рад/с².
Если рассечь тело плоскостью перпендикулярной оси, выбрать на оси вращения точку С и произвольную точку М, то точка М будет описывать вокруг точки С окружность радиуса R. За время dt происходит элементарный поворот на угол , при этом точка М совершит перемещение вдоль траектории на расстояние .
Модуль линейной скорости:
.
Ускорение точки М при известной траектории определяется по его составляющим :
,
где .
В итоге, получаем формулы
тангенциальное ускорение: ;
нормальное ускорение: .
- Плоско-параллельное движение твердого тела
- Плоско-параллельное движение твердого тела — это движение твердого тела, при котором все его точки перемещаются в плоскостях, параллельных одной неподвижной плоскости.
Движение сечения S в своей плоскости можно рассматривать как сложное, состоящее из двух элементарных движений:
1) поступательного и вращательного;
2) вращательного относительно подвижного (мгновенного) центра. - В первом варианте движение сечения может быть задано уравнениями движения одной его точки (полюса) и вращением сечения вокруг полюса.
В качестве полюса может быть принята любая точка сечения.
Уравнения движения запишутся в виде:
.
Ускорение точки движущейся плоской фигуры складывается из ускорения полюса относительно неподвижной системы отсчета и ускорения за счет вращательного движения вокруг полюса. - Во втором варианте движение сечения рассматривается как вращательное вокруг подвижного (мгновенного) центра P.
В этом случае скорость любой точки В сечения будет определяться по формуле для вращательного движения:
.
Угловая скорость вокруг мгновенного центра Р может быть определена если известна скорость какой либо точки сечения, например точки А.
. - Положение мгновенного центра вращения может быть определено на основании следующих свойств:
1) вектор скорости точки перпендикулярен радиусу;
2) модуль скорости точки пропорционален расстоянию от точки до центра вращения ();
3) скорость в центре вращения равна нулю. - Теорема:проекции скоростей двух точек твердого тела на прямую, проведенную через эти точки, равны между собой и одинаково направлены.
Доказательство: расстояние АВ изменяться не может, следовательно, не может быть больше или меньше .
Вывод:.
- Сложное движение точки
- Относительное движение — это движение точки относительно подвижной системы.
Переносное движение — это движение точки вместе с подвижной системой.
Абсолютное движение — это движение точки относительно неподвижной системы.
Соответственно называют скорости и ускорения:
— относительные;
— переносные;
— абсолютные. - Абсолютная скорость точки равна векторной сумме относительной и переносной скоростей (согласно теореме о сложении скоростей):
.
Абсолютное значение скорости определяется по теореме косинусов:
. - Ускорение по правилу параллелограмма определяется только при поступательном переносном движении
.
. - При непоступательном переносном движении появляется третья составляющая ускорения, называемое поворотным или кориолисовым.
,
где .
Кориолисово ускорение численно равно:
,
где – угол между векторами и .
Направление вектора кориолисова ускорения удобно определять по правилу Н.Е. Жуковского: вектор спроектировать на плоскость, перпендикулярную оси переносного вращения, проекцию повернуть на 90 градусов в сторону переносного вращения. Полученное направление будет соответствовать направлению кориолисова ускорения.
Видео:Теоретическая механика. Нахождение реакций связей на при плоской системе сил. Задача 1, часть 2Скачать
Динамика
Динамика — это раздел теоретической механики, в котором изучаются механические движении материальных тел в зависимости от причин, их вызывающих.
- Основные понятия динамики
где mk, xk, yk, zk — масса и координаты k-той точки механической системы, m — масса системы.
В однородном поле тяжести положение центра масс совпадает с положением центра тяжести.
Момент инерции материальной точки относительно оси равен произведению массы точки на квадрат расстояния точки от оси:
.
Момент инерции системы (тела) относительно оси равен арифметической сумме моментов инерции всех точек:
где — ускорение центра масс тела.
.
Полный импульс силы за Δt равен интегралу от элементарных импульсов:
.
Скалярное произведение векторов равно произведению их модулей на косинус угла между направлениями векторов:
,
где α — угол между направлениями векторов перемещения и силы.
.
Единица измерения работы — Джоуль (1 Дж = 1 Н·м).
.
или
,
где m — масса механической системы, — вектор скорости центра масс системы.
.
.
- Аксиомы динамики
- Первая аксиома — это закон инерции.
Если на свободную материальную точку не действуют никакие силы или действует уравновешенная система сил, то точка будет находиться в состоянии покоя или равномерного прямолинейного движения. - Вторая аксиома — закон пропорциональности ускорения.
Ускорение, сообщаемое материальной точке действующей на неё силой, пропорционально этой силе и по направлению совпадает с направлением силы: — это основной закон динамики. - Третья аксиома — это закон противодействия.
Силы, с которыми действуют друг на друга две материальные точки, равны по модулю и направлены вдоль прямой, соединяющей эти точки, в противоположные стороны:
. - Четвертая аксиома — закон независимости действия сил.
При действии на материальную точку системы сил полное ускорение этой точки равно геометрической сумме ускорений от действия каждой силы:
- Дифференциальные уравнения динамики
- Дифференциальные уравнения движения точки связывают ускорение точки с действующими на нее силами. Фактически дифференциальные уравнения являются записью основного закона динамики в явной дифференциальной форме.
Для абсолютного движения точки (движение в инерциальной системе отсчета) дифференциальное уравнение имеет вид:
. - Векторное уравнение может быть записано в проекциях на оси прямоугольной инерциальной системы координат:
- При известной траектория движения точки уравнение может быть записано в проекциях на оси естественной системы координат:
С учетом того, что ,
где — тангенциальное ускорение;
— нормальное ускорение,
уравнения примут вид:
- Общие теоремы динамики
- Общие теоремы динамики устанавливают зависимость между мерами механического движения и механического взаимодействия. Выводы теорем являются результатом тождественного преобразования основного закона динамики.
- Теорема об изменении количества движения: изменение количества движения материальной точки (механической системы) за конечный промежуток времени равно сумме импульсов внешних сил за тот же промежуток времени — для материальной точки;
— для механической системы. - Теорема об изменении кинетической энергии: изменение кинетической энергии точки (механической системы) при её перемещении равно сумме работ всех действующих внешних сил на этом перемещении — для материальной точки;
— для механической системы. - Кинетическая энергия механической системы определяется в соответствии с , при этом для твердых тел выведены следующие зависимости:
— при поступательном движении тела;
— при вращательном движении тела;
— при плоско-параллельном движении тела. - Момент инерции цилиндра относительно его оси:
. - Момент инерции стержня относительно оси z:
. - Момент инерции прямоугольной пластины относительно осей х и y: .
- Момент инерции шара определяется по формуле:
. - Работа силы тяжести:
,
где P — сила тяжести;
h — изменение положения тела по вертикали. - Работа силы при вращательном движении тела
,
где M — момент силы,
w — угловая скорость тела.
Следует иметь в виду, что работа, как скалярная величина, может быть положительной или отрицательной. Работа будет положительной если направление действия силы совпадает с направлением движения.
- Принцип Даламбера
- Формулировка принципа Даламбера: если в любой момент времени к действующим на точку силам присоединить силы инерции, то полученная система сил будет уравновешенной:
. - Для механической системы:
.
Видео:Теоретическая механика 01-1 Операции над векторами. ВведениеСкачать
Примеры решения задач
Решение примеров по теме: «Статика твердого тела»
Пример 1. Условия равновесия
Висящий на нити, под углом в сорок пять градусов к гладкой стене шар весом в десять Ньютон, находится в состоянии равновесия (рис. а). Необходимо определить давление однородного шара на гладкую стенку и натяжение нити.
Дано: P = 10 Н; α = 45°
Найти: N, T — ?
Решение.
Отбрасываем связи, а их действие на шар заменяем реакциями.
Реакция стенки N направлена перпендикулярно стенке (от точки касания С к центру шара О), реакция нити Т — вдоль нити от точки А к точке В.
Тем самым выявляется полная система сил, приложенных к покоящемуся шару.
Это система сил, сходящихся в центре О шара, и состоящая из веса шара Р (активная сила), реакции стенки N и реакции нити Т (рис. б).
Реакции N и Т по величине неизвестны. Для их определения следует воспользоваться условиями равновесия (в той или иной форме — геометрической, аналитической).
При геометрическом способе решения строится замкнутый многоугольник сил и используются соотношения школьной геометрии (теорема синусов, теорема косинусов, теорема Пифагора и т.д.).
В данном случае это замкнутый силовой треугольник (рис. в), из которого получаем:
После подстановки в формулы числовых значений, получим:
.
Ответ: .
Решение примеров по теме: «Кинематика»
Пример 2. Уравнение траектории точки
Дано:
Движение точки задано уравнениями ;
(x, у — в сантиметрах, t — в секундах).
Найти: уравнение траектории точки в координатной форме.
Решение. Для определения уравнения траектории из уравнений движения исключаем время t. Для этого из первого уравнения выражаем и подставляем это значение во второе уравнение, преобразованное к функциям одинарного угла:
.
Опуская промежуточные выражения, получаем уравнение траектории:
.
Уравнение определяет параболу, расположенную симметрично относительно оси у, с вершиной в точке (0, 4). Траекторией служит кусок этой параболы, заключенный между точками с координатами (-2, -4) и (2, -4).
Ответ: .
Решение примеров по теме: «Динамика»
Пример 3. Основной закон динамики точки
Свободная материальная точка, масса которой десять килограмм, движется прямолинейно с ускорением пол метра в секунду в квадрате. Определить силу, приложенную к точке.
Дано: m = 10 кг; a = 0,5 м/с 2 .
Найти: F — ?
Решение.
Согласно основному закону динамики: .
Подставив значения в формулу, получим:
Ответ: сила, сообщающая массе, равной 10 кг,
ускорение 0,5 м/с 2 , равна 5 Н.
В помощь студенту
- Формулы, правила, законы, теоремы, уравнения, примеры решения задач
Список литературы:
Бать М.И., Джанелидзе Г.Ю., Кельзон А.С. Теоретическая механика в примерах и задачах.
Буторин Л.В., Бусыгина Е.Б. Теоретическая механика. Учебно-практическое пособие.
💥 Видео
4.2 Проекция силы на ось координатСкачать
Момент силыСкачать
Теоретическая механика термех Статика Нахождение реакции связей часть 1Скачать
Связи и их реакцииСкачать
2.2. Главный вектор и главный момент плоской системы сил. Приведение к простейшему видуСкачать
Теоретическая механика 04-6 - Приведение - Пример 3. ПАРА ВЕКТОРОВСкачать