Определение 1 . Окружностью, вписанной в четырёхугольник, называют окружность, которая касается касается каждой из сторон четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, описанным около окружности или описанным четырёхугольником .
Замечание . В настоящем разделе мы рассматриваем только выпуклые четырёхугольники.
Теорема 1 . Если четырёхугольник описан около окружности, то суммы длин его противоположных сторон равны.
Доказательство . Рассмотрим четырёхугольник ABCD , описанный около окружности, и обозначим буквами E, F, G, H – точки касания сторон четырёхугольника с окружностью (рис.2).
AH = AE, BF = BE, CF = CG, DH = DG,
Складывая эти равенства, получим:
AH + BF + CF + DH = 
= AD + BC, 
AE + BE + CG + DG = 
= AB + CD,
то справедливо равенство
что и требовалось доказать.
Теорема 2 (обратная теорема к теореме 1) . Если у четырёхугольника суммы длин противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.
Доказательство . Рассмотрим четырёхугольник ABCD , длины сторон которого удовлетворяют равенству
и проведём биссектрисы углов BAD и CDA . Обозначим точку пересечения этих биссектрис буквой O , и опустим из точки O перпендикуляры OH, OE и OG на стороны AD, AB и CD соответственно (рис.3).
Следовательно, справедливы равенства
из которых вытекает, что точки H, E и G лежат на окружности с центром в точке O и радиусом OH , касающейся сторон четырёхугольника AD, AB и CD в точках H, E и G соответственно. При этом возможны два случая:
Окружность касается касается стороны BC (рис.4).
В этом случае четырёхугольник ABCD описан около окружности, и теорема доказана.
Окружность не касается стороны BC .
В этом случае касательная, проведенная к окружности из точки B , пересекает прямую DC в точке K , и возможны два случая:
-  Точка K лежит между точками C и D (рис.5)
Рассмотрим случай 2а и приведём его к противоречию. В этом случае в силу того, что четырёхугольник ABKD является описанным, а также по условию теоремы справедливы равенства:
Последнее равенство утверждает, что в треугольнике BKC сумма двух сторон равна третьей стороне, что противоречит неравенству треугольника неравенству треугольника неравенству треугольника . Полученное противоречие доказывает, что случай 2а невозможен.
Совершенно аналогичные рассуждения позволяют заключить, что случай 2b также невозможен.
Итак, возможен и реализуется лишь случай 1.
Из доказательства теоремы 2 непосредственно вытекает
Теорема 3 . Биссектрисы всех внутренних углов описанного четырёхугольника пересекаются в одной точке – центре вписанной окружности.
В следующей таблице приводятся примеры четырёхугольников, в которые можно вписать окружность. Доказательства утверждений непосредственно вытекают из теорем 1 и 2 и предоставляются читателю в качестве несложных упражнений.
Примеры описанных четырёхугольников
| Фигура | Рисунок | Утверждение | 
| Ромб |  | В любой ромб можно вписать окружность | 
| Квадрат |  | В любой квадрат можно вписать окружность | 
| Прямоугольник |  | В прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом | 
| Параллелограмм |  | В параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом | 
| Дельтоид |  | В любой дельтоид можно вписать окружность | 
| Трапеция |  | В трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований | 
| Ромб | 
|  | 

В любой квадрат можно вписать окружность

В прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом

В параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом


В трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований
Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные и описанные четырехугольники
Вписанный четырехугольник — четырехугольник, все вершины которого лежат на одной окружности. 
Очевидно, эта окружность будет называться описанной вокруг четырехугольника.
Описанный четырехугольник — такой, что все его стороны касаются одной окружности. В этом случае окружность вписана в четырехугольник.
На рисунке — вписанные и описанные четырехугольники и их свойства.
Ты нашел то, что искал? Поделись с друзьями!
Посмотрим, как эти свойства применяются в решении задач ЕГЭ.
. Два угла вписанного в окружность четырехугольника равны и . Найдите больший из оставшихся углов. Ответ дайте в градусах.
Сумма противоположных углов вписанного четырехугольника равна . Пусть угол равен . Тогда напротив него лежит угол в градусов. Если угол равен , то угол равен .
. Три стороны описанного около окружности четырехугольника относятся (в последовательном порядке) как . Найдите большую сторону этого четырехугольника, если известно, что его периметр равен .
Пусть сторона равна , равна , а . По свойству описанного четырехугольника, суммы противоположных сторон равны, и значит,
Получается, что равна . Тогда периметр четырехугольника равен . Мы получаем, что , а большая сторона равна .
. Около окружности описана трапеция, периметр которой равен . Найдите ее среднюю линию.
Мы помним, что средняя линия трапеции равна полусумме оснований. Пусть основания трапеции равны и , а боковые стороны — и . По свойству описанного четырехугольника, 
, и значит, периметр равен . 
Получаем, что , а средняя линия равна .
Еще раз повторим свойства вписанного и описанного четырехугольника.
Четырехугольник можно вписать в окружность тогда и только тогда, когда суммы его противоположных углов равны .
Четырехугольник можно описать вокруг окружности тогда и только тогда, когда суммы длин его противоположных сторон равны.
Докажите эти утверждения. Это задание особенно полезно тем, кто решает задачи второй части профильного ЕГЭ по математике.
Видео:Вписанная и описанная окружности | Лайфхак для запоминанияСкачать

Свойства и признаки описанного четырехугольника.
Описанный четырехугольник — четырехугольник, все стороны которого касаются окружности.
Центр вписанной окружности в четырехугольник — точка пересечения биссектрис всех углов четырехугольника. Не все четырёхугольники можно описать около окружности, так как биссектрисы четырёх углов могут не пересекаться в одной точке.
Основной признак описанного четырехугольника:
Если суммы противоположных сторон четырехугольника равны, то четырехугольник является описанным.
Основное свойство описанного четырехугольника:
Если четырехугольник является описанным, то суммы противоположных сторон этого четырехугольника равны.
💥 Видео
Окружность вписанная в треугольник и описанная около треугольника.Скачать

Вписанная и описанная окружность - от bezbotvyСкачать

Свойство и признак описанного четырехугольникаСкачать

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

свойства вписанного и описанного четырехугольника #SHORTSСкачать

Вписанные четырехугольники. 9 класс.Скачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Свойство и признак описанного четырехугольникаСкачать

Всё про углы в окружности. Геометрия | МатематикаСкачать

Тема 9. Вписанные и описанные четырехугольникиСкачать

вписанный и описанный четырехугольникСкачать

ОГЭ Задание 25 Свойства вписанного и описанного четырехугольникаСкачать

Свойство и признак вписанного четырехугольникаСкачать

ГЕОМЕТРИЯ ОГЭ ЕГЭ. ЧЕТЫРЕХУГОЛЬНИКИ ВПИСАННЫЕ И ОПИСАННЫЕСкачать

ОГЭ Задание 24 Свойство описанного четырехугольникаСкачать

Четырехугольник, описанный около окружности | Геометрия 8-9 классыСкачать

Вписанные и описанные четырехугольникиСкачать













