Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

§ 15. Свойства параллельных прямых

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

(обратная теореме 14.1)

Если две параллельные прямые пересечены секущей, то углы, образующие пару накрест лежащих углов, равны.

На рисунке 224 прямые a и b параллельны, прямая c — секущая. Докажем, что ∠ 1 = ∠ 2.

Пусть ∠ 1 ≠ ∠ 2. Тогда через точку K проведём прямую a 1 так, чтобы ∠ 3 = ∠ 2 (рис. 224). Углы 3 и 2 являются накрест лежащими при прямых a 1 и b и секущей c . Тогда по теореме 14.1 a 1 ‖ b . Получили, что через точку K проходят две прямые, параллельные прямой b . Это противоречит аксиоме параллельности прямых. Таким образом, наше предположение неверно, и, следовательно, ∠ 1 = ∠ 2. Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

(обратная теореме 14.3)

Если две параллельные прямые пересечены секущей, то углы, образующие пару соответственных углов, равны.

На рисунке 225 прямые a и b параллельны, прямая c — секущая. Докажем, что ∠ 1 = ∠ 2.

По теореме 15.1 углы 3 и 2 равны как накрест лежащие при параллельных прямых a и b и секущей c . Но углы 3 и 1 равны как вертикальные. Следовательно, ∠ 1 = ∠ 2. Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

(обратная теореме 14.2)

Если две параллельные прямые пересечены секущей, то сумма углов, образующих пару односторонних углов, равна 180° .

На рисунке 226 прямые a и b параллельны, прямая c — секущая. Докажем, что ∠ 1 + ∠ 2 = 180°.

По теореме 15.1 углы 3 и 2 равны как накрест лежащие при параллельных прямых a и b и секущей c . Но углы 3 и 1 смежные, поэтому ∠ 1 + ∠ 3 = 180°. Следовательно, ∠ 1 + ∠ 2 = 180°. Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой ( рис. 227 ).

Докажите это следствие самостоятельно.

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Задача. Докажите, что все точки одной из двух параллельных прямых равноудалены от другой прямой.

Решение. Пусть прямые a и b параллельны (рис. 228), M и N — две произвольные точки прямой a . Опустим из них перпендикуляры MK и NP на прямую b . Докажем, что MK = NP .

Рассмотрим треугольники MKN и PNK . Отрезок KN — их общая сторона. Так как MK ⊥ b и NP ⊥ b , то MK ‖ NP , а углы MKN и PNK равны как накрест лежащие при параллельных прямых MK и NP и секущей KN .

Аналогично углы MNK и PKN равны как накрест лежащие при параллельных прямых MN и KP и секущей KN . Следовательно, треугольники MKN и PNK равны по стороне и двум прилежащим углам.

Тогда MK = NP . Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Расстоянием между двумя параллельными прямыми называют расстояние от любой точки одной из прямых до другой прямой.

Например, на рисунке 228 длина отрезка MK — это расстояние между параллельными прямыми a и b .

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Задача. На рисунке 229 отрезок AK — биссектриса треугольника ABC , MK ‖ AC . Докажите, что треугольник AMK — равнобедренный.

Решение. Так как AK — биссектриса треугольника ABC , то ∠ MAK = ∠ KAC .

Углы KAC и MKA равны как накрест лежащие при параллельных прямых MK и AC и секущей AK . Следовательно, ∠ MAK = ∠ MKA .

Тогда треугольник AMK — равнобедренный. Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

  1. Каким свойством обладают накрест лежащие углы, образованные при пересечении двух параллельных прямых секущей?
  2. Каким свойством обладают соответственные углы, образованные при пересечении двух параллельных прямых секущей?
  3. Чему равна сумма односторонних углов, образованных при пересечении двух параллельных прямых секущей?
  4. Известно, что прямая перпендикулярна одной из двух параллельных прямых. Обязательно ли она перпендикулярна другой прямой?
  5. Что называют расстоянием между двумя параллельными прямыми?

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

326. На рисунке 230 найдите угол 1.

327. На рисунке 231 найдите угол 2.

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

328. Разность односторонних углов, образованных при пересечении двух параллельных прямых секущей, равна 50°. Найдите эти углы.

329. Один из односторонних углов, образованных при пересечении двух параллельных прямых секущей, в 4 раза больше другого. Найдите эти углы.

330. Найдите все углы, образованные при пересечении двух параллельных прямых секущей, если:

1) один из этих углов равен 48°;

2) отношение градусных мер двух из этих углов равно 2 : 7.

331. Найдите все углы, образованные при пересечении двух параллельных прямых секущей, если один из них на 24° меньше другого.

332. На рисунке 232 m ‖ n , p ‖ k , ∠1 = 50°. Найдите ∠ 2, ∠ 3 и ∠ 4.

333. Прямая, параллельная основанию AC равнобедренного треугольника ABC , пересекает его боковые стороны AB и BC в точках D и F соответственно. Докажите, что треугольник DBF — равнобедренный.

334. На продолжениях сторон AC и BC треугольника ABC ( AB = BC ) за точки A и B отметили соответственно точки P и K так, что PK ‖ AB . Докажите, что треугольник KPC — равнобедренный.

335. Отрезки AB и CD пересекаются в точке O , AO = BO , AC ‖ BD . Докажите, что CO = DO .

336. Отрезки MK и DE пересекаются в точке F , DK ‖ ME , DK = ME . Докажите, что ∆ MEF = ∆ DKF .

337. Ответьте на вопросы.

1) Могут ли оба односторонних угла при двух параллельных прямых и секущей быть тупыми?

2) Может ли сумма накрест лежащих углов при двух параллельных прямых и секущей быть равной 180°?

3) Могут ли быть равными односторонние углы при двух параллельных прямых и секущей?

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

338. На рисунке 233 AB ‖ CD , BC ‖ AD . Докажите, что BC = AD .

339. На рисунке 233 BC = AD , BC ‖ AD . Докажите, что AB ‖ CD .

340. На рисунке 234 MK ‖ EF , ME = EF , ∠ KMF = 70°. Найдите ∠ MEF .

341. Через вершину B треугольника ABC (рис. 235) провели прямую MK , параллельную прямой AC , ∠ MBA = 42°, ∠ CBK = 56°. Найдите углы треугольника ABC .

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

342. Прямая, проведённая через вершину A треугольника ABC параллельно его противолежащей стороне, образует со стороной AC угол, равный углу BAC . Докажите, что данный треугольник — равнобедренный.

343. На рисунке 236 ∠ MAB = 50°, ∠ ABK = 130°, ∠ ACB = 40°, CE — биссектриса угла ACD . Найдите углы треугольника ACE .

344. На рисунке 237 BE ⊥ AK , CF ⊥ AK , CK — биссектриса угла FCD , ∠ ABE = 32°. Найдите ∠ ACK .

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

345. На рисунке 238 BC ‖ MK , BK = KE , CK = KD . Докажите, что AD ‖ MK .

346. На рисунке 239 AB = AC , AF = FE , AB ‖ EF . Докажите, что AE ⊥ BC .

347. Треугольник ABC — равнобедренный с основанием AC . Через произвольную точку M его биссектрисы BD проведены прямые, параллельные его сторонам AB и BC и пересекающие отрезок AC в точках E и F соответственно. Докажите, что DE = DF .

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

348. На рисунке 240 AB ‖ DE . Докажите, что ∠ BCD = ∠ ABC + ∠ CDE .

349. На рисунке 241 AB ‖ DE , ∠ ABC = 120°, ∠ CDE = 150°. Докажите, что BC ⊥ CD .

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

350. Через вершину B треугольника ABC провели прямую, параллельную его биссектрисе AM . Эта прямая пересекает прямую AC в точке K . Докажите, что ∆ BAK — равнобедренный.

351. Через точку O пересечения биссектрис AE и CF треугольника ABC провели прямую, параллельную прямой AC . Эта прямая пересекает сторону AB в точке M , а сторону BC — в точке K . Докажите, что MK = AM + CK .

352. Биссектрисы углов BAC и BCA треугольника ABC пересекаются в точке O . Через эту точку проведены прямые, параллельные прямым AB и BC и пересекающие сторону AC в точках M и K соответственно. Докажите, что периметр треугольника MOK равен длине стороны AC .

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Упражнения для повторения

353. На отрезке AB отметили точку C так, что AC : BC = 2 : 1. На отрезке AC отметили точку D так, что AD : CD = 3 : 2. В каком отношении точка D делит отрезок AB ?

354. Отрезки AC и BD пересекаются в точке O , AB = BC = CD = AD . Докажите, что AC ⊥ BD .

355. В треугольнике MOE на стороне MO отметили точку A , в треугольнике TPK на стороне TP — точку B так, что MA = TB . Какова градусная мера угла BKP , если MO = TP , ∠ M = ∠ T , ∠ O = ∠ P , ∠ AEO = 17°?

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Наблюдайте, рисуйте, конструируйте, фантазируйте

356. На рисунке 242 изображена очень сложная замкнутая ломаная. Она ограничивает некоторую часть плоскости (многоугольник). Как, отметив на рисунке любую точку, по возможности быстрее определить, принадлежит эта точка многоугольнику или нет?

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Геометрия. 7 класс

Конспект урока

Свойства параллельных прямых

Перечень рассматриваемых вопросов:

  • Углы, образованные при пересечении двух прямых секущей.
  • Доказательство свойств параллельных прямых и их применение при решении задач.
  • Формулирование теоремы об углах с соответственно параллельными сторонами.

Две прямые на плоскости называются параллельными, если они не пересекаются.

Утверждение, обратное данной теореме– это утверждение, в котором условие является заключением теоремы, а заключение – условием теоремы.

  1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
  1. Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
  2. Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
  3. Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
  4. Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
  5. Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.

Теоретический материал для самостоятельного изучения.

Ранее мы узнали и научились применять признаки параллельности прямых.

Рассмотрим утверждения, обратные к теоремам, выражающим признаки параллельности двух прямых.

В любой теореме есть две части: условие (это то, что дано)и заключение (это то, что требуется доказать).

Утверждением, обратным данному, называется утверждение, в котором условием является заключение, а заключением – условие.

Итак, вспомним один из признаков параллельности прямых. Если при пересечении двух прямых секущей накрест лежащие углы, образованные этими прямыми и секущей, равны (это условие), то прямые параллельны (заключение).

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Сформулируем и докажем обратное утверждение.

Если две параллельные прямые пересечены секущей, то накрест лежащие углы,образованные этими прямыми и секущей,равны.

∠1 и ∠2 – накрест лежащие.

Доказательство:( метод от противного):

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Отложим ∠PMN =∠2 (накрест лежащие) → МР║b→ через точку М проходит 2 параллельные прямые прямой b (МР║b– доказательство;a║b– условие).→∠1=∠2.

Это противоречит теореме о единственности прямой параллельной данной и проходящей через точку.

Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой.

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

С пересекает а, значит, и пересекает параллельную ей прямую b(по следствию из аксиомы параллельных прямых).→ с – секущая к прямым а и b→∠1 = ∠2 = 90° (по только что доказанному свойству параллельных прямых).→ с ┴ b.

Что и требовалось доказать.

Вспомним ещё один признак параллельности двух прямых. Если при пересечении двух прямых секущей соответственные углы равны(это условие), то прямые параллельны(заключение).

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Сформулируем и докажем обратное утверждение

Если две параллельные прямые пересечены секущей, то соответственные углы, образованные этими прямыми и секущей, равны.

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Дано:

Доказать:

По условию a║b→∠1 = ∠3 (накрест лежащие углы). → ∠2 = ∠3 (вертикальные углы).

Значит, ∠1 = ∠2, что и требовалось доказать.

Вспомним ещё один признак параллельности двух прямых. Если при пересечении двух прямых секущей сумма односторонних углов, образованных этими прямыми и секущей, равна 180° (условие), то прямые параллельны (заключение).

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Сформулируем и докажем обратное утверждение.

Если две параллельные прямые пересечены секущей, то сумма односторонних углов, образованных этими прямыми и секущей, равна 180°.

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Дано:a║b,

Доказать:

По условию a║b→∠1=∠2 ‑соответственные углы, (в силу предыдущей теоремы).

∠2+∠4=180° (по свойству смежных углов).

→ ∠1+∠4= 180°,что и требовалось доказать.

Материал для углубленного изучения темы.

Задача на доказательство.

Прямая m пересекает параллельные прямые а и b в точках А и В. Прямая р, проходящая через середину отрезка АВ, точку О, пересекает прямые а и b в точках С и D.

Докажем, что ОС=ОD.

По условию дано: а ║b, рՈа= А, рՈb = В, mՈа = D, mՈb = C.

Доказать: ОС = ОD.

Доказательство: рассмотрим, образовавшиеся при построении, треугольники AOD и BOC. Они равны по 2 признаку равенства треугольников, т.к. АО=ВО (О– середина отрезка АВ по условию); ∠1=∠2(накрест лежащие углы); ∠3=∠4 (вертикальные углы). →Все элементы равных треугольников соответственно равны → ОС=ОD. Что и требовалось доказать.

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Разбор заданий тренировочного модуля.

1. Три прямых а,р,с пересечены прямой k, при этом образуются соответственные углы: ∠1= 30°,∠2 = 40°,∠3= 30°,как показано на рисунке. Какие из прямых параллельны?

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

На рисунке изображены прямые а, р, с, которые пересечены секущей k. При этом углы 1,2,3 соответственные. По условию: ∠3= ∠1= 30°,∠2 ≠ ∠1,∠2 ≠ ∠3.

Следовательно, прямые а и р параллельные, прямые а и с, р и с не параллельные(по свойствам параллельных прямых).

2. На рисунке прямые аb, при этомMO и ЕО – биссектрисы углов М и Е соответственно, пересекаются в точке О. Чему равна градусная мера угла МОЕ, если сумма углов в треугольнике равна 180°?

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

По условию аb→∠М+∠Е=180° (по теореме о параллельных прямых об односторонних углах). Т.к. MO и ЕО – биссектрисы углов М и Е →∠М = 2∠ОМЕ,

∠М+∠Е =2∠ОМЕ +2∠МЕО =180°.

По условию сумма углов в треугольнике равна 180° → в ∆МОЕ.

Видео:Свойства углов, образованных двумя параллельными прямыми и секущей Задачи на признаки параллельностСкачать

Свойства углов, образованных двумя параллельными прямыми и секущей  Задачи на признаки параллельност

Теоремы об углах образованных двумя параллельными прямыми и секущей

Видео:7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать

7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущей

«Календарь счастливой жизни:
инструменты и механизм работы
для достижения своих целей»

Сертификат и скидка на обучение каждому участнику

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Видео:Теоремы об углах, образованных двумя парал. прямыми и секущей | Геометрия 7-9 класс #30 | ИнфоурокСкачать

Теоремы об углах, образованных двумя парал. прямыми и секущей | Геометрия 7-9 класс #30 | Инфоурок

«Управление общеобразовательной организацией:
новые тенденции и современные технологии»

Свидетельство и скидка на обучение каждому участнику

Описание презентации по отдельным слайдам:

Теоремы об углах, образованных двумя параллельными прямыми и секущей.

Теорема: Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны. а в А В 1 2  1 =  2 c

Доказательство: A B C D M N 1 2 A B C D M N 1 2 K O Пусть прямые АВ и СD параллельны, МN — их секущая. Докажем, что накрест лежащие углы 1 и 2 равны между собой. Допустим, что  1 и  2 не равны. Проведем через точку О прямую КF. Тогда при точке О можно построить  KON, накрест лежащий и равный  2. Но если  KON =  2, то прямая КF будет параллельна СD. Получили, что через точку О проведены две прямые АВ и КF, параллельные прямой СD. Но этого не может быть. Мы пришли к противоречию, потому что допустили, что  1 и  2 не равны. Следовательно, наше допущение является неправильным и  1 должен быть равен  2, т. е. накрест лежащие углы равны. F

Теорема: Если две параллельные прямые пересечены секущей, то соответственные углы равны. а в А В 1 2  1 =  2

Доказательство: 2 а в А В 3 1 Пусть параллельные прямые а и b пересечены секущей АВ, то накрест лежащие  1 и  3 будут равны.  2 и  3 равны как вертикальные. Из равенств 1 = 3 и 2 = 3 следует, что 1 = 2. Теорема доказана

Теорема: Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°. а в А В 3 1  1 +  3 = 180°

Доказательство: Пусть параллельные прямые а и b пересечены секущей АВ, то соответственные  1 и  2 будут равны,  2 и  3 – смежные, поэтому  2 +  3 = 180°. Из равенств 1 = 2 и 2 + 3 = 180° следует, что 1 + 3 = 180°. Теорема доказана. 2 а в А В 3 1

Решение: 1. Пусть Х – это  2, тогда  1 = (Х+70°), т.к. сумма углов 1 и 2 = 180°, в силу того, что они смежные. Составим уравнение: Х+ (Х+70°) = 180° 2Х = 110 ° Х = 55° (Угол 2) 2. Найдем  1. 55° + 70° = 125° 3.  1 =  3, т.к. они вертикальные.  3 =  5, т.к. они накрест лежащие. 125°  5 =  7, т.к. они вертикальные.  2 =  4, т.к. они вертикальные.  4 =  6, т.к. они накрест лежащие. 55°  6 =  8, т.к. они вертикальные. Задача №1: A B 4 3 5 8 7 2 1 6 Условие: найдите все углы, образованные при пересечении двух параллельных A и B секущей C, если один из углов на 70° больше другого.

Решение: 1. Т.к. 4 = 45°, то2 = 45°, потому что 2 =4(как соответственные) 2.  3 смежен с  4, поэтому 3+4=180°, и из этого следует, что 3= 180° — 45°= 135°. 3.  1 =  3, т.к. они накрест лежащие.  1 = 135°. Ответ:  1=135°;  2=45°;  3=135°. Задача №2: A B 1 Условие: на рисунке прямые А II B и C II D,  4=45°. Найти углы 1, 2, 3. 3 2 4

Решение: 1. 1=2, т.к. они вертикальные, значит 2= 45°. 2.  3 смежен с  2, поэтому 3+2=180°, и из этого следует, что 3= 180° — 45°= 135°. 3.  4 + 3=180°, т.к. они односторонние.  4 = 45°. Ответ:  4=45°;  3=135°. Задача №3: A B 2 Условие: две параллельные прямые А и B пересечены секущей С. Найти, чему будут равны 4 и 3, если 1=45°. 3 4 1

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 967 человек из 79 регионов

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 342 человека из 71 региона

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 688 человек из 74 регионов

Ищем педагогов в команду «Инфоурок»

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

  • Давыдова Инна ЕвгеньевнаНаписать 12433 21.04.2014

Номер материала: 78254042147

    21.04.2014 1548
    21.04.2014 655
    21.04.2014 3795
    21.04.2014 1701
    21.04.2014 3655
    21.04.2014 15118
    21.04.2014 1447

Не нашли то, что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

В Госдуме предложили продлить каникулы для школьников до 16 января

Время чтения: 1 минута

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

В Минпросвещения рассказали о формате обучения школьников после праздников

Время чтения: 1 минута

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Россия направит $10,3 млн на развитие школьного питания в нескольких странах

Время чтения: 1 минута

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Во всех педвузах страны появятся технопарки

Время чтения: 1 минута

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Глава СПЧ предложил ввести подготовительные курсы перед обучением в школе для детей мигрантов

Время чтения: 1 минута

Свойства углов образованных параллельными прямыми и секущей с доказательством одного из них

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

🎥 Видео

29. Теорема об углах, образованных двумя параллельными прямыми и секущейСкачать

29. Теорема об углах, образованных двумя параллельными прямыми и секущей

УГЛЫ ПРИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ И СЕКУЩЕЙСкачать

УГЛЫ ПРИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ И СЕКУЩЕЙ

Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)Скачать

Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)

Геометрия 7 класс. Теоремы об углах, образованных двумя параллельными прямымСкачать

Геометрия 7 класс. Теоремы об углах, образованных двумя параллельными прямым

ГЕОМЕТРИЯ 7 класс : Соответственные, односторонние и накрест лежащие углыСкачать

ГЕОМЕТРИЯ 7 класс : Соответственные, односторонние и накрест лежащие углы

№203. Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей сСкачать

№203. Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей с

Параллельные прямые — Признак Параллельности Прямых и Свойства УгловСкачать

Параллельные прямые — Признак Параллельности Прямых и Свойства Углов

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)

Углы, образованные параллельными прямыми и секущейСкачать

Углы, образованные параллельными прямыми и секущей

Пары углов в геометрииСкачать

Пары углов в геометрии

Теоремы об углах, образованных двумя параллельными прямыми и секущей. Решение задач.Скачать

Теоремы об углах, образованных двумя параллельными прямыми и секущей. Решение задач.

Углы, образованные при пересечении двух прямых секущейСкачать

Углы, образованные при пересечении двух прямых секущей

Теоремы об углах, образованных двумя параллельными прямыми и секущей.Скачать

Теоремы об углах, образованных двумя параллельными прямыми и секущей.

Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать

Геометрия 7 класс (Урок№18 - Параллельные прямые.)

7 класс, 25 урок, Признаки параллельности двух прямыхСкачать

7 класс, 25 урок, Признаки параллельности двух прямых

Параллельные прямые (задачи).Скачать

Параллельные прямые (задачи).
Поделиться или сохранить к себе: