Стороны четырехугольника в основании одинаковые параллелепипед

Прямоугольный параллелепипед. Что это такое?

Стороны четырехугольника в основании одинаковые параллелепипед

О чем эта статья:

10 класс, ЕГЭ/ОГЭ

Видео:№219. В прямоугольном параллелепипеде стороны основания равны 12 см и 5 см. ДиагональСкачать

№219. В прямоугольном параллелепипеде стороны основания равны 12 см и 5 см. Диагональ

Определение параллелепипеда

Начнем с того, что узнаем, что такое параллелепипед.

Параллелепипедом называется призма, основаниями которой являются параллелограммы. Другими словами, параллелепипед — это многогранник с шестью гранями. Каждая грань — параллелограмм.

Стороны четырехугольника в основании одинаковые параллелепипед

На рисунке два параллелограмма АВСD и A1B1C1D1. Основания параллелепипеда, расположены параллельно друг другу в плоскостях. А боковые ребра АA1, ВB1, CC1, DD1 параллельны друг другу. Образовавшаяся фигура — параллелепипед.

Внимательно рассмотрите, как выглядит параллелепипед и каковы его составляющие.

Когда пересекаются три пары параллельных плоскостей, образовывается параллелепипед.

Основанием параллелепипеда является, в зависимости от его типа: параллелограмм, прямоугольник, квадрат.

Параллелепипед — это:

Видео:5 класс, 20 урок, Прямоугольный параллелепипедСкачать

5 класс, 20 урок, Прямоугольный параллелепипед

Свойства параллелепипеда

Быть параллелепипедом ー значит неотступно следовать законам геометрии. Иначе можно скатиться до простого параллелограмма.

Вот 4 свойства параллелепипеда, которые необходимо запомнить:

  1. Противолежащие грани параллелепипеда равны и параллельны друг другу.
  2. Все 4 диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.
  3. Параллелепипед симметричен относительно середины его диагонали.
  4. Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.

Стороны четырехугольника в основании одинаковые параллелепипед

Подготовка к ЕГЭ по математике онлайн в школе Skysmart — отличный способ освежить знания и снять стресс перед экзаменом.

Видео:Площадь поверхности параллелепипедаСкачать

Площадь поверхности параллелепипеда

Прямой параллелепипед

Прямой параллелепипед — это параллелепипед, у которого боковые ребра перпендикулярны основанию.

Основание прямого параллелепипеда — параллелограмм. В прямом параллелепипеде боковые грани — прямоугольники.

Свойства прямого параллелепипеда:

  1. Основания прямого параллелепипеда — одинаковые параллелограммы, лежащие в параллельных плоскостях.
  2. Боковые ребра прямого параллелепипеда равны, параллельны и перпендикулярны плоскостям оснований.
  3. Высота прямого параллелепипеда равна длине бокового ребра.
  4. Противолежащие боковые грани прямого параллелепипеда — равные прямоугольники.
  5. Диагонали прямого параллелепипеда точкой пересечения делятся пополам.

На слух все достаточно занудно и сложно, но на деле все свойства просто описывают фигуру. Внимательно прочтите вслух каждое свойство, разглядывая рисунок параллелепипеда после каждого пункта. Все сразу встанет на места.

Формулы прямого параллелепипеда:

  • Площадь боковой поверхности прямого параллелепипеда
    Sб = Ро*h
    Ро — периметр основания
    h — высота
  • Площадь полной поверхности прямого параллелепипеда
    Sп = Sб+2Sо
    Sо — площадь основания
  • Объем прямого параллелепипеда
    V = Sо*h

Видео:Математика 5 Объем Объем прямоугольного параллелепипедаСкачать

Математика 5 Объем  Объем прямоугольного параллелепипеда

Прямоугольный параллелепипед

Определение прямоугольного параллелепипеда:

Прямоугольным параллелепипедом называется параллелепипед, у которого основание — прямоугольник, а боковые ребра перпендикулярны основанию.

Внимательно рассмотрите, как выглядит прямоугольный параллелепипед. Отметьте разницу с прямым параллелепипедом.

Видео:Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

Свойства прямоугольного параллелепипеда

Прямоугольный параллелепипед обладает всеми свойствами произвольного параллелепипеда.

  1. Прямоугольный параллелепипед содержит 6 граней. Все грани прямоугольного параллелепипеда — прямоугольники.
  2. Противолежащие грани параллелепипеда попарно параллельны и равны.
  3. Все углы прямоугольного параллелепипеда, состоящие из двух граней — 90°.
  4. Диагонали прямоугольного параллелепипеда равны.
  5. В прямоугольный параллелепипеде четыре диагонали, которые пересекаются в одной точке и делятся этой точкой пополам.
  6. Любая грань прямоугольного параллелепипеда может быть принята за основание.
  7. Если все ребра прямоугольного параллелепипеда равны, то такой параллелепипед является кубом.
  8. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты).

Стороны четырехугольника в основании одинаковые параллелепипед

Формулы прямоугольного параллелепипеда:

  • Объем прямоугольного параллелепипеда
    V = a · b · h
    a — длина, b — ширина, h — высота
  • Площадь боковой поверхности
    Sбок = Pосн·c=2(a+b)·c
    Pосн — периметр основания, с — боковое ребро
  • Площадь поверхности
    Sп.п = 2(ab+bc+ac)

Видео:5 класс, 21 урок, Объемы. Объем прямоугольного параллелепипедаСкачать

5 класс, 21 урок, Объемы. Объем прямоугольного параллелепипеда

Диагонали прямоугольного параллелепипеда: теорема

Не достаточно просто знать свойства прямоугольного параллелепипеда, нужно уметь их доказывать.

Если есть теорема, нужно ее доказать. (с) Пифагор

Теорема: Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

В данном случае, три измерения — это длина, ширина, высота. Длина, ширина и высота — это длины трех ребер, исходящих из одной вершины прямоугольного параллелепипеда.

Дан прямоугольный параллелепипед ABCDA1B1C1D1. Доказать теорему.

Стороны четырехугольника в основании одинаковые параллелепипед

Доказательство теоремы:

Чтобы найти диагональ прямоугольного параллелепипеда, помните, что диагональ — это отрезок, соединяющий противоположные вершины.

Все грани прямоугольного параллелепипеда — прямоугольники.

ΔABD: ∠BAD = 90°, по теореме Пифагора

ΔB₁BD: ∠B₁BD = 90°, по теореме Пифагора

d² = d₁² + c² = a² + b² + c²

d² = a² + b² + c²

Доказанная теорема — пространственная теорема Пифагора.

Видео:10 класс, 24 урок, Прямоугольный параллелепипедСкачать

10 класс, 24 урок, Прямоугольный параллелепипед

Куб: определение, свойства и формулы

Кубом называется прямоугольный параллелепипед, все три измерения которого равны.

Каждая грань куба — это квадрат.

Стороны четырехугольника в основании одинаковые параллелепипед

Свойства куба:

  1. В кубе 6 граней, каждая грань куба — квадрат.
  2. Противолежащие грани параллельны друг другу.
  3. Все углы куба, образованные двумя гранями, равны 90°.
  4. У куба четыре диагонали, которые пересекаются в центре куба и делятся пополам.
  5. Диагонали куба равны.
  6. Диагональ куба в √3 раз больше его ребра.
  7. Диагональ грани куба в √2 раза больше длины ребра.

Помимо основных свойств, куб характеризуется умением вписывать в себя тетраэдр и правильный шестиугольник.

Формулы куба:

  • Объем куба через длину ребра a
    V = a3
  • Площадь поверхности куба
    S = 6a2
  • Периметр куба
    P = 12a

Видео:№220. Основанием прямого параллелепипеда является ромб с диагоналями 10 см и 24 см, а высотаСкачать

№220. Основанием прямого параллелепипеда является ромб с диагоналями 10 см и 24 см, а высота

Решение задач

Чтобы считать тему прямоугольного параллелепипеда раскрытой, стоит потренироваться в решении задач. 10 класс — время настоящей геометрии для взрослых. Поэтому, чем больше практики, тем лучше. Разберем несколько примеров.

Задачка 1. Дан прямоугольный параллелепипед. Нужно найти сумму длин всех ребер параллелепипеда и площадь его поверхности.

Стороны четырехугольника в основании одинаковые параллелепипед

Для наглядного решения обозначим измерения прямоугольного параллелепипеда: a — длина, b — ширина, c — высота. Тогда a = 10, b = 5, c = 8.

Так как в прямоугольном параллелепипеде всего по 4 — высота, ширина и длина, и все измерения равны между собой, то:
1) 4 * 10 = 40 (см) — сумма длин параллелепипеда;
2) 4 * 5 = 20 (см) — суммарное значение ширины параллелепипеда;
3) 4 * 8 = 32 (см) — сумма высот параллелепипеда;
4) 40 + 20 + 32 = 92 (см) — сумма длин всех ребер прямоугольного параллелепипеда.

Отсюда можно вывести формулу по нахождению суммы длин всех сторон ПП:
X = 4a + 4b + 4c (где X — сумма длин ребер).

Формула нахождения площади поверхности параллелепипеда Sп.п = 2(ab+bc+ac).
Тогда: S = (5*8 + 8*10 + 5*10) * 2 = 340 см2.

Задачка 2. Дан прямоугольный параллелепипед АВСDA1B1C1D1.

Нужно найти длину ребра A1B1.

Стороны четырехугольника в основании одинаковые параллелепипед

В фокусе внимания треугольник BDD1.
Угол D = 90°.

По теореме Пифагора:
BD1 2 = DD1 2 + BD 2
BD 2 = BD1 2 – DD1 2
BD 2 = 26 – 9 = 17
BD = √17
В треугольнике ADB угол А = 90°.
BD 2 = AD 2 + AB 2
AB 2 = BD 2 — AD 2 = (√17)2 — 4 2 = 1
A1B1 = AB = 1.

Задачка 3. Дан прямоугольный параллелепипед АВСDA1B1C1D1.

AB = 4
AD = 6
AA1= 5
Нужно найти отрезок BD1.

Стороны четырехугольника в основании одинаковые параллелепипед

В треугольнике ADB угол A = 90°.

По теореме Пифагора:
BD 2 = AB 2 +AD 2
BD 2 = 4 2 + 6 2 = 16 + 36 = 52
В треугольнике BDD1 угол D = 90°.
BD1 2 = 52 + 25 = 77
BD1 = √77.

Видео:8 класс, 4 урок, ПараллелограммСкачать

8 класс, 4 урок, Параллелограмм

Самопроверка

Теперь потренируйтесь самостоятельно — мы верим, что все получится!

Задачка 1. Дан прямоугольный параллелепипед. Измерения (длина, ширина, высота) = 8, 10, 20. Найдите диагональ параллелепипеда.

Стороны четырехугольника в основании одинаковые параллелепипед

Подсказка: если нужно выяснить, чему равна диагональ прямоугольного параллелепипеда, вспоминайте теорему.

Задачка 2. Дан прямоугольный параллелепипед АВСDA1B1C1D1.

Вычислите длину ребра AA1.

Как видите, самое страшное в параллелепипеде — 14 букв в названии. Чтобы не перепутать прямой параллелепипед с прямоугольным, а ребро параллелепипеда с длиной диагонали параллелепипеда, вот список основных понятий:

  • прямой параллелепипед — это параллелепипед, у которого боковые ребра перпендикулярны основанию;
  • параллелепипед называется прямоугольным, когда его боковые ребра перпендикулярны к основанию;
  • основание прямоугольного параллелепипеда — прямоугольник;
  • три измерения прямоугольного параллелепипеда: длина, ширина, высота;
  • диагональ параллелепипеда равна сумме квадратов его измерений.

Видео:Перпендикуляр и наклонная в пространстве. 10 класс.Скачать

Перпендикуляр и наклонная в пространстве. 10 класс.

Геометрические фигуры. Наклонный параллелепипед. Объем наклонного параллелепипеда.

Наклонный параллелепипед — это параллелепипед, у которого боковые грани расположены, относительно оснований, под не прямым углом.

Стороны четырехугольника в основании одинаковые параллелепипед

Наклонная призма эквивалентна такой прямой призме, у которой основание равняется перпендикулярному сечению наклонной призмы, а высота — ее боковому ребру.

Видео:МАТЕМАТИКА 5 класс: Прямоугольный параллелепипед | ВидеоурокСкачать

МАТЕМАТИКА 5 класс: Прямоугольный параллелепипед | Видеоурок

Свойства наклонного параллелепипеда.

1) Каждая его грань – параллелограмм, а противолежащие грани — одинаковые параллелограммы.

2) Диагонали параллелепипеда пересекаются в одной точке и делятся в этой точкой на две равные части.

3) Все параллелепипеды состоят из 6-ти одинаковых по объему треугольных пирамид.

Видео:Прямоугольный параллелепипед и куб - 5 классСкачать

Прямоугольный параллелепипед и куб - 5 класс

Объем наклонного параллелепипеда.

Стороны четырехугольника в основании одинаковые параллелепипед

где Sосн — площадь основания, h – высота.

Объем параллелепипеда можно найти как произведение площади поперечного сечения на боковое ребро:

Кроме того, объем параллелепипеда определяют как произведение площади основания на высоту. Доказывается так, что объем наклонного параллелепипеда равняется объему прямоугольного параллелепипеда с такой же площадью основания и высотой, как и у наклонного параллелепипеда.

Видео:Прямоугольный параллелепипед. Площадь поверхности прямоугольного параллелепипедаСкачать

Прямоугольный параллелепипед. Площадь поверхности прямоугольного параллелепипеда

Параллелепипед. Свойства граней и диагоналей параллелепипеда

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Стороны четырехугольника в основании одинаковые параллелепипед

На этом уроке мы дадим определение параллелепипеда, обсудим его строение и его элементы (диагонали параллелепипеда, стороны параллелепипеда и их свойства). А также рассмотрим свойства граней и диагоналей параллелограмма. Далее решим типовую задачу на построение сечения в параллелепипеде.

💡 Видео

ПАРАЛЛЕЛЕПИПЕД 10 11 класс сечение параллелепипедаСкачать

ПАРАЛЛЕЛЕПИПЕД 10 11 класс сечение параллелепипеда

Математика 5 класс (Урок№31 - Прямоугольный параллелепипед.)Скачать

Математика 5 класс (Урок№31 - Прямоугольный параллелепипед.)

11 класс, 30 урок, Объем прямоугольного параллелепипедаСкачать

11 класс, 30 урок, Объем прямоугольного параллелепипеда

Опорная задача о подобных треугольниках при пересечении высот | Планиметрия 84 | mathus.ru #егэ2024Скачать

Опорная задача о подобных треугольниках при пересечении высот | Планиметрия 84 | mathus.ru #егэ2024

Задания 11, 13 (часть 1) | ЕГЭ 2024 Математика (база) | Куб, прямоугольный параллелепипедСкачать

Задания 11, 13 (часть 1) | ЕГЭ 2024 Математика (база) | Куб, прямоугольный параллелепипед

Математика 5 класс (Урок№82 - Объём прямоугольного параллелепипеда.)Скачать

Математика 5 класс (Урок№82 - Объём прямоугольного параллелепипеда.)

Прямоугольный параллелепипедСкачать

Прямоугольный параллелепипед
Поделиться или сохранить к себе: