Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Геометрия. 7 класс
Конспект урока

Свойства параллельных прямых

Перечень рассматриваемых вопросов:

  • Углы, образованные при пересечении двух прямых секущей.
  • Доказательство свойств параллельных прямых и их применение при решении задач.
  • Формулирование теоремы об углах с соответственно параллельными сторонами.

Две прямые на плоскости называются параллельными, если они не пересекаются.

Утверждение, обратное данной теореме– это утверждение, в котором условие является заключением теоремы, а заключение – условием теоремы.

  1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
  1. Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
  2. Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
  3. Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
  4. Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
  5. Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.

Теоретический материал для самостоятельного изучения.

Ранее мы узнали и научились применять признаки параллельности прямых.

Рассмотрим утверждения, обратные к теоремам, выражающим признаки параллельности двух прямых.

В любой теореме есть две части: условие (это то, что дано)и заключение (это то, что требуется доказать).

Утверждением, обратным данному, называется утверждение, в котором условием является заключение, а заключением – условие.

Итак, вспомним один из признаков параллельности прямых. Если при пересечении двух прямых секущей накрест лежащие углы, образованные этими прямыми и секущей, равны (это условие), то прямые параллельны (заключение).

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Сформулируем и докажем обратное утверждение.

Если две параллельные прямые пересечены секущей, то накрест лежащие углы,образованные этими прямыми и секущей,равны.

∠1 и ∠2 – накрест лежащие.

Доказательство:( метод от противного):

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Отложим ∠PMN =∠2 (накрест лежащие) → МР║b→ через точку М проходит 2 параллельные прямые прямой b (МР║b– доказательство;a║b– условие).→∠1=∠2.

Это противоречит теореме о единственности прямой параллельной данной и проходящей через точку.

Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой.

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

С пересекает а, значит, и пересекает параллельную ей прямую b(по следствию из аксиомы параллельных прямых).→ с – секущая к прямым а и b→∠1 = ∠2 = 90° (по только что доказанному свойству параллельных прямых).→ с ┴ b.

Что и требовалось доказать.

Вспомним ещё один признак параллельности двух прямых. Если при пересечении двух прямых секущей соответственные углы равны(это условие), то прямые параллельны(заключение).

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Сформулируем и докажем обратное утверждение

Если две параллельные прямые пересечены секущей, то соответственные углы, образованные этими прямыми и секущей, равны.

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Дано:

Доказать:

По условию a║b→∠1 = ∠3 (накрест лежащие углы). → ∠2 = ∠3 (вертикальные углы).

Значит, ∠1 = ∠2, что и требовалось доказать.

Вспомним ещё один признак параллельности двух прямых. Если при пересечении двух прямых секущей сумма односторонних углов, образованных этими прямыми и секущей, равна 180° (условие), то прямые параллельны (заключение).

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Сформулируем и докажем обратное утверждение.

Если две параллельные прямые пересечены секущей, то сумма односторонних углов, образованных этими прямыми и секущей, равна 180°.

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Дано:a║b,

Доказать:

По условию a║b→∠1=∠2 ‑соответственные углы, (в силу предыдущей теоремы).

∠2+∠4=180° (по свойству смежных углов).

→ ∠1+∠4= 180°,что и требовалось доказать.

Материал для углубленного изучения темы.

Задача на доказательство.

Прямая m пересекает параллельные прямые а и b в точках А и В. Прямая р, проходящая через середину отрезка АВ, точку О, пересекает прямые а и b в точках С и D.

Докажем, что ОС=ОD.

По условию дано: а ║b, рՈа= А, рՈb = В, mՈа = D, mՈb = C.

Доказать: ОС = ОD.

Доказательство: рассмотрим, образовавшиеся при построении, треугольники AOD и BOC. Они равны по 2 признаку равенства треугольников, т.к. АО=ВО (О– середина отрезка АВ по условию); ∠1=∠2(накрест лежащие углы); ∠3=∠4 (вертикальные углы). →Все элементы равных треугольников соответственно равны → ОС=ОD. Что и требовалось доказать.

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Разбор заданий тренировочного модуля.

1. Три прямых а,р,с пересечены прямой k, при этом образуются соответственные углы: ∠1= 30°,∠2 = 40°,∠3= 30°,как показано на рисунке. Какие из прямых параллельны?

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

На рисунке изображены прямые а, р, с, которые пересечены секущей k. При этом углы 1,2,3 соответственные. По условию: ∠3= ∠1= 30°,∠2 ≠ ∠1,∠2 ≠ ∠3.

Следовательно, прямые а и р параллельные, прямые а и с, р и с не параллельные(по свойствам параллельных прямых).

2. На рисунке прямые аb, при этомMO и ЕО – биссектрисы углов М и Е соответственно, пересекаются в точке О. Чему равна градусная мера угла МОЕ, если сумма углов в треугольнике равна 180°?

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

По условию аb→∠М+∠Е=180° (по теореме о параллельных прямых об односторонних углах). Т.к. MO и ЕО – биссектрисы углов М и Е →∠М = 2∠ОМЕ,

∠М+∠Е =2∠ОМЕ +2∠МЕО =180°.

По условию сумма углов в треугольнике равна 180° → в ∆МОЕ.

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Гипермаркет знаний>>Математика>>Математика 7 класс>>Математика:Свойство углов, образованных при пересечении параллельных прямых секущей

Теорема 4.3 (обратная теореме 4.2). Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны, а сумма внутренних односторонних углов равна 180°.

Доказательство. Пусть а и b — параллельные прямые и с — прямая, пересекающая их в точках А и В. Проведем через точку А прямую а1 так, чтобы внутренние накрест лежащие углы, образованные секущей с с прямыми а, и b, были равны (рис. 76).

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

По признаку параллельности прямых прямые а, и b параллельны. А так как через точку А проходит только одна прямая, параллельная прямой b, то прямая а совпадает с прямой а1.

Значит, внутренние накрест лежащие углы, образованные секущей с параллельными прямыми а и b, равны. Теорема доказана.

Из свойства углов, образованных при пересечении параллельных прямых секущей, следует, что если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.

Задача (13). Прямые АС и BD параллельны, причем точки А и D лежат по разные стороны от секущей ВС (рис. 77). Докажите, что:

1) углы ВВС и АСВ внутренние накрест лежапще относительно секущей ВС;

2) луч ВС проходит между сторонами угла ABD;

3) углы CAB и DBA внутренние односторонние относительно секущей АВ.

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

1) Углы DBC и АСВ внутренние накрест лежащие потому, что точки А и D лежат по разные стороны от секущей ВС.
2) Луч ВС проходит между сторонами угла ABD потому, что он пересекает отрезок AD с концами на сторонах угла (задача 4).

3) Углы CAB и DBA внутренние односторонние потому, что точки С и D лежат по одну сторону от секущей АВ, а именно в полуплоскости, где лежит точка X пересечения отрезков ВС и AD.

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Календарно-тематическое планирование по математике, видео по математике онлайн, Математика в школе скачать

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.

Видео:7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать

7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущей

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

§ 15. Свойства параллельных прямых

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

(обратная теореме 14.1)

Если две параллельные прямые пересечены секущей, то углы, образующие пару накрест лежащих углов, равны.

На рисунке 224 прямые a и b параллельны, прямая c — секущая. Докажем, что ∠ 1 = ∠ 2.

Пусть ∠ 1 ≠ ∠ 2. Тогда через точку K проведём прямую a 1 так, чтобы ∠ 3 = ∠ 2 (рис. 224). Углы 3 и 2 являются накрест лежащими при прямых a 1 и b и секущей c . Тогда по теореме 14.1 a 1 ‖ b . Получили, что через точку K проходят две прямые, параллельные прямой b . Это противоречит аксиоме параллельности прямых. Таким образом, наше предположение неверно, и, следовательно, ∠ 1 = ∠ 2. Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

(обратная теореме 14.3)

Если две параллельные прямые пересечены секущей, то углы, образующие пару соответственных углов, равны.

На рисунке 225 прямые a и b параллельны, прямая c — секущая. Докажем, что ∠ 1 = ∠ 2.

По теореме 15.1 углы 3 и 2 равны как накрест лежащие при параллельных прямых a и b и секущей c . Но углы 3 и 1 равны как вертикальные. Следовательно, ∠ 1 = ∠ 2. Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

(обратная теореме 14.2)

Если две параллельные прямые пересечены секущей, то сумма углов, образующих пару односторонних углов, равна 180° .

На рисунке 226 прямые a и b параллельны, прямая c — секущая. Докажем, что ∠ 1 + ∠ 2 = 180°.

По теореме 15.1 углы 3 и 2 равны как накрест лежащие при параллельных прямых a и b и секущей c . Но углы 3 и 1 смежные, поэтому ∠ 1 + ∠ 3 = 180°. Следовательно, ∠ 1 + ∠ 2 = 180°. Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой ( рис. 227 ).

Докажите это следствие самостоятельно.

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Задача. Докажите, что все точки одной из двух параллельных прямых равноудалены от другой прямой.

Решение. Пусть прямые a и b параллельны (рис. 228), M и N — две произвольные точки прямой a . Опустим из них перпендикуляры MK и NP на прямую b . Докажем, что MK = NP .

Рассмотрим треугольники MKN и PNK . Отрезок KN — их общая сторона. Так как MK ⊥ b и NP ⊥ b , то MK ‖ NP , а углы MKN и PNK равны как накрест лежащие при параллельных прямых MK и NP и секущей KN .

Аналогично углы MNK и PKN равны как накрест лежащие при параллельных прямых MN и KP и секущей KN . Следовательно, треугольники MKN и PNK равны по стороне и двум прилежащим углам.

Тогда MK = NP . Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Расстоянием между двумя параллельными прямыми называют расстояние от любой точки одной из прямых до другой прямой.

Например, на рисунке 228 длина отрезка MK — это расстояние между параллельными прямыми a и b .

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Задача. На рисунке 229 отрезок AK — биссектриса треугольника ABC , MK ‖ AC . Докажите, что треугольник AMK — равнобедренный.

Решение. Так как AK — биссектриса треугольника ABC , то ∠ MAK = ∠ KAC .

Углы KAC и MKA равны как накрест лежащие при параллельных прямых MK и AC и секущей AK . Следовательно, ∠ MAK = ∠ MKA .

Тогда треугольник AMK — равнобедренный. Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

  1. Каким свойством обладают накрест лежащие углы, образованные при пересечении двух параллельных прямых секущей?
  2. Каким свойством обладают соответственные углы, образованные при пересечении двух параллельных прямых секущей?
  3. Чему равна сумма односторонних углов, образованных при пересечении двух параллельных прямых секущей?
  4. Известно, что прямая перпендикулярна одной из двух параллельных прямых. Обязательно ли она перпендикулярна другой прямой?
  5. Что называют расстоянием между двумя параллельными прямыми?

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

326. На рисунке 230 найдите угол 1.

327. На рисунке 231 найдите угол 2.

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

328. Разность односторонних углов, образованных при пересечении двух параллельных прямых секущей, равна 50°. Найдите эти углы.

329. Один из односторонних углов, образованных при пересечении двух параллельных прямых секущей, в 4 раза больше другого. Найдите эти углы.

330. Найдите все углы, образованные при пересечении двух параллельных прямых секущей, если:

1) один из этих углов равен 48°;

2) отношение градусных мер двух из этих углов равно 2 : 7.

331. Найдите все углы, образованные при пересечении двух параллельных прямых секущей, если один из них на 24° меньше другого.

332. На рисунке 232 m ‖ n , p ‖ k , ∠1 = 50°. Найдите ∠ 2, ∠ 3 и ∠ 4.

333. Прямая, параллельная основанию AC равнобедренного треугольника ABC , пересекает его боковые стороны AB и BC в точках D и F соответственно. Докажите, что треугольник DBF — равнобедренный.

334. На продолжениях сторон AC и BC треугольника ABC ( AB = BC ) за точки A и B отметили соответственно точки P и K так, что PK ‖ AB . Докажите, что треугольник KPC — равнобедренный.

335. Отрезки AB и CD пересекаются в точке O , AO = BO , AC ‖ BD . Докажите, что CO = DO .

336. Отрезки MK и DE пересекаются в точке F , DK ‖ ME , DK = ME . Докажите, что ∆ MEF = ∆ DKF .

337. Ответьте на вопросы.

1) Могут ли оба односторонних угла при двух параллельных прямых и секущей быть тупыми?

2) Может ли сумма накрест лежащих углов при двух параллельных прямых и секущей быть равной 180°?

3) Могут ли быть равными односторонние углы при двух параллельных прямых и секущей?

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

338. На рисунке 233 AB ‖ CD , BC ‖ AD . Докажите, что BC = AD .

339. На рисунке 233 BC = AD , BC ‖ AD . Докажите, что AB ‖ CD .

340. На рисунке 234 MK ‖ EF , ME = EF , ∠ KMF = 70°. Найдите ∠ MEF .

341. Через вершину B треугольника ABC (рис. 235) провели прямую MK , параллельную прямой AC , ∠ MBA = 42°, ∠ CBK = 56°. Найдите углы треугольника ABC .

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

342. Прямая, проведённая через вершину A треугольника ABC параллельно его противолежащей стороне, образует со стороной AC угол, равный углу BAC . Докажите, что данный треугольник — равнобедренный.

343. На рисунке 236 ∠ MAB = 50°, ∠ ABK = 130°, ∠ ACB = 40°, CE — биссектриса угла ACD . Найдите углы треугольника ACE .

344. На рисунке 237 BE ⊥ AK , CF ⊥ AK , CK — биссектриса угла FCD , ∠ ABE = 32°. Найдите ∠ ACK .

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

345. На рисунке 238 BC ‖ MK , BK = KE , CK = KD . Докажите, что AD ‖ MK .

346. На рисунке 239 AB = AC , AF = FE , AB ‖ EF . Докажите, что AE ⊥ BC .

347. Треугольник ABC — равнобедренный с основанием AC . Через произвольную точку M его биссектрисы BD проведены прямые, параллельные его сторонам AB и BC и пересекающие отрезок AC в точках E и F соответственно. Докажите, что DE = DF .

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

348. На рисунке 240 AB ‖ DE . Докажите, что ∠ BCD = ∠ ABC + ∠ CDE .

349. На рисунке 241 AB ‖ DE , ∠ ABC = 120°, ∠ CDE = 150°. Докажите, что BC ⊥ CD .

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

350. Через вершину B треугольника ABC провели прямую, параллельную его биссектрисе AM . Эта прямая пересекает прямую AC в точке K . Докажите, что ∆ BAK — равнобедренный.

351. Через точку O пересечения биссектрис AE и CF треугольника ABC провели прямую, параллельную прямой AC . Эта прямая пересекает сторону AB в точке M , а сторону BC — в точке K . Докажите, что MK = AM + CK .

352. Биссектрисы углов BAC и BCA треугольника ABC пересекаются в точке O . Через эту точку проведены прямые, параллельные прямым AB и BC и пересекающие сторону AC в точках M и K соответственно. Докажите, что периметр треугольника MOK равен длине стороны AC .

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Упражнения для повторения

353. На отрезке AB отметили точку C так, что AC : BC = 2 : 1. На отрезке AC отметили точку D так, что AD : CD = 3 : 2. В каком отношении точка D делит отрезок AB ?

354. Отрезки AC и BD пересекаются в точке O , AB = BC = CD = AD . Докажите, что AC ⊥ BD .

355. В треугольнике MOE на стороне MO отметили точку A , в треугольнике TPK на стороне TP — точку B так, что MA = TB . Какова градусная мера угла BKP , если MO = TP , ∠ M = ∠ T , ∠ O = ∠ P , ∠ AEO = 17°?

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Свойство углов образованных при пересечении параллельных прямых секущей доказательство

Наблюдайте, рисуйте, конструируйте, фантазируйте

356. На рисунке 242 изображена очень сложная замкнутая ломаная. Она ограничивает некоторую часть плоскости (многоугольник). Как, отметив на рисунке любую точку, по возможности быстрее определить, принадлежит эта точка многоугольнику или нет?

🔥 Видео

Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)Скачать

Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)

Теоремы об углах, образованных двумя парал. прямыми и секущей | Геометрия 7-9 класс #30 | ИнфоурокСкачать

Теоремы об углах, образованных двумя парал. прямыми и секущей | Геометрия 7-9 класс #30 | Инфоурок

Свойства углов, образованных двумя параллельными прямыми и секущей Задачи на признаки параллельностСкачать

Свойства углов, образованных двумя параллельными прямыми и секущей  Задачи на признаки параллельност

ГЕОМЕТРИЯ 7 класс : Соответственные, односторонние и накрест лежащие углыСкачать

ГЕОМЕТРИЯ 7 класс : Соответственные, односторонние и накрест лежащие углы

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)

№203. Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей сСкачать

№203. Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей с

Теорема 14.1 Если накрест лежащие углы равны, то прямые параллельныСкачать

Теорема 14.1 Если накрест лежащие углы равны, то прямые параллельны

Углы, образованные при пересечении двух прямых секущейСкачать

Углы, образованные при пересечении двух прямых секущей

СВОЙСТВО УГЛОВ, ОБРАЗОВАННЫХ ПРИ ПЕРЕСЕЧЕНИИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ СЕКУЩЕЙСкачать

СВОЙСТВО УГЛОВ, ОБРАЗОВАННЫХ ПРИ ПЕРЕСЕЧЕНИИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ СЕКУЩЕЙ

Параллельные прямые — Признак Параллельности Прямых и Свойства УгловСкачать

Параллельные прямые — Признак Параллельности Прямых и Свойства Углов

7 класс, 25 урок, Признаки параллельности двух прямыхСкачать

7 класс, 25 урок, Признаки параллельности двух прямых

7 класс. Геометрия. Урок 13. Свойства углов при пересечении параллельных прямых секущей: теорияСкачать

7 класс. Геометрия. Урок 13. Свойства углов при пересечении параллельных прямых секущей: теория

Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать

Геометрия 7 класс (Урок№18 - Параллельные прямые.)

29. Теорема об углах, образованных двумя параллельными прямыми и секущейСкачать

29. Теорема об углах, образованных двумя параллельными прямыми и секущей

УГЛЫ: Односторонние, Накрест Лежащие, Внутренние, Внешние // Теорема об углах — Геометрия 7 классСкачать

УГЛЫ: Односторонние, Накрест Лежащие, Внутренние, Внешние // Теорема об углах — Геометрия 7 класс

Теорема 14.2 Если сумма односторонних углов равна 180 градусов, то прямые параллельны || Геометрия 7Скачать

Теорема 14.2 Если сумма односторонних углов равна 180 градусов, то прямые параллельны || Геометрия 7

Геометрия 7 класс. Теоремы об углах, образованных двумя параллельными прямымСкачать

Геометрия 7 класс. Теоремы об углах, образованных двумя параллельными прямым

Углы, образованные параллельными прямыми и секущейСкачать

Углы, образованные параллельными прямыми и секущей
Поделиться или сохранить к себе: