Теорема пифагора радиус окружности

Радиус описанной окружности около прямоугольного треугольника онлайн

С помощю этого онлайн калькулятора можно найти радиус описанной окружности около любого треугольника, в том числе радиус описанной окружности около прямоугольного треугольника. Для нахождения радиуса окружности описанной около треугольника введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

Открыть онлайн калькулятор
Содержание
  1. 1. Радиус окружности описанной около прямоугольного треугольника, если известна гипотенуза треугольника
  2. 2. Радиус окружности описанной около прямоугольного треугольника, если известны катеты треугольника
  3. 3. Радиус окружности описанной около прямоугольного треугольника, если известны катет и противолежащий угол треугольника
  4. 4. Радиус окружности описанной около прямоугольного треугольника, если известны катет и прилежащий острый угол треугольника
  5. Как найти радиус окружности
  6. Основные понятия
  7. Формула радиуса окружности
  8. Если известна площадь круга
  9. Если известна длина
  10. Если известен диаметр окружности
  11. Если известна диагональ вписанного прямоугольника
  12. Если известна сторона описанного квадрата
  13. Если известны стороны и площадь вписанного треугольника
  14. Если известна площадь и полупериметр описанного треугольника
  15. Если известна площадь сектора и его центральный угол
  16. Если известна сторона вписанного правильного многоугольника
  17. Скачать онлайн таблицу
  18. Теорема Пифагора
  19. 💥 Видео

Видео:Лекция 8. Теорема Пифагора и уравнение окружностиСкачать

Лекция 8. Теорема Пифагора и уравнение окружности

1. Радиус окружности описанной около прямоугольного треугольника, если известна гипотенуза треугольника

Пусть известна гипотенуза c прямоугольного треугольника (Рис.1). Найдем радиус описанной окружности около треугольника.

Теорема пифагора радиус окружности

На странице Радиус окружности описанной около треугольника формула радиуса описанной окружности около треугольника по стороне и противолежащему углу имеет вид:

( small R=frac )

где C − угол противолежащий гипотенузе прямоугольного треугольника. Поскольку угол, противолежащий гипотенузе − прямой, то получим:

( small R=frac=frac, )
( small R=frac. )(1)

Пример 1. Известна гипотенуза ( small с=frac ) прямоугольного треугольника. Найти радиус окружности описанной около треугольника.

Решение. Для нахождения радиуса окружности описанной около треугольника воспользуемся формулой (1).

Подставим значение ( small c=frac ) в (1):

Теорема пифагора радиус окружности

Ответ: Теорема пифагора радиус окружности

Видео:Геометрия. Теорема Пифагора. ОГЭ по математике. Задание 16Скачать

Геометрия. Теорема Пифагора. ОГЭ по математике. Задание 16

2. Радиус окружности описанной около прямоугольного треугольника, если известны катеты треугольника

Пусть известны катеты a и b прямоугольного треугольника. Найдем радиус описанной окружности около треугольника (Рис.2).

Теорема пифагора радиус окружности

Из теоремы Пифагора запишем формулу гипотенузы, выраженная через катеты:

( small c=sqrt. )(2)

Подставляя (2) в (1), получим:

( small R=frac=frac<large sqrt>, )
( small R=frac<large sqrt>. )(3)

Пример 2. Катеты прямоугольного треугольника равны: ( small a=15 , ; b=3.) Найти радиус окружности описанной около треугольника.

Решение. Для нахождения радиуса окружности описанной около прямоугольного треугольника воспользуемся формулой (3). Подставим значения ( small a=15 , ; b=3) в (3):

Теорема пифагора радиус окружности

Ответ: Теорема пифагора радиус окружности

Видео:Уравнение окружности - это просто теорема ПифагораСкачать

Уравнение окружности - это просто теорема Пифагора

3. Радиус окружности описанной около прямоугольного треугольника, если известны катет и противолежащий угол треугольника

Теорема пифагора радиус окружности

Формула для вычисления радиуса окружности описанной около прямоугольного треугольника, если известны катет и противолежащий угол треугольника аналогична формуле вычисления радиуса описанной окружности около произвольного треугольника (см. статью на странице Радиус описанной окружности около треугольника онлайн):

Теорема пифагора радиус окружности(4)

Видео:ОГЭ Задание 24 Теорема Пифагора Вписанная окружностьСкачать

ОГЭ Задание 24 Теорема Пифагора Вписанная окружность

4. Радиус окружности описанной около прямоугольного треугольника, если известны катет и прилежащий острый угол треугольника

Пусть известны катет a и прилежащий острый угол B прямоугольного треугольника (Рис.4). Найдем радиус описанной окружности около треугольника.

Теорема пифагора радиус окружности

Так как треугольник прямоугольный, то сумма острых углов треугольника равна 90°:

( small angle A+angle B=90°. )
( small angle A=90°-angle B. )(5)

Подставляя (5) в (4), получим:

( small R=frac=frac) ( small =frac )
( small R=frac. )(6)

Пример 3. Катет прямоугольного треугольника равен: ( small a=15 ,) а прилежащий угол равен ( small angle B=25°. ) Найти радиус окружности описанной около треугольника.

Решение. Для нахождения радиуса окружности описанной около прямоугольного треугольника воспользуемся формулой (6). Подставим значения ( small a=15 , ; angle B=25° ) в (6):

Теорема пифагора радиус окружности

Ответ: Теорема пифагора радиус окружности

Видео:Задача (вписанная, описанная окружности, теорема Пифагора).Скачать

Задача (вписанная, описанная окружности, теорема Пифагора).

Как найти радиус окружности

Теорема пифагора радиус окружности

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Видео:Теорема ПифагораСкачать

Теорема Пифагора

Основные понятия

Прежде чем погружаться в последовательность расчетов, важно понять разницу между понятиями.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра, которая лежит в той же плоскости. Если говорить проще, то это замкнутая линия, как, например, обруч и кольцо.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии равном радиусу. Иначе говоря, плоская фигура, ограниченная окружностью, как мяч и блюдце.

Радиус — это отрезок, который соединяет центр окружности и любую точку на ней. Общепринятое обозначение радиуса — латинская буква R.

Возможно тебе интересно узнать — как найти длину окружности?

Видео:Решение А14 Радиус вписанной окружности. Теорема Виета. Теорема Пифагора.Скачать

Решение А14 Радиус вписанной окружности. Теорема Виета. Теорема Пифагора.

Формула радиуса окружности

Определить способ вычисления проще, отталкиваясь от исходных данных. Далее рассмотрим девять формул разной степени сложности.

Видео:Математика за минуту: Объяснение формулы радиуса вписанной окружности в прямоугольный треугольник.Скачать

Математика за минуту: Объяснение формулы радиуса вписанной окружности в прямоугольный треугольник.

Если известна площадь круга

R = √ S : π, где S — площадь круга, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.

Видео:найти радиус окружности, описанной вокруг треугольникаСкачать

найти радиус окружности, описанной вокруг треугольника

Если известна длина

R = P : 2 * π, где P — длина (периметр круга).

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Видео:Задача, которую боятсяСкачать

Задача, которую боятся

Если известен диаметр окружности

R = D : 2, где D — диаметр.

Диаметр — отрезок, который соединяет две точки окружности и проходит через центр. Радиус всегда равен половине диаметра.

Видео:8 класс, 16 урок, Теорема ПифагораСкачать

8 класс, 16 урок, Теорема Пифагора

Если известна диагональ вписанного прямоугольника

R = d : 2, где d — диагональ.

Диагональ вписанного прямоугольник делит фигуру на два прямоугольных треугольника и является их гипотенузой — стороной, лежащей напротив прямого угла. Если диагональ неизвестна, теорема Пифагора поможет её вычислить:

d = √ a 2 + b 2 , где a, b — стороны вписанного прямоугольника.

Видео:Теорема Пифагора в деле🦾 Длины сторон считаем по клеткам ☝️Скачать

Теорема Пифагора в деле🦾 Длины сторон считаем по клеткам ☝️

Если известна сторона описанного квадрата

R = a : 2, где a — сторона.

Сторона описанного квадрата равна диаметру окружности.

Видео:Теорема Пифагора для чайников)))Скачать

Теорема Пифагора для чайников)))

Если известны стороны и площадь вписанного треугольника

R = (a * b * c) : (4 * S), где a, b, с — стороны, S — площадь треугольника.

Видео:Радиус окружности с центром в точке O равен 85 ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Радиус окружности с центром в точке O равен 85 ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

Если известна площадь и полупериметр описанного треугольника

R = S : p, где S — площадь треугольника, p — полупериметр треугольника.

Полупериметр треугольника — это сумма длин всех его сторон, деленная на два.

Видео:Математика ОГЭ Геометрия 24 Вписанный треугольник, обратная теорема ПифагораСкачать

Математика ОГЭ Геометрия 24  Вписанный треугольник, обратная теорема Пифагора

Если известна площадь сектора и его центральный угол

R = √ (360° * S) : (π * α), где S — площадь сектора круга, α — центральный угол.

Площадь сектора круга — это часть S всей фигуры, ограниченной окружностью с радиусом.

Видео:Найдите радиус окружностиСкачать

Найдите радиус окружности

Если известна сторона вписанного правильного многоугольника

R = a : (2 * sin (180 : N)), где a — сторона правильного многоугольника, N — количество сторон.

В правильном многоугольнике все стороны равны.

Видео:Нахождение радиуса окружностиСкачать

Нахождение радиуса окружности

Скачать онлайн таблицу

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Теорема Пифагора

Теорема пифагора радиус окружности

Теорема Пифагора и её связь с тремя формулами. В одной из статей мы рассматривали взаимосвязь теоремы Пифагора и теоремы косинусов . Здесь хочу вам рассказать о нескольких формулах, в основе которых лежит теорема Пифагора. Вся прелесть в том, что понимая это, нет необходимости учить представленные ниже формулы. Не раз слышал — мол, как это возможно выучить столько формул в математике?

Ещё раз подчеркну, что выучить необходимо только четверть всех формул или даже меньше. Остальные можно быстро вспомнить или восстановить в памяти, если вы поняли их смысл и понимаете логические связи этих формул с другими. Итак, сама теорема Пифагора. Рассмотрим прямоугольный треугольник:

Теорема пифагора радиус окружности

ТЕОРЕМА! Квадрат гипотенузы равен сумме квадратов катетов.

Теорема пифагора радиус окружности

Для того, чтобы найти гипотенузу АВ, необходимо извлечь корень из правой и левой части, получим:

Теорема пифагора радиус окружности

То есть, гипотенуза равна корню квадратному из суммы квадратов катетов. В курсе математики решается очень много задач, где применяется теорема Пифагора и всем школьникам данные преобразования хорошо известны. Разумеется, необходимо быстро уметь выразить любой катет из формулы, но сейчас речь не о них. Теперь рассмотрим формулы:

Длинна отрезка на координатной плоскости

Формула для определения длины отрезка, когда известны координаты его концов:

Теорема пифагора радиус окружности

Как вы видите, длина отрезка — это не что иное, как длина гипотенузы в прямоугольном треугольнике с катетами равными х В – х А и у В – у А

Теорема пифагора радиус окружности

Понимая смысл, вы без труда запишите формулу длины отрезка, какими бы буквами не были обозначены концы отрезка.

Модулем вектора называется его длина. Обозначается:

Теорема пифагора радиус окружности

Формула для определения длины вектора, если известны координаты его начала и конца имеет вид:

Теорема пифагора радиус окружности

Как видим, длина вектора – это так же длина гипотенузы в прямоугольном треугольнике, в данном случае с катетами равными х В – х А и у В – у А .

Теорема пифагора радиус окружности

Радиус окружности, заданной на координатной плоскости.

Пусть дана координатная плоскость и на ней построена окружность радиуса R. Центром окружности является точка А с координатами (хАА), точка В – это произвольная точка на окружности с координатами (хВВ). Формула радиуса окружности имеет вид:

Теорема пифагора радиус окружности

То есть, радиус окружности также является гипотенузой в прямоугольном треугольнике с катетами равными х В – х А и у В – у А .

Теорема пифагора радиус окружности

Однозначно, учить формулы длины отрезка, длины вектора и радиуса окружности просто бессмысленно, их достаточно просто понимать. Конечно, многим представленная информация и данные факты хорошо известны, но всё же эта информация будет полезна.

Как теорема Пифагора связана с основным тригонометрическим тождеством мы рассматривали в этой статье . На этом всё. Успехов вам!

💥 Видео

Секретная теорема из учебника геометрииСкачать

Секретная теорема из учебника геометрии

Геометрия с нуля! / Теорема ПифагораСкачать

Геометрия с нуля! / Теорема Пифагора
Поделиться или сохранить к себе: