Пусть прямая с пересекает параллельные прямые и . При этом образуется восемь углов. Углы при параллельных прямых и секущей так часто используются в задачах, что в геометрии им даны специальные названия.
Углы и — вертикальные. Очевидно, вертикальные углы равны, то есть
Конечно, углы и , и — тоже вертикальные.
Углы и — смежные, это мы уже знаем. Сумма смежных углов равна .
Углы и (а также и , и , и ) — накрест лежащие. Накрест лежащие углы равны.
Углы и — односторонние. Они лежат по одну сторону от всей «конструкции». Углы и — тоже односторонние. Сумма односторонних углов равна , то есть
Углы и (а также и , и , и ) называются соответственными.
Соответственные углы равны, то есть
Углы и (а также и , и , и ) называют накрест лежащими.
Накрест лежащие углы равны, то есть
Чтобы применять все эти факты в решении задач ЕГЭ, надо научиться видеть их на чертеже. Например, глядя на параллелограмм или трапецию, можно увидеть пару параллельных прямых и секущую, а также односторонние углы. Проведя диагональ параллелограмма, видим накрест лежащие углы. Это — один из шагов, из которых и состоит решение.
Ты нашел то, что искал? Поделись с друзьями!
1. Биссектриса тупого угла параллелограмма делит противоположную сторону в отношении , считая от вершины тупого угла. Найдите большую сторону параллелограмма, если его периметр равен .
Напомним, что биссектриса угла — это луч, выходящий из вершины угла и делящий угол пополам.
Пусть — биссектриса тупого угла . По условию, отрезки и равны и соответственно.
Рассмотрим углы и . Поскольку и параллельны, — секущая, углы и являются накрест лежащими. Мы знаем, что накрест лежащие углы равны. Значит, треугольник — равнобедренный, следовательно, .
Периметр параллелограмма — это сумма всех его сторон, то есть
2. Диагональ параллелограмма образует с двумя его сторонами углы и . Найдите больший угол параллелограмма. Ответ дайте в градусах.
Нарисуйте параллелограмм и его диагональ. Заметив на чертеже накрест лежащие углы и односторонние углы, вы легко получите ответ: .
3. Чему равен больший угол равнобедренной трапеции, если известно, что разность противолежащих углов равна ? Ответ дайте в градусах.
Мы знаем, что равнобедренной (или равнобокой) называется трапеция, у которой боковые стороны равны. Следовательно, равны углы при верхнем основании, а также углы при нижнем основании.
Давайте посмотрим на чертеж. По условию, , то есть .
Углы и — односторонние при параллельных прямых и секущей, следовательно,
Видео:Параллельные прямые | Математика | TutorOnlineСкачать
51. Планиметрия Читать 0 мин.
Видео:7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать
51.65. Углы и параллельные прямые
Взаимное расположение прямых:
- Прямые пересекаются, у них есть одна общая точка.
- Прямые не пересекаются, у них нет общих точек. Такие прямые называются параллельными.
При пересечении двух прямых образуются вертикальные и смежные углы.
Вертикальные углы — равны.
Сумма смежных углов равна 180°.
Параллельные прямые
Прямые называются параллельными, если они не пересекаются, сколько бы их не продолжать.
О параллельных прямых:
- Если одна из пары параллельных прямых параллельна третьей прямой, то все прямые параллельны между собой.
- На плоскости через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.
- Если две прямые на плоскости перпендикулярны третьей прямой, то они параллельны.
При пересечении двух параллельных прямых секущей образуются следующие углы:
- внутренние накрест лежащие (4 и 5, 3 и 6) — попарно равны;
- внешние накрест лежащие (1 и 8, 2 и 7) — попарно равны;
- соответственные (1 и 5, 2 и 6, 3 и 7, 4 и 8) — попарно равны;
- внутренние односторонние (3 и 5, 4 и 6) — сумма таких углов равна 180°;
- внешние односторонние (1 и 7, 2 и 8) — сумма таких углов равна 180°.
Часто для использования свойств углов, полученных при пересечении двух параллельных прямых секущей, необходимо применять дополнительные построения.
Пример: Даны углы с попарно параллельными сторонами. Что можно сказать об углах 1 и 2? Что можно сказать об углах 3 и 4?
Продолжим стороны углов до пересечения:
Получаем, что углы 1 и 2 равны, т. к. являются накрест лежащими при параллельных прямых.
Сумма углов 3 и 4 равна 180°, т. к. они являются односторонними при параллельных прямых.
Теорема Фалеса: При пересечении сторон угла параллельными прямыми стороны угла делятся на пропорциональные отрезки (образуются подобные треугольники).
Видео:Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)Скачать
Признаки и свойства параллельных прямых
Видео:Геометрия 7 класс | Вертикальные, смежные, накрест лежащие и другие углы (теория) | МАТЕМАТИКА 2021Скачать
Признаки параллельных прямых
1. Если две прямые параллельны третьей прямой, то они являются параллельными:
2. Если две прямые перпендикулярны третьей прямой, то они параллельны:
Остальные признаки параллельности прямых основаны на углах, образующихся при пересечении двух прямых третьей.
3. Если сумма внутренних односторонних углов равна 180°, то прямые параллельны:
Если ∠1 + ∠2 = 180°, то a || b.
4. Если соответственные углы равны, то прямые параллельны:
5. Если внутренние накрест лежащие углы равны, то прямые параллельны:
Видео:Параллельные прямые — Признак Параллельности Прямых и Свойства УгловСкачать
Свойства параллельных прямых
Утверждения, обратные признакам параллельности прямых, являются их свойствами. Они основаны на свойствах углов, образованных пересечением двух параллельных прямых третьей прямой.
1. При пересечении двух параллельных прямых третьей прямой, сумма образованных ими внутренних односторонних углов равна 180°:
Если a || b, то ∠1 + ∠2 = 180°.
2. При пересечении двух параллельных прямых третьей прямой, образованные ими соответственные углы равны:
3. При пересечении двух параллельных прямых третьей прямой, образованные ими накрест лежащие углы равны:
Следующее свойство является частным случаем для каждого предыдущего:
4. Если прямая на плоскости перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой:
Пятое свойство — это аксиома параллельности прямых:
5. Через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной прямой:
🎦 Видео
УГЛЫ ПРИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ И СЕКУЩЕЙСкачать
Это пора запомнить! Свойства углов при параллельных прямых и секущей. #геометрияСкачать
Пары углов в геометрииСкачать
№203. Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей сСкачать
Углы при параллельных прямых и секущей. ОГЭ/ЕГЭ (часть 1)Скачать
Углы, образованные параллельными прямыми и секущейСкачать
Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать
ГЕОМЕТРИЯ 7 класс : Соответственные, односторонние и накрест лежащие углыСкачать
№201. Сумма накрест лежащих углов при пересечении двух параллельных прямых секущей равна 210Скачать
Углы при параллельных прямых и секущей | ЕГЭ 2023 Профильная математикаСкачать
Углы при параллельных и секущей #математика #огэматематика #огэ #данирСкачать
СВОЙСТВА ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ. §15 геометрия 7 классСкачать
Параллельные прямые (задачи).Скачать
Углы, образованные при пересечении двух прямых секущейСкачать
Свойства параллельных прямых - 7 класс геометрияСкачать