Сумма противоположных сторон в четырехугольнике доказательство

Описанные четырехугольники

Определение 1 . Окружностью, вписанной в четырёхугольник, называют окружность, которая касается касается каждой из сторон четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, описанным около окружности или описанным четырёхугольником .

Сумма противоположных сторон в четырехугольнике доказательство

Замечание . В настоящем разделе мы рассматриваем только выпуклые четырёхугольники.

Теорема 1 . Если четырёхугольник описан около окружности, то суммы длин его противоположных сторон равны.

Доказательство . Рассмотрим четырёхугольник ABCD , описанный около окружности, и обозначим буквами E, F, G, H – точки касания сторон четырёхугольника с окружностью (рис.2).

Сумма противоположных сторон в четырехугольнике доказательство

AH = AE, BF = BE, CF = CG, DH = DG,

Складывая эти равенства, получим:

AH + BF + CF + DH =
= AD + BC,
AE + BE + CG + DG =
= AB + CD,

то справедливо равенство

что и требовалось доказать.

Теорема 2 (обратная теорема к теореме 1) . Если у четырёхугольника суммы длин противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Доказательство . Рассмотрим четырёхугольник ABCD , длины сторон которого удовлетворяют равенству

и проведём биссектрисы углов BAD и CDA . Обозначим точку пересечения этих биссектрис буквой O , и опустим из точки O перпендикуляры OH, OE и OG на стороны AD, AB и CD соответственно (рис.3).

Сумма противоположных сторон в четырехугольнике доказательство

Следовательно, справедливы равенства

из которых вытекает, что точки H, E и G лежат на окружности с центром в точке O и радиусом OH , касающейся сторон четырёхугольника AD, AB и CD в точках H, E и G соответственно. При этом возможны два случая:

Окружность касается касается стороны BC (рис.4).

Сумма противоположных сторон в четырехугольнике доказательство

В этом случае четырёхугольник ABCD описан около окружности, и теорема доказана.

Окружность не касается стороны BC .

В этом случае касательная, проведенная к окружности из точки B , пересекает прямую DC в точке K , и возможны два случая:

    Точка K лежит между точками C и D (рис.5)

Сумма противоположных сторон в четырехугольнике доказательство

Сумма противоположных сторон в четырехугольнике доказательство

Рассмотрим случай 2а и приведём его к противоречию. В этом случае в силу того, что четырёхугольник ABKD является описанным, а также по условию теоремы справедливы равенства:

Сумма противоположных сторон в четырехугольнике доказательство

Сумма противоположных сторон в четырехугольнике доказательство

Последнее равенство утверждает, что в треугольнике BKC сумма двух сторон равна третьей стороне, что противоречит неравенству треугольника неравенству треугольника неравенству треугольника . Полученное противоречие доказывает, что случай 2а невозможен.

Совершенно аналогичные рассуждения позволяют заключить, что случай 2b также невозможен.

Итак, возможен и реализуется лишь случай 1.

Из доказательства теоремы 2 непосредственно вытекает

Теорема 3 . Биссектрисы всех внутренних углов описанного четырёхугольника пересекаются в одной точке – центре вписанной окружности.

В следующей таблице приводятся примеры четырёхугольников, в которые можно вписать окружность. Доказательства утверждений непосредственно вытекают из теорем 1 и 2 и предоставляются читателю в качестве несложных упражнений.

Примеры описанных четырёхугольников

ФигураРисунокУтверждение
РомбСумма противоположных сторон в четырехугольнике доказательствоВ любой ромб можно вписать окружность
КвадратСумма противоположных сторон в четырехугольнике доказательствоВ любой квадрат можно вписать окружность
ПрямоугольникСумма противоположных сторон в четырехугольнике доказательствоВ прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом
ПараллелограммСумма противоположных сторон в четырехугольнике доказательствоВ параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом
ДельтоидСумма противоположных сторон в четырехугольнике доказательствоВ любой дельтоид можно вписать окружность
ТрапецияСумма противоположных сторон в четырехугольнике доказательствоВ трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований
Ромб
Сумма противоположных сторон в четырехугольнике доказательство
КвадратСумма противоположных сторон в четырехугольнике доказательство

В любой квадрат можно вписать окружность

ПрямоугольникСумма противоположных сторон в четырехугольнике доказательство

В прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом

ПараллелограммСумма противоположных сторон в четырехугольнике доказательство

В параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом

ДельтоидСумма противоположных сторон в четырехугольнике доказательство

ТрапецияСумма противоположных сторон в четырехугольнике доказательство

В трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований

Видео:Признак параллелограмма (если в четырехугольнике две стороны равны и параллельны, тоСкачать

Признак параллелограмма (если в четырехугольнике две стороны равны и параллельны, то

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны

Пусть окружность вписана в четырехугольник АВСD. Докажем, что суммы длин противоположных сторон четырехугольника равны.

Сумма противоположных сторон в четырехугольнике доказательство

Отрезки касательных, проведенных к окружности из точек А, В, С и D, обозначим соответственно а, b, с и d.
Тогда АВ + СD = АD + ВС = а + c = b + d.

Докажем обратное утверждение.
Формулируется оно так: Если суммы длин противоположных сторон четырехугольника равны, то в него можно вписать окружность.

Пусть в четырехугольнике АВСD равны суммы длин противоположных сторон: АВ + СD = АD + ВС. Докажем, что в четырехугольник АВСD можно вписать окружность.

Проведем AO и BO – биссектрисы углов A и B, AO ∩ BO = O.

Точка O равноудалена от сторон AB, BC и AD четырёхугольника АВСD. Окружность с центром О касается сторон АВ, ВС и AD четырехугольника.
Покажем, что окружность с центром в точке O касается также стороны CD, то есть вписана в четырёхугольник ABCD.

Предположим, что это не так, и CD либо не имеет общих точек с окружностью, либо является секущей.

Рассмотрим первый случай. Проведем касательную параллельно CD. Четырехугольник – описанный вокруг окружности, и для него выполняется равенство:
.

Сумма противоположных сторон в четырехугольнике доказательство

При этом . Получим:

С другой стороны,
поэтому
и .

Получили, что для четырехугольника длина стороны CD равна сумме трех других сторон. Это невозможно. Мы пришли к противоречию. Предположение о том, что CD не имеет общих точек с окружностью, было неверно.

Аналогично доказывается, что CD не может быть секущей к окружности. Значит, CD – касательная к окружности и четырехугольник ABCD – описанный вокруг окружности.

Задача ЕГЭ по теме «Описанный четырехугольник»

В четырёхугольник ABCD вписана окружность, AB=10, CD=16. Найдите периметр четырёхугольника ABCD.

Сумма противоположных сторон в четырехугольнике доказательство

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны. Значит,

Тогда периметр четырехугольника равен .

Видео:Геометрия Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можноСкачать

Геометрия Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можно

Сумма противоположных сторон в четырехугольнике доказательство

ВПИСАННЫЕ И ОПИСАННЫЕ МНОГОУГОЛЬНИКИ,

§ 106. СВОЙСТВА ВПИСАННЫХ И ОПИСАННЫХ ЧЕТЫРЁХУГОЛЬНИКОВ.

Теорема 1. Сумма противоположных углов вписанного четырёхугольника равна 180°.

Пусть в окружность с центром О вписан четырёхугольник ABCD (черт. 412). Требуется доказать, что / А + / С = 180° и / В + / D = 180°.

Сумма противоположных сторон в четырехугольнике доказательство

/ А, как вписанный в окружность О, измеряется 1 /2 Сумма противоположных сторон в четырехугольнике доказательствоBCD.
/ С, как вписанный в ту же окружность, измеряется 1 /2 Сумма противоположных сторон в четырехугольнике доказательствоBAD.

Следовательно, сумма углов А и С измеряется полусуммой дуг BCD и BAD в сумме же эти дуги составляют окружность, т. е. имеют 360°.
Отсюда / А + / С = 360° : 2 = 180°.

Аналогично доказывается, что и / В + / D = 180°. Однако это можно вывести и иным путём. Мы знаем, что сумма внутренних углов выпуклого четырёхугольника равна 360°. Сумма углов А и С равна 180°, значит, на сумму других двух углов четырёхугольника остаётся тоже 180° .

Теорема 2 (обратная). Если в четырёхугольнике сумма двух противоположных углов равна 180°, то около такого четырёхугольника можно описать окружность.

Пусть сумма противоположных углов четырёхугольника ABCD равна 180°, а именно
/ А + / С = 180° и / В + / D = 180° (черт. 412).

Докажем, что около такого четырёхугольника можно описать окружность.

Доказательство. Через любые 3 вершины этого четырёхугольника можно провести окружность, например через точки А, В и С. Где будет находиться точка D?

Точка D может занять только одно из следующих трёх положений: оказаться внутри круга, оказаться вне круга, оказаться на окружности круга.

Сумма противоположных сторон в четырехугольнике доказательство

Допустим, что вершина окажется внутри круга и займёт положение D’ (черт. 413). Тогда в четырёхугольнике ABCD’ будем иметь:

Продолжив сторону AD’ до пересечения с окружностью в точке Е и соединив точки Е и С, получим вписанный четырёхугольник АВСЕ, в котором по прямой теореме

Из этих двух равенств следует:

но этого быть не может, так как / D’, как внешний относительно треугольника CD’E, должен быть больше угла Е. Поэтому точка D не может оказаться внутри круга.

Так же доказывается, что вершина D не может занять положение D» вне круга (черт. 414).

Остаётся признать, что вершина D должна лежать на окружности круга, т. е. совпасть с точкой Е, значит, около четырёхугольника ABCD можно описать окружность.

Следствия. 1. Вокруг всякого прямоугольника можно описать окружность.

2. Вокруг равнобедренной трапеции можно описать окружность.

В обоих случаях сумма противоположных углов равна 180°.

Теорема 3. В описанном четырёхугольнике суммы противоположных сторон равны. Пусть четырёхугольник ABCD описан около окружности (черт. 415), т. е. стороны его АВ, ВС, CD и DA — касательные к этой окружности.

Сумма противоположных сторон в четырехугольнике доказательство

Требуется доказать, что АВ + CD =AD + ВС. Обозначим точки касания буквами М, N, К, Р, На основании свойств касательных, проведённых к окружности из одной точки (§ 75), имеем:

АР = АК;
ВР = ВМ;
DN = DK;
CN = СМ.

Сложим почленно эти равенства. Получим:

АР + ВР + DN + CN = АК + ВМ +DK + СМ,

т. е. АВ + CD = AD + ВС, что и требовалось доказать.

1. Во вписанном четырёхугольнике два противоположных угла относятся как 3 : 5,
а другие два относятся как 4 : 5. Определить величину этих углов.

2. В описанном четырёхугольнике сумма двух противоположных сторон равна 45 см. Остальные две стороны относятся как 0,2 : 0,3. Найти длину этих сторон.

💥 Видео

Геометрия Признак параллелограмма: Если в четырехугольнике противолежащие стороны равныСкачать

Геометрия Признак параллелограмма: Если в четырехугольнике противолежащие стороны равны

ОГЭ Задание 25 Доказательство от противногоСкачать

ОГЭ Задание 25 Доказательство от противного

3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Геометрия Если в четырехугольнике сумма противолежащих углов равна 180, то около него можно описатьСкачать

Геометрия Если в четырехугольнике сумма противолежащих углов равна 180, то около него можно описать

2 ПРАВИЛА описанного четырехугольника #shortsСкачать

2 ПРАВИЛА описанного четырехугольника #shorts

8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

11 класс, 44 урок, Описанный четырехугольникСкачать

11 класс, 44 урок, Описанный четырехугольник

Описанный четырехугольникСкачать

Описанный четырехугольник

8 класс, 4 урок, ПараллелограммСкачать

8 класс, 4 урок, Параллелограмм

Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Теорема ПтолемеяСкачать

Теорема Птолемея

Уроки геометрии. Чему равна сумма углов четырехугольника?Скачать

Уроки геометрии. Чему равна сумма углов четырехугольника?

#58. Олимпиадная задача о четырехугольникеСкачать

#58. Олимпиадная задача о четырехугольнике

Теорема ПТОЛЕМЕЯСкачать

Теорема ПТОЛЕМЕЯ

Если в четырёхугольник можно вписать окружностьСкачать

Если в четырёхугольник можно вписать окружность

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

Описанная и вписанная окружности четырехугольника - 8 класс геометрияСкачать

Описанная и вписанная окружности четырехугольника - 8 класс геометрия

Доказательство первого признака параллелограммаСкачать

Доказательство первого признака параллелограмма
Поделиться или сохранить к себе: