- РОССИЙСКАЯ НАУЧНО-СОЦИАЛЬНАЯ ПРОГРАММА
- Введение
- 1.1 Скрещивающиеся прямые
- 1.2 Методы определения расстояний между скрещивающимися прямыми
- 1. Практическая часть. Построение пирамиды. Вычисление расстояния между скрещивающимися прямыми
- Заключение
- Литература
- Скрещивающиеся и параллельные прямые в пирамиде
- Скрещивающиеся прямые. Проведение через одну из скрещивающихся прямых плоскости, параллельной другой прямой
- 🔥 Видео
Видео:Параллельные прямые | Математика | TutorOnlineСкачать
РОССИЙСКАЯ НАУЧНО-СОЦИАЛЬНАЯ ПРОГРАММА
ДЛЯ МОЛОДЕЖИ И ШКОЛЬНИКОВ «ШАГ В БУДУЩЕЕ»
ЧЕЛЯБИНСКИЙ ГОЛОВНОЙ КООРДИНАЦИОННЫЙ ЦЕНТР
«ИНТЕЛЛЕКТУАЛЫ ХХI ВЕКА»
ПИРАМИДА И СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ
Творческая работа на Х VII Челябинскую
городскую научно-практическую конференцию молодых
исследователей и интеллектуалов «Шаг в будущее»
г. Челябинск, лицей № 000, класс 10.
Видео:10 класс, 7 урок, Скрещивающиеся прямыеСкачать
Введение
Величайшим и самым загадочным из семи чудес древнего мира является комплекс пирамид Гизы в Египте, наиболее впечатляющей из которых является пирамида Хеопса. Ученые и теологи уже многие столетия изучают Великую Пирамиду, поражаясь величию гигантского труда по ее созданию. Пирамида была построена между 10490 и 10390 годами до нашей эры. О пирамиде Хеопса говорят как о наиболее совершенном сооружении в мире — эталоне мер и весов. О том, что в ее геометрической форме закодирована информация о строении Вселенной, Солнечной системы и человека.
Слово пирамида происходит от греческого «пирамис», этимологически связанного с «пир» — «огонь», обозначая символическое представление Единого Божественного Пламени, жизни всех созданий. Посвященные прошлого считали пирамиду идеальным символом Тайной Доктрины. Квадратное основание пирамиды обозначает Землю, четыре его стороны — четыре элемента материи или субстанции, из комбинации которых создана материальная природа. Треугольные стороны ориентированы в направлении четырех сторон света, что символизирует противоположности тепла и холода (юг и север), света и тьмы (восток и запад). Три главных камеры пирамиды соотносятся с мозгом, сердцем и воспроизводящей системой человека, а также с тремя главными его энергетическими центрами. Основное назначение Великой Пирамиды тщательно скрывалось.
Оказалось, что энергия формы пирамиды «умеет делать» очень многое: растворимый кофе, постояв над пирамидой, приобретает вкус натурального; дешевые вина значительно улучшают свои вкусовые качества; вода приобретает свойства способствовать заживлению, тонизирует организм, уменьшает воспалительную реакцию после укусов, ожогов и действует, как естественное вспомогательное средство для улучшения пищеварения; мясо, рыба, яйца, овощи, фрукты мумифицируются, но не портятся; молоко долго не киснет; сыр не плесневеет…[6]
Так ли универсальна пирамида? Попытаемся применить эту замечательную фигуру для решения школьных задач.
Мы поставили задачу найти условия, при которых легко можно определить расстояние между скрещивающими прямыми.
Цель работы – найти метод, с помощью которого можно измерять расстояние между скрещивающими прямыми и проверить этот метод для решения практических задач.
Объектом исследования в данной работе являются скрещивающиеся прямые.
Метод исследования – конструирование модели, помогающей определить расположение скрещивающихся прямых в пространстве.
Метод определяет предмет исследования: связь между стереометрическими объектами.
В ходе исследования были найдены условия, при которых поставленная задача решается рациональным способом, а также сформулирован алгоритм применения метода пирамид для решения конкретных задач. В процессе работы изучены существующие методы по данной теме, а также сконструирован удобный и рациональный способ решения данной задачи. Основные понятия
Видео:Стереометрия 10 класс. Часть 1 | МатематикаСкачать
1.1 Скрещивающиеся прямые
На уроках стереометрии в десятом классе мы познакомились со скрещивающимися прямыми.
В этом же учебнике мы читаем о расстоянии между параллельными плоскостями и в п.3 о расстоянии между скрещивающимися прямыми.
Используя эти материалы, мы приступили к решению практических задач. Решения задач были громоздкими и плохо просматривались на рисунках. Поэтому данную тему я решил отыскать в справочниках и других пособиях.
Видео:Угол между прямыми в пространстве. 10 класс.Скачать
1.2 Методы определения расстояний между скрещивающимися прямыми
Журнал «Математика для школьников» в этом году (№1, 2008г.) опубликовал статью «О расстоянии вообще и расстоянии между скрещивающимися прямыми в частности», где подробно описывает все известные способы построения общего перпендикуляра двух скрещивающихся прямых. Рассматриваются конкретные задачи. В научно-теоретическом и методическом «Математика в школе» (№1,2008г) опубликована статья и «О некоторых способах вычисления расстояния между скрещивающимися прямыми».
Стоит заметить, что задача на построение общего перпендикуляра к двум скрещивающимся прямым требует весьма кропотливой работы. В то же время при нахождении расстояния между скрещивающимися прямыми нет необходимости строить их общий перпендикуляр! Часто бывает достаточно лишь увидеть (провести) более подходящий отрезок, длина которого и будет искомым расстоянием. При этом целесообразно опираться на одно из следующих утверждений.
1. Расстояние между скрещивающимися прмыми равно расстоянию между параллельными плоскостями, проходящими через эти прямые.
2. Расстояние между скрещивающимися прямыми равно расстоянию от одной из них до параллельной ей плоскости, проходящей через вторую прямую.
3. Расстояние 1 между скрещивающимися прямыми, содержащими отрезки АВ и СВ соответственно, можно вычислять по формуле
где -угол между прямыми AB и CD, а -объем треугольной пирамиды ABCD (рис.1)
Подходы, основанные на применении первых двух утверждений, будучи чисто геометрическими, требуют от решающего хорошего пространственного воображения. Однако второй подход иногда выгоднее реализовывать в координатно-векторной форме. В справочной литературе встречается общее уравнение плоскости — в прямо угольной системе координат ,то можно применить известную в курсе аналитической геометрии формулу расстояния от точки M() до плоскости, заданной этим уравнением:
После изученного материала, я приступил к конструированию изучаемого объекта, с помощью стереометрических моделей, имеющегося в кабинете математики.
В результате я нашел рациональный способ решения поставленной задачи.
Разработанный мною способ нахождения расстояния и угла между скрещивающимися прямыми, который условно назван «Метод пирамиды», дает возможность решить задачу быстро и рационально.
Почему «метод пирамиды»? Дело в том, что при решении задач этим способом строится пирамида РАВСD, а смыслом такого построения является утверждение: «Расстояние между скрещивающимися прямыми равно расстоянию от точки, которая является проекцией одной из двух данных скрещивающихся прямых на перпендикулярную к ней плоскость, к ортогональной проекции другой прямой на эту же плоскость».
в журнале «Математика в школе» (№ 6, 1986 год) использовал приведенное утверждение, привел примеры решения задач, но способ построения отличается от «метода пирамиды». Вся последовательность построения состоит из пяти шагов:
1. Пусть прямая и скрещивающиеся и произвольная точка Р принадлежит прямой .
2. Проведем перпендикуляр РА к прямой . Пусть РА и принадлежат плоскости.
3. Проведем из точки М, которая принадлежит прямой , к плоскости перпендикуляр МN. Пусть прямая РN, которая принадлежит плоскости , пересекает прямую в точке В. Проведем перпендикуляры ВС и АD к плоскости так, чтоб ВС=АD, а точки С и D принадлежали одной полуплоcкости и точка С принадлежала прямой . После этого можно утверждать, что четырехугольник АВСD — прямоугольник, а значит параллельна (РСD) по признаку параллельности прямой и плоскости.
4. Задача свелась к нахождению расстояния от прямой к параллельной ей плоскости РСD. Прямая перпендикулярна к (РАD) по признаку перпендикулярности прямой и плоскости; плоскости (АВС) и (РАD) — перпендикулярны по признаку перпендикулярности плоскостей. Прямая СD перпендикулярна (РАD), поскольку прямые СD и параллельны. Плоскости (РАD) и (РСD) перпендикулярны по признаку перпендикулярности плоскостей. Проведем перпендикуляр АК к прямой РD пересечения перпендикулярных плоскостей РАD и РСD. Значит АК будет перпендикуляром и к плоскости (РОС). Итак, отрезок АК, который является высотою прямоугольного треугольника РАD равен расстоянию между скрещивающимися прямыми и .
5. Проведя КL , точка L принадлежит прямой и LF KA, точка F принадлежит прямойполучаем что LЕ—общий перпендикуляр к двум скрещивающимся прямым и . Если же скрещивающимися прямые пересекаются под прямим углом ( совпадает с РD или РD принадлежит ), то задача значительно упрощается, что часто встречается во многих упражнениях. Кстати, не для всех задач необходимо брать точку М. Выше указанный способ достаточно простой, но при помощи такого подхода мгновенно решаются практически все задачи на нахождение расстояния между скрещивающимися прямыми и построение к ним общего перпендикуляра. Угол между скрещивающимся прямыми и можно найти как угол РСD из прямоугольного треугольника РDС.
Видео:Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать
1. Практическая часть. Построение пирамиды. Вычисление расстояния между скрещивающимися прямыми
3.1 Задача 1. Каждое ребро правильной треугольной призмы равно а. Определите расстояние между стороною основания и скрещивающейся с нею диагональю боковой грани.
Решение.
РВSPCS — правильная треугольная призма. Найдем расстояние между ВS и РС. Проведем:
а) РА ВS,
б) АD ВС, АD= ВС, точка А ВS.
в) АК РD; К . Из ранее доказанного отрезок АК будет равен искомому расстоянию. Применив метод площадей к прямоугольному треугольнику РАD, получаем:
АК= АР *AD:РD = а .
3.2.Задача 2. Ребро правильного тетраэдра равно а. Найдите расстояние между двумя ребрами тетраэдра, которые являются скрещивающимися.
СРQR — правильный тетраэдр. СО — высота тетраэдра. Будем искать расстояние между РС и RQ.
Проведем РА RQ. Точка А RQ. Поскольку скрещивающимися прямые РС и RQ пересекаются под прямим кутом (за теоремою о трех перпендикулярах), то задача упрощается (совпадает с РD)). АК -высота прямоугольного треугольника РАD и будет искомым расстоянием, но конечно легче найти АК как высоту равнобедренного треугольника РАС (АС=АР)
АК= =.
3.3. Задача З. Ребро куба равно а. Найдите кратчайшее расстояние между диагональю куба и диагональю основания куба, которая с нею скрещивается.
Решение:— куб. Будем искать расстояние между РМ и RQ. По ранее доказанному утверждению отрезок АК, который является высотой прямоугольного треугольника РАD будет равен искомому расстоянию:
3.4. Задача 4. Найти расстояние между скрещивающимися диагоналями смежных граней куба.
Решение.
РВQSGCRH — куб. Найдем расстояние между ВS и РС. По ранее доказанному АК является искомым расстоянием:
3.5. Задача 5. Ребро правильной четырехугольной пирамиды равно а. Найти расстояние между диагональю основания и скрещивающейся с нею: а) апофемою; б) высотою боковой грани проведенной из вершины основания.
а) СLQRF — правильная четырехугольной пирамида. Найдем расстояние между QF и CP.
С помощью метода пирамиды почти все построения выполнены, остается провести РА QF, DA ВС и AD = ВС. Итак, АК — искомое расстояние. Из прямоугольного треугольника CBQ имеем:
Из прямоугольного прямоугольника DAP: ;
б) SPQRF — правильная четырехугольная пирамида. Найдем расстояние между QF и РС. Как и в предыдущих задачах, все построения выполнены. Остается опустить перпендикуляр СВ на плоскость основания, провести АD=ВС и так, чтобы АDВС. Тогда высота АК прямоугольного треугольника РАD будет искомым расстоянием. Поскольку , то Из прямоугольного треугольника PAD: .
3.6. Задача 6. Ребро правильного тетраэдра равно а. Найдите расстояние между ребром тетраэдра и скрещивающейся с ним апофемой.
Решение.
CPQR— правильный тетраэдр, СВ — его высота. Найдем расстояние между высотой основания RA и боковым ребром СР. АК — расстояние между скрещивающимися СР и RA. Действительно, с помощью метода пирамиды почти все построения уже выполнены, остается построить AD BC, так, чтобы AD=BC тогда высота AK прямоугольного треугольника PAD – искомое расстояние. Из прямоугольных треугольников CBR и PAD имеем ;; ;
Видео:Взаимное расположение прямых в пространстве. 10 класс.Скачать
Заключение
В результате проделанной работы я пришел к следующим выводам:
Ø Решая задачи по стереометрии целесообразно использовать дополнительные построения;
Ø Если есть возможность — конструировать модели для наглядности при решении задач;
Ø При определении расстояния между скрещивающимися прямыми предлагаю использовать метод пирамиды.
Литература
1. Геометрия, 10-11: учеб. для общеобразовательных учреждений: базовый и профильный уровни /[, , и др.] – 16-е изд. – М. : Просвещение, 2007
2. Журнал «Математика для школьников» №1 2008 год
3. Журнал «Математика в школе» (№ 6, 1986 год)
4. Журнал «Математика в школе,№1,2008год
5. Энциклопедический словарь юного математика./Составитель . — М.: Педагогика, 1989.
6. .Subject: «Энергия пирамид» — 1 Фрагмент 1-й главы из: «Энергия пирамид, волшебный прут и звёздный маятник».
Видео:7. Скрещивающиеся прямыеСкачать
Скрещивающиеся и параллельные прямые в пирамиде
14.1. Определение пирамиды и её элементов
Определение. Пирамидой называется многогранник, у которого одна грань — многоугольник, а остальные грани — треугольники с общей вершиной (рис. 95, 96).
Многоугольник называется основанием пирамиды, остальные грани — боковыми гранями пирамиды, их общая вершина — вершиной пирамиды. Отрезки, соединяющие вершину пирамиды с вершинами её основания, называются боковыми рёбрами пирамиды .
Пирамиду с основанием АВСDЕ и вершиной Р обозначают PABCDE .
Перпендикуляр, опущенный из вершины пирамиды на плоскость её основания, называется высотой пирамиды . Длину этого перпендикуляра также называют высотой пирамиды.
Пирамида называется n-угольной, если её основанием является n-угольник .
На рисунке 96 изображена четырёхугольная пирамида PABCD, у которой: четырёхугольник ABCD — основание пирамиды; точка Р — вершина пирамиды; отрезки РA, РВ, PC, PD — боковые рёбра пирамиды; отрезки АВ, ВС, CD, DA — стороны (рёбра) основания пирамиды; отрезок РО — высота пирамиды; треугольники РАВ, РВС, PCD, PDA — боковые грани пирамиды.
У n- угольной пирамиды имеется ( n + 1) вершин, 2 n рёбер и ( n + 1) граней. Диагоналей пирамида не имеет. В пирамиде различают плоские углы при её вершине и двугранные углы при её рёбрах. Двугранным углом при ребре пирамиды называют содержащий пирамиду двугранный угол, образованный плоскостями граней, проходящими через данное ребро.
Треугольную пирамиду (рис. 97) называют также тетраэдром ( « тетраэдр» по-гречески означает «четырёхгранник» ) . Тетраэдр — это многогранник с наименьшим числом граней. Любая грань тетраэдра может быть принята за его основание; это отличает тетраэдр от всех остальных пирамид.
Любую пирамиду можно разбить на некоторое число тетраэдров, а любой выпуклый многогранник — на некоторое число пирамид. Для этого достаточно, например, взять любую точку внутри данного многогранника и соединить её отрезками со всеми его вершинами. Такое разбиение часто используется при нахождении объёмов многогранников.
14.2. Некоторые виды пирамид
Если все боковые рёбра пирамиды составляют с плоскостью основания равные углы, то : а ) основание высоты пирамиды совпадает с центром окружности, описанной около основания пирамиды ; б ) все боковые рёбра пирамиды равны между собой.
Доказательств о. а) Пусть отрезок РО — высота пирамиды PABCDEF, все рёбра которой составляют с плоскостью основания угол ϕ (рис. 98). Тогда прямоугольные треугольники РОА, POB, POC, POD, РОЕ и POF, имея общий катет РО, равны между собой (по катету и острому углу ϕ ) . Из равенства этих треугольников следует: ОА = OВ = ОС = OD = OE = OF, т. е. вершины основания пирамиды равноудалены от основания О её высоты РО. Это означает, что точка О — центр окружности, описанной около основания ABCDEF данной пирамиды.
б) Из ОА = OВ = ОС = OD = ОЕ = OF следует, что боковые рёбра РА, РВ, PC, PD, РЕ, PF пирамиды равны, как наклонные, имеющие равные проекции, т. е. РА = РВ = PC = PD = РЕ = PF. Что и требовалось доказать. ▼
Вы самостоятельно можете доказать обратные утверждения.
1. Если основание высоты пирамиды совпадает с центром окружности, описанной около её основания, то: а) все боковые рёбра пирамиды образуют с плоскостью основания равные углы; б) все боковые рёбра пирамиды равны между собой.
2. Если все боковые рёбра пирамиды равны, то: а) основание высоты пирамиды совпадает с центром окружности, описанной около основания пирамиды; б) все боковые рёбра пирамиды составляют с плоскостью её основания равные между собой углы.
Также имеет место следующее утверждение.
Если высота пирамиды пересекает её основание и все боковые грани пирамиды образуют с плоскостью основания равные двугранные углы, то основание высоты пирамиды совпадает с центром окружности, вписанной в её основание.
Доказательств о. Пусть РО — высота пирамиды PABCDE, боковые грани которой образуют с плоскостью основания пирамиды двугранные углы, равные ϕ (рис. 99).
Проведём высоты РН 1 , РH 2 , РН 3 , PH 4 , РH 5 боковых граней.
Тогда по теореме о трёх перпендикулярах получаем OH 1 ⟂ AB, OH 2 ⟂ BC, OH 3 ⟂ CD, OH 4 ⟂ DE, OH 5 ⟂ EA, следовательно, ∠ OH 1 P = ∠ OH 2 P = ∠ OH 3 P = ∠ OH 4 P = ∠ OH 5 P = ϕ . Поэтому △ OH 1 P = △ OH 2 P = △ OH 3 P = △ OH 4 P = △ OH 5 P (как прямоугольные с общим катетом OP и острым углом ϕ ) . Из равенства этих треугольников следует ОН 1 = OH 2 = OH 3 = ОН 4 = ОН 5 , т. е. точка О — основание высоты РО пирамиды — равноудалена от всех сторон многоугольника ABCDE. Это означает, что точка O является центром окружности, вписанной в основание ABCDE данной пирамиды. Теорема доказана. ▼
Самостоятельно докажите обратное утверждение.
Если вершина пирамиды проектируется в центр окружности, вписанной в основание пирамиды, то боковые грани пирамиды образуют с плоскостью основания равные двугранные углы.
Перечислим ещё несколько часто встречающихся в задачах видов пирамид.
• Пирамида, ровно одна боковая грань которой перпендикулярна плоскости основания. Высота такой пирамиды лежит в этой, перпендикулярной основанию, грани (рис. 100).
• Пирамида, две соседние боковые грани которой перпендикулярны плоскости основания. Высотой такой пирамиды служит боковое ребро, общее для этих граней (рис. 101).
• Пирамида, две не соседние боковые грани которой перпендикулярны плоскости основания. Высота такой пирамиды лежит на прямой пересечения плоскостей этих граней (рис. 102).
14.3. Правильная пирамида
Определение. Пирамида называется правильной, если её основание — правильный многоугольник и вершина пирамиды проектируется в центр этого основания.
Из определения следует алгоритм построения изображения правильных пирамид, что, в свою очередь, доказывает существование таких пирамид.
Для построения изображения правильной пирамиды достаточно построить изображение соответствующего правильного многоугольника (основания пирамиды) и его центра. Затем из построенного центра провести перпендикуляр к плоскости многоугольника и выбрать на этом перпендикуляре (в качестве вершины пирамиды) любую точку, отличную от центра многоугольника. Соединив отрезками прямых эту точку со всеми вершинами многоугольника, получим изображение правильной пирамиды.
На рисунке 103, а, б, в построены изображения правильных пирамид: а) треугольной; б) четырёхугольной; в) шестиугольной.
Правильные пирамиды обладают замечательным свойством.
В правильной пирамиде все боковые рёбра равны, а все боковые грани — равные равнобедренные треугольники.
Доказательств о. Рассмотрим правильную n- угольную пирамиду РА 1 А 2 . A n . Пусть точка O — центр n- угольника A 1 A 2 A 3 . A n ; отрезок РО — перпендикуляр к плоскости основания пирамиды (рис. 104).
Так как центр правильного многоугольника является центром окружности, описанной около этого многоугольника, то ОА 1 = OA 2 = OA 3 = . = OA n (как радиусы описанной окружности). Тогда равны боковые рёбра пирамиды, как наклонные к плоскости её основания, имеющие равные проекции, т. е. PA 1 = PA 2 = PA 3 = . = PA n .
Таким образом, имеем:
РА 1 = РA 2 = . = PA n (как боковые рёбра);
A 1 A 2 = A 2 A 3 = . = A n A 1 (как стороны правильного n- угольника).
Следовательно, треугольники PA 1 A 2 , РA 2 A 3 , . PA n A 1 являются равнобедренными и по третьему признаку равенства треугольников равны между собой.
Это свойство правильной пирамиды можно доказать при помощи поворота пирамиды вокруг оси, содержащей её высоту.
Так как точка О — центр правильного n- угольника A 1 A 2 A 3 . A n , лежащего в основании правильной пирамиды PA 1 A 2 . A n , РО — перпендикуляр к плоскости её основания, то при вращении данной пирамиды вокруг оси ОР на угол, равный (где k = 1, 2, 3, . n ), происходит самосовмещение этой пирамиды: вершины основания пирамиды отображаются на его же вершины (основание совмещается с самим собой); вершина Р (как точка оси вращения) отображается на себя. Следовательно, боковые рёбра пирамиды отображаются на боковые рёбра, а боковые грани пирамиды — на её боковые грани. А так как вращение вокруг прямой — движение, то все боковые рёбра правильной пирамиды равны между собой, а грани являются равными равнобедренными (почему?) треугольниками. Утверждение доказано. ▼
Следствием доказанного выше является утверждение.
Все боковые рёбра правильной пирамиды образуют с плоскостью основания равные углы, а все боковые грани — равные двугранные углы.
Докажите это предложение самостоятельно.
Высота боковой грани правильной пирамиды, проведённая к ребру её основания, называется апофемой пирамиды. На рисунке 104 отрезок РН — одна из апофем пирамиды.
Все апофемы правильной пирамиды равны вследствие равенства всех её боковых граней.
Имеют место признаки правильной пирамиды:
Пирамида, в основании которой лежит правильный многоугольник, является правильной, если: а) все её боковые рёбра равны; б) все её боковые рёбра образуют с плоскостью основания равные углы; в) все её боковые грани — равные равнобедренные треугольники.
Докажите это самостоятельно.
ЗАДАЧА (2.245). Высота правильной четырёхугольной пирамиды равна h и образует с боковой гранью угол α . Через сторону основания пирамиды проведена плоскость, перпендикулярная противоположной грани и пересекающая её. Найти площадь сечения.
Дан о: PABCD — правильная пирамида (рис. 105); РО — высота пирамиды, РО = h ; ∠ OPF = α .
Решени е. Первый спосо б . Пусть отрезок EF — средняя линия основания пирамиды. Тогда AD ⟂ EF, AD ⟂ PF ⇒ АD ⟂ ( РEF ) ⇒ ( PEF ) ⟂ ( ADP ) (по признаку перпендикулярности двух плоскостей). Поэтому прямая PF является ортогональной проекцией прямой РO на плоскость ADP. Значит, ∠ OPF — угол между высотой PO и боковой гранью ADP пирамиды: ∠ OPF = α .
Далее имеем: AD ⟂ ( PEF ), ВС || AD ⇒ ВC ⟂ ( PEF ) ⇒ прямая ВС перпендикулярна любой прямой плоскости PEF. Поэтому если FL ⟂ РЕ (в плоскости PEF ) , то BС ⟂ FL. Тогда FL ⟂ ВС, FL ⟂ PE ⇒ FL ⟂ ( BCP ) ⇒ ( ADL ) ⟂ ( ВCР ) (по признаку перпендикулярности двух плоскостей); при этом ( ADL ) ∩ ( ВСР ) = МK , МK || AD, так как плоскости ВСР и АDL проходят через параллельные прямые ВС и AD. Значит, сечение ADKM — трапеция, у которой FL — высота (почему?), откуда
S сеч = • FL.
Найдём AD, МK и FL.
В △ OPF ( ∠ POF = 90 ° ):
OF = OP • tg α = h • tg α ; PF = = = PE.
EF = 2 FO = 2 h • tg α = ВС.
В плоскости PEF получаем:
FL ⟂ РЕ, РО ⟂ EF ⇒ ∠ EFL = ∠ OPE = α .
Тогда в △ ЕFL : FL = ЕF • cos α = 2 h • tg α • cos α = 2 h sin α ;
в △ PLF ( ∠ PLF = 90 ° , ∠ PFL = 90 ° – 2 α ):
PL = PF • sin (90 ° – 2 α ) = PF • cos 2 α = .
Так как MK | | BC, то △ МKР ∾ △ ВСР, откуда
= ⇒ MK = = =
= 2 h tg α • cos 2 α .
AD = EF = 2 h • tg α , FL = 2 h • sin α , MK = 2 h • tg α • cos 2 α .
S сеч = • FL = • 2 h • sin α =
= = 4 h 2 • sin 2 α • cos α .
Замечание. Отрезок MK можно найти следующим образом. Сечением данной пирамиды плоскостью, проходящей через прямую MK параллельно основанию пирамиды, является квадрат MKD 1 A 1 (см. рис. 105). F 1 = A 1 D 1 ∩ PF. У этого квадрата LF 1 = MK. Найдём F 1 L .
В треугольнике LFF 1 имеем ∠ FLF 1 = α ( LF 1 || EF ) ,
∠ F 1 FL = ∠ OFP – ∠ OFL = (90 ° – α ) – α = 90 ° – 2 α ;
∠ FF 1 L = 180 ° – ∠ OFF 1 = 90 ° + α . Тогда по теореме синусов
= ⇒
⇒ LF 1 = = .
Значит, MK = LF 1 = 2 h • tg α • cos 2 α .
Второй спосо б . Пусть точки M 1 , K 1 , L 1 — ортогональные проекции на плоскость основания соответственно точек М, K, L (рис. 105, 106). Так как плоскости АСР, BDP и EFP перпендикулярны плоскости основания пирамиды, то ортогональными проекциями прямых PC, РВ и РЕ на эту плоскость являются соответственно прямые АС, BD и EF. Следовательно, M 1 ∈ BD, K 1 ∈ AC, L 1 ∈ EF, причём четырёхугольник ADK 1 M 1 — равнобедренная трапеция.
Таким образом, трапеция ADK 1 M 1 — ортогональная проекция сечения ADKM. Это означает, что S ADKM = . Найдём . Так как диагонали квадрата взаимно перпендикулярны и M 1 K 1 || AD, то OL 1 = L 1 K 1 , OF = FD. Значит,
= • L 1 F = • FL 1 = .
S ADKM = = = 4 h 2 • sin 2 α • cos α .
Ответ: 4 h 2 • sin 2 α • cos α .
1 4.4. Площади боковой и полной поверхностей пирамиды
Поверхность пирамиды состоит из основания и боковых граней. В этой связи различают боковую и полную поверхности пирамиды, а также их площади.
Площадью боковой поверхности пирамиды (обозначают S бок ) называется сумма площадей всех её боковых граней: S бок = S 1 + S 2 + . + S n , где S 1 , S 2 , . S n — площади боковых граней пирамиды.
Площадью полной поверхности пирамиды (обозначают S полн ) называется сумма площадей всех её граней, т. е. сумма площади основания пирамиды и площади её боковой поверхности.
Из определения следует: S полн = S бок + S осн .
О площади боковой поверхности правильной пирамиды имеет место следующая теорема.
Теорема 18. Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему пирамиды.
Доказательств о. PA 1 A 2 . A n — правильная пирамида, a — длина её апофемы (рис. 107).
Боковые грани правильной пирамиды — равные равнобедренные треугольники, у которых основаниями являются стороны правильного n- угольника A 1 A 2 . A n , а высоты равны апофеме пирамиды, т. е.
РE 1 = РE 2 = PE 3 = . = PE n = a.
S бок = S △ PA 1 A 2 + S △ PA 2 A 3 + . + S △ PA n A 1 =
= A 1 A 2 • PE 1 + A 2 A 3 • PE 2 + . + A n A 1 • PE n =
= a • ( A 1 A 2 + A 2 A 3 + . + A n A 1 ) = P • a,
где Р — периметр основания пирамиды. Теорема доказана. ▼
Теорема 19. Если все боковые грани пирамиды наклонены к плоскости основания под углом ϕ и высота пересекает основание, то S бок = .
Доказательств о. Пусть отрезок PO — высота пирамиды РA 1 A 2 A 3 . A n , все боковые грани которой образуют с плоскостью основания углы, равные ϕ (рис. 108); отрезки PH 1 , PH 2 , . PH n — высоты боковых граней. Тогда (по теореме о трёх перпендикулярах) OH 1 ⟂ A 1 A 2 , OH 2 ⟂ A 2 A 3 , . OH n ⟂ A n A 1 . Значит,
∠ OH 1 P = ∠ OH 2 P = ∠ OH 3 P = .
. = ∠ OH n P = ϕ .
Так как точка О является центром круга, вписанного в основание пирамиды (почему?), то эта точка лежит внутри n- угольника A 1 A 2 A 3 . A n . Поэтому n- угольник A 1 A 2 . A n является объединением непересекающихся треугольников A 1 OA 2 , A 2 OA 3 , . A n OA 1 . Эти треугольники являются ортогональными проекциями на плоскость основания пирамиды её соответствующих боковых граней. По теореме о площади ортогональной проекции многоугольника имеем:
S △ A 1 OA 2 = S △ A 1 PA 2 • cos ϕ ,
S △ A 2 OA 3 = S △ A 2 PA 3 • cos ϕ ,
.
S △ A n OA 1 = S △ A n PA 1 • cos ϕ .
Сложив почленно эти равенства, получим S осн = S бок • cos ϕ , откуда S бок = . Теорема доказана. ▼
Так как все боковые грани правильной пирамиды образуют с плоскостью основания равные двугранные углы (пусть величина этих углов равна ϕ , см. рис. 107), то для площади боковой поверхности и площади основания правильной пирамиды также справедлива формула
S бок = .
14 . 5 . Свойства параллельных сечений пирамиды
Если плоскость α параллельна основанию пирамиды и пересекает её, то в сечении пирамиды получается некоторый многоугольник (рис. 109).
Теорема 20. Если пирамида пересечена плоскостью, параллельной основанию, то: 1) боковые рёбра и высота делятся этой плоскостью на пропорциональные части; 2) в сечении получается многоугольник, подобный основанию; 3) площади сечения и основания относятся, как квадраты их расстояний от вершины.
Доказательств о. 1) Пусть сечением пирамиды PABCD плоскостью α , параллельной плоскости β её основания, является четырёхугольник A 1 B 1 C 1 D 1 (см. рис. 109).
Проведём высоту РО данной пирамиды и обозначим O 1 = РО ∩ α .
Рассмотрим гомотетию с центром Р , при которой плоскость основания данной пирамиды отображается на параллельную ей плоскость α (при гомотетии плоскость, не проходящая через центр гомотетии, отображается на параллельную ей плоскость).
Так как при гомотетии её центр является неподвижной точкой, прямая, проходящая через центр гомотетии, отображается на себя, а пересечение двух фигур — на пересечение их образов, то гомотетия отображает основание ABCD пирамиды на её параллельное сечение — многоугольник А 1 В 1 С 1 D 1 , при этом вершины А, В, С, D основания пирамиды — на вершины соответственно A 1 , B 1 , C 1 , D 1 , а точку O — на точку O 1 (почему?).
Учитывая, что отношение длин гомотетичных отрезков равно коэффициенту гомотетии, получаем:
= = = = = k, (*)
где k — коэффициент гомотетии . Это означает, что параллельное сечение пирамиды делит её рёбра и высоту на пропорциональные части. А поскольку гомотетия является подобием, то многоугольник A 1 B 1 C 1 D 1 , являющийся параллельным сечением пирамиды, подобен её основанию ABCD .
Вследствие того, что отношение площадей гомотетичных фигур равно квадрату коэффициента гомотетии, а k = РO 1 : РО , где РO 1 и РО — расстояния соответственно параллельного сечения и основания пирамиды от её вершины, то
S A 1 B 1 C 1 D 1 : S ABCD = k 2 = : PO 2 .
Следствие. Плоскость, параллельная основанию пирамиды и пересекающая её, отсекает пирамиду, подобную данной.
14.6. Усечённая пирамида
Плоскость α , параллельная основанию пирамиды PABCD и пересекающая её, делит эту пирамиду на два многогранника: пирамиду РA 1 B 1 C 1 D 1 и многогранник ABCDA 1 B 1 C 1 D 1 (см. рис. 109).
Многогранник ABCDA 1 B 1 C 1 D 1 (рис. 110) называют усечённой пирамидой. Грани ABCD и A 1 B 1 C 1 D 1 , лежащие в параллельных плоскостях, называются соответственно нижним и верхним основаниями усечённой пирамиды , остальные грани — её боковыми гранями . Так как нижнее и верхнее основания усечённой пирамиды гомотетичны (т. 20), то все её боковые грани — трапеции.
Таким образом, усечённой пирамидой называется часть полной пирамиды, заключённая между её основанием и параллельным ему сечением.
У n- угольной усечённой пирамиды 2 n вершин, 3 n рёбер, ( n + 2) грани и n ( n – 3) диагоналей.
Высотой усечённой пирамиды называется перпендикуляр, проведённый из какой-нибудь точки одного основания к плоскости другого. Длину этого перпендикуляра также называют высотой усечённой пирамиды. На рисунке 110 отрезки О 1 О, B 1 K — высоты усечённой пирамиды.
Усечённая пирамида называется правильной, если она получена из правильной пирамиды (рис. 111).
Из теоремы 20 следует, что основания правильной усечённой пирамиды — подобные правильные многоугольники, а боковые грани — равные равнобедренные трапеции.
Высоты этих трапеций, соединяющие середины их оснований, называются апофемами усечённой пирамиды . Все её апофемы равны между собой.
Отрезок OO 1 , соединяющий центры оснований правильной усечённой пирамиды, является её высотой .
Площадью боковой поверхности усечённой пирамиды называется сумма площадей всех её боковых граней.
Для правильной усечённой пирамиды имеет место
Теорема 21. Площадь боковой поверхности правильной усечённой пирамиды равна произведению полусуммы периметров её оснований на апофему .
Для доказательства теоремы достаточно площадь одной из боковых граней пирамиды умножить на их число. В результате получим формулу S бок = • h , где Р 1 , P 2 — периметры нижнего и верхнего оснований усечённой пирамиды, h — её апофема.
Проведите доказательство теоремы самостоятельно.
Полная поверхность усечённой пирамиды — это объединение её оснований и боковой поверхности, поэтому для усечённой пирамиды
S полн = S бок + S 1 + S 2 ,
где S 1 и S 2 — площади большего и меньшего оснований этой пирамиды.
Для усечённой пирамиды, у которой все двугранные углы при рёбрах большего основания равны ϕ , справедливо: S бок = . (Для вывода этой формулы достаточно учесть следующий факт: если R и r — радиусы окружностей, вписанных соответственно в большее и меньшее основания данной пирамиды, то S 1 = 0,5 • P 1 • R , S 2 = 0,5 • P 2 • r, cos ϕ = , где h — высота боковой грани этой пирамиды.)
14 . 7 . Объём пирамиды
Лемма. Две треугольные пирамиды с равновеликими основаниями и равными высотами равновелики .
Доказательств о. Пусть пирамиды РАВС и P 1 A 1 B 1 C 1 имеют высоты, равные H , и равновеликие основания с площадью S ; их объёмы — соответственно V 1 и V 2 . Докажем, что V 1 = V 2 .
Расположим пирамиды РАВС и P 1 A 1 B 1 C 1 так, чтобы их основания лежали в одной плоскости, а сами пирамиды были расположены по одну сторону от этой плоскости (рис. 112). Тогда любая плоскость, параллельная плоскости оснований и пересекающая первую пирамиду, пересекает и вторую, причём по теореме о параллельных сечениях пирамиды площади этих сечений равны. Следовательно, на основании принципа Кавальери равны и объёмы этих пирамид. Лемма доказана. ▼
Теорема 22. Объём любой треугольной пирамиды равен одной трети произведения площади основания на высоту.
Доказательств о. Пусть А 1 AВC — данная треугольная пирамида с вершиной A 1 и основанием ABC (рис. 113). Дополним эту пирамиду до треугольной призмы ABCA 1 B 1 C 1 с тем же основанием, одним из боковых рёбер которой является боковое ребро АA 1 данной пирамиды. Это означает, что высота призмы равна высоте данной пирамиды.
Призма АВCA 1 B 1 C 1 является объединением трёх треугольных пирамид с общей вершиной A 1 : A 1 ABC, A 1 BB 1 C 1 и A 1 BCC 1 . Основания BB 1 C 1 и BCC 1 пирамид A 1 BB 1 C 1 и A 1 BCC 1 равны, а высота у них общая. Значит, по лемме эти пирамиды имеют равные объёмы.
Будем считать точку В вершиной пирамиды A 1 BB 1 C 1 , a △ A 1 B 1 C 1 — её основанием. Тогда эта пирамида равновелика пирамиде А 1 AВС, так как у них общая высота, а основания АВС и A 1 B 1 C 1 равновелики (как основания призмы). Таким образом, призма ABCA 1 B 1 C 1 является объединением трёх равновеликих пирамид, одной из которых является данная пирамида A 1 ABC. Это означает, что объём V пирамиды A 1 АВС составляет одну треть объёма призмы ABCA 1 B 1 C 1 , т. е. V = S ocн • Н, где Н — длина высоты призмы. Но построенная призма и данная пирамида имеют общую высоту, длина которой равна Н, следовательно, объём треугольной пирамиды вычисляется по формуле
V = S осн • H ,
где Н — длина высоты данной пирамиды. Теорема доказана. ▼
На рисунке 114 изображены треугольная призма ABCDEF и составляющие её три равновеликие треугольные пирамиды ABDF, ABCF и BDEF .
Для вычисления объёма n- угольной пирамиды PA 1 A 2 . A n (рис. 115) разобьём её основание A 1 A 2 . A n диагоналями A 1 A 3 , A 1 A 4 , . A 1 A n – 1 на треугольники с общей вершиной A 1 . Тогда данная пирамида разбивается в объединение пирамид PA 1 A 2 A 3 , PA 1 A 3 A 4 , . PA 1 A n – 1 A n с общей вершиной Р и общей высотой, которая равна высоте данной пирамиды. Основаниями этих пирамид являются треугольники разбиения основания данной пирамиды. Это означает (свойство 2 объёмов), что объём V пирамиды PA 1 A 2 . A n равен сумме объёмов V 1 , V 2 , . V n – 2 треугольных пирамид соответственно PA 1 A 2 A 3 , PA 1 A 3 A 4 , . PA 1 A n – 1 A n .
Пусть длина высоты пирамиды равна Н, площадь её основания — S, а площади треугольников разбиения этого основания равны S 1 , S 2 , . S n – 2 . Это означает, что S 1 + S 2 + . + S n – 2 = S. Тогда получаем:
V = V 1 + V 2 + . + V n – 2 = H ( S 1 + S 2 + . + S n – 2 ) = S • H.
Таким образом, объём любой пирамиды вычисляется по формуле
V = S осн • H ,
где S осн — площадь основания, Н — длина высоты пирамиды.
Итак, доказана теорема.
Теорема 23. Объём любой пирамиды равен одной трети произведения площади основания на высоту. ▼
14.8. Об объёме тетраэдра
У тетраэдра за основание можно принять любую его грань, на каждую из которых можно провести высоту тетраэдра из вершины, противоположной этой грани. Поэтому для объёма V одного и того же тетраэдра имеют место соотношения
V = S 1 • h 1 = S 2 • h 2 = S 3 • h 3 = S 4 • h 4 ,
где S k и h k ( k = 1, 2, 3, 4) — площадь грани и длина опущенной на неё высоты. Эти соотношения часто используют при решении задач.
Заметим, что не в любом тетраэдре все четыре высоты пересекаются в одной точке (для сравнения — все три высоты любого треугольника пересекаются в одной точке). Тетраэдр, все высоты которого пересекаются в одной точке, называется ортоцентрическим.
Интересен также тетраэдр (рис. 116, а ), все грани которого равны. Такой тетраэдр называется равногранным. Его развёрткой является остроугольный треугольник (рис. 116, б ).
Докажите самостоятельно, что в равногранном тетраэдре:
— скрещивающиеся рёбра попарно равны;
— все высоты равны;
— сумма плоских углов трёхгранного угла при каждой вершине тетраэдра равна 180 ° ;
— двугранные углы при скрещивающихся рёбрах тетраэдра равны.
Не менее интересен следующий факт. Пусть дан тетраэдр A 1 C 1 BD . Проведём через каждое его ребро плоскость, параллельную скрещивающемуся с ним ребру. Проведённые шесть плоскостей при пересечении образуют некоторый параллелепипед АВСDA 1 В 1 C 1 D 1 (рис. 117), параллельные грани ABCD и A 1 B 1 C 1 D 1 которого содержат скрещивающиеся рёбра А 1 C 1 и BD данного тетраэдра. Тогда расстояние между основаниями АВСD и А 1 В 1 С 1 D 1 полученного параллелепипеда равно длине его высоты и равно расстоянию между скрещивающимися рёбрами А 1 C 1 и BD данного тетраэдра.
Этот параллелепипед можно разбить на пять тетраэдров — данный тетраэдр A 1 С 1 ВD и ещё четыре тетраэдра: A 1 ABD ; ВВ 1 A 1 C 1 ; C 1 CBD ; DD 1 A 1 C 1 . Объём каждого из четырёх последних тетраэдров равен одной трети высоты h параллелепипеда, умноженной на половину площади его основания ABCD , т. е. шестой части объёма V полученного параллелепипеда.
V A 1 C 1 BD = V – 4 • V = V = h • S ABCD = h • AC • BD • sin ϕ =
= h • A 1 C 1 • BD • sin ϕ ,
где ϕ — угол между диагоналями АС и BD параллелограмма ABCD . А так как AC || A 1 C 1 , то величина угла между скрещивающимися диагоналями A 1 С 1 и BD тетраэдра А 1 С 1 BD также равна ϕ .
Мы получили: объём тетраэдра равен одной шестой произведения длин любых двух его скрещивающихся рёбер, расстояния между ними и синуса угла между скрещивающимися прямыми, содержащими эти рёбра.
Отметим ещё несколько очевидных и менее очевидных свойств тетраэдров, связанных с их объёмами.
1. Объёмы тетраэдров с равными основаниями относятся как их высоты, опущенные на эти основания.
2. Объёмы тетраэдров с равными высотами относятся как площади их оснований.
3. Объёмы тетраэдров, имеющих равные трёхгранные углы, относятся, как произведения длин рёбер, образующих эти углы.
Используя рисунок 118, вы сможете легко доказать третье утверждение.
14.9. Объём усечённой пирамиды
Теорема 24. Объём усечённой пирамиды, у которой площади оснований равны S 1 и S 2 , а высота — Н , вычисляется по формуле
V = H ( S 1 + + S 2 ) .
Доказательств о. Пусть дана усечённая пирамида (рис. 119), у которой S 1 > S 2 , а высота OO 1 = H. Дополним эту пирамиду до полной пирамиды с вершиной Р. Объём V данной усечённой пирамиды равен разности объёмов полной и дополнительной пирамид.
Если длина высоты PO 1 дополнительной пирамиды равна x , то высота PO полной пирамиды равна H + x .
Выразим х через S 1 , S 2 и Н. По теореме 20 (o площадях параллельных сечений пирамиды) имеем
S 1 : S 2 = ( H + x ) 2 : x 2 ⇒ : = ( H + x ) : x ⇒
⇒ x = .
Поэтому для объёма V усечённой пирамиды находим
V = S 1 ( H + x ) – S 2 • x = ( S 1 • H + ( S 1 – S 2 ) • x ) =
= = ( S 1 H + ( + ) H ) =
= H ( S 1 + + S 2 ) ,
Видео:10 класс - Геометрия - Скрещивающиеся прямыеСкачать
Скрещивающиеся прямые. Проведение через одну из скрещивающихся прямых плоскости, параллельной другой прямой
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На этом уроке мы рассмотрим определение скрещивающихся прямых и докажем теорему – признак скрещивающихся прямых. Далее рассмотрим три случая взаимного расположения двух прямых в пространстве. Докажем теорему о том, что через каждую из скрещивающихся прямых можно провести плоскость, параллельную другой прямой.
В конце урока решим несколько задач в тетраэдре на скрещиваемость прямых.
🔥 Видео
Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать
Угол между скрещивающимися прямыми Четырёхугольная пирамидаСкачать
Параллельность прямых. 10 класс.Скачать
СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ 10 класс стереометрияСкачать
Параллельность прямой и плоскости. 10 класс.Скачать
Скрещивающиеся прямыеСкачать
10 класс, 4 урок, Параллельные прямые в пространствеСкачать
19. Расстояние между параллельными прямыми Расстояние между скрещивающимися прямымиСкачать
Параллельность прямых. Практическая часть. 10 класс.Скачать
№44. Прямые ОВ и CD параллельные, а ОА и CD — скрещивающиеся прямые.Скачать
ВСЕ О СЕЧЕНИЯХ В СТЕРЕОМЕТРИИСкачать
Стереометрия для ЕГЭ: 2 - параллельные и скрещивающиеся прямыеСкачать