Важные аксиомы стереометрии
1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.
Таким образом, любая плоскость однозначно задается тремя точками, не лежащими на одной прямой: (pi=(ABC)) (рис. 1).
2. Если две точки прямой лежат в некоторой плоскости, то и вся прямая лежит в этой плоскости: (ain pi) .
Говорят также, что плоскость содержит прямую: (pisubset a) (рис. 2).
3. Если две плоскости имеют общую точку, то они имеют и общую прямую, на которой лежат все общие точки этих плоскостей.
Таким образом, если плоскости пересекаются, то они пересекаются по прямой: (picap mu=p) .
Данная прямая (p) называется линией пересечения плоскостей (рис. 3).
Заметим, что плоскость обычно изображают в виде внутренности параллелограмма. Почему? Посмотрите, например, сбоку на стол. В виде какой фигуры выглядит столешница?
Следствия из аксиом
1. Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна (рис. 4).
2. Через две пересекающиеся прямые проходит плоскость, и притом только одна (рис. 5).
Доказательство
1. Действительно, отметим на прямой (a) некоторые две точки (A) и (B) . Тогда мы получим три точки (A, B, C) , не лежащие на одной прямой. Через них можно провести единственную плоскость (pi) . А т.к. две выбранные точки (A) и (B) прямой лежат в этой плоскости, то и вся прямая лежит в этой плоскости.
2. Действительно, пусть (O) – точка пересечения данных прямых (p) и (q) . Отметим еще по одной точке (P) и (Q) на каждой прямой (отличающиеся от точки (O) ). Получили три точки (P, Q, O) , не лежащие на одной прямой. Через них проходит единственная плоскость (pi) . А т.к. две точки каждой прямой лежат в этой плоскости, то и все точки каждой прямой будут лежать в этой плоскости.
Определения
Две прямые в пространстве параллельны, если они лежат в одной плоскости и не пересекаются.
Следствие 1
Через две параллельные прямые проходит плоскость, и притом только одна.
Теорема 1
Через любую точку (A) в пространстве, не лежащую на данной прямой (b) , проходит прямая (a) , параллельная данной, и притом только одна.
Доказательство
Через точку (A) и прямую (b) можно провести единственную плоскость (по аксиоме); пусть эта плоскость называется (pi) . Прямая (a) , параллельная прямой (b) , должна лежать с ней в одной плоскости, а также должна проходить через точку (A) , следовательно, должна лежать в плоскости (pi) . Но в плоскости через точку, не лежащую на прямой, можно провести ровно одну прямую, параллельную данной (теорема планиметрии), чтд.
Теорема 2
Если одна из двух параллельных прямых пересекает плоскость, то и другая прямая пересекает эту плоскость.
Доказательство
Пусть (aparallel b) и (acap pi=A) . Докажем, что и (b) пересечет плоскость (pi) (назовем их точку пересечения (B) ).
Проведем через прямые (a) и (b) плоскость (mu) (это возможно в силу определения параллельных прямых). Тогда плоскости (pi) и (mu) имеют общую точку (A) , следовательно, имеют и общую прямую (p) , на которой лежат все их общие точки. Но т.к. (bparallel a) и (acap p=A) , то прямая (b) тоже пересекает прямую (p) . Значит, прямая (b) пересекает и плоскость (mu) (это и есть точка (B) ).
Теорема 3: о параллельности трех прямых
Если прямая (a) параллельна прямой (b) , а та в свою очередь параллельна прямой (c) , то (aparallel c) .
Доказательство
1) Отметим некоторую точку (C) на прямой (c) и проведем плоскость (pi) через прямую (a) и точку (C) . Прямая (c) будет лежать в этой плоскости. Действительно, т.к. прямая (c) и плоскость (pi) имеют общую точку (C) , то в противном случае прямая (c) будет пересекать эту плоскость. Но т.к. (bparallel c) , то и прямая (b) будет пересекать (pi) ; а т.к. (aparallel b) , то и прямая (a) будет пересекать эту плоскость. А это противоречит нашему построению.
2) Теперь прямые (a) и (c) лежат в одной плоскости, значит, они могут либо пересекаться, либо быть параллельны. Предположим, что (c) пересекает (a) в точке (A) . Тогда получается, что через точку (A) проведены две прямые, параллельные прямой (b) , что противоречит теореме 1.
Определение
Существует три вида взаимного расположения прямой и плоскости:
1. прямая имеет с плоскостью две общие точки (то есть лежит в плоскости) — рис. 4;
2. прямая имеет с плоскостью ровно одну общую точку (то есть пересекает плоскость) — рис. 6;
3. прямая не имеет с плоскостью общих точек (то есть параллельна плоскости).
Теорема 4: признак параллельности прямой и плоскости
Если прямая (a) , не лежащая в плоскости (pi) , параллельна некоторой прямой (p) , лежащей в плоскости (pi) , то она параллельна данной плоскости (рис. 7).
Доказательство
Докажем, что прямая (a) не может пересекать плоскость (pi) (случай, что прямая лежит в плоскости, невозможен по условию). Предположим, что это не так. Во-первых, проведем плоскость (mu) через прямые (a) и (p) (значит, плоскости (pi) и (mu) пересекаются по прямой (p) ). Во-вторых, пусть (acappi=A) . Т.к. (aparallel p) , то точка (A) не может лежать на прямой (p) . Значит, плоскости (pi) и (mu) имеют еще одну общую точку (A) , не лежащую на их линии пересечения, что противоречит аксиоме 3. Чтд.
Следствие 2
Пусть прямая (p) параллельна плоскости (mu) . Если плоскость (pi) проходит через прямую (p) и пересекает плоскость (mu) , то линия пересечения плоскостей (pi) и (mu) — прямая (m) — параллельна прямой (p) (рис. 8).
Доказательство
Т.к. прямые (m) и (p) лежат в одной плоскости (pi) , то они могут быть либо параллельны, либо пересекаться, либо совпадать. Совпадать они не могут, потому что тогда (pin mu) , а это противоречит условию. Если (mcap p=O) , то (p) пересекает плоскость (mu) в точке (O) , что опять же противоречит условию. Значит, (mparallel p) .
Следствие 3
Если прямые (a) и (b) параллельны и прямая (a) также параллельна плоскости (alpha) , то и прямая (b) либо параллельна, либо лежит в плоскости (alpha) .
Определение
Существует три типа взаимного расположения плоскостей в пространстве: совпадают (имеют три общие точки, не лежащие на одной прямой), пересекаются (имеют общие точки, лежащие строго на одной прямой), и не имеют общих точек.
Если две плоскости не имеют общих точек, то они называются параллельными плоскостями.
Теорема 5: признак параллельности плоскостей
Если две пересекающиеся прямых из одной плоскости параллельны двум пересекающимся прямым из другой плоскости, то такие плоскости будут параллельны.
Доказательство
Рассмотрим две плоскости (pi) и (mu) и в них пересекающиеся прямые (a, b) и (a_1, b_1) соответственно, такие что (aparallel a_1, bparallel b_1) . Докажем, что плоскости не имеют общих точек.
Предположим, что это не так. Пусть плоскости имеют общую точку, значит они имеют и общую прямую (y) : (picap mu=y) . Данная прямая не может быть параллельна обеим прямым (a) и (b) (т.к. они все лежат в одной плоскости (pi) ), значит, хотя бы одну из этих прямых она пересекает. Пусть это будет прямая (a) , то есть (acap y=Y) . Т.к. прямая (y) лежит и в плоскости (mu) , то (Yin mu) , то есть прямая (a) имеет с плоскостью (mu) общую точку (Y) . Но это невозможно, т.к. по признаку параллельности прямой и плоскости прямая (a) параллельна плоскости (mu) . Чтд.
Следствие 4
Если две параллельные плоскости (alpha) и (beta) пересечены третьей плоскостью (gamma) , то линии пересечения плоскостей также параллельны:
[alphaparallel beta, alphacap gamma=a, betacapgamma=b Longrightarrow aparallel b]
Следствие 5
Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны:
[alphaparallel beta, aparallel b Longrightarrow A_1B_1=A_2B_2]
Видео:Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать
Параллельные прямые в пространстве. Параллельность трех прямых
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На этом уроке мы дадим основные определения и теоремы на тему параллельных прямых в пространстве.
В начале урока рассмотрим определение параллельных прямых в пространстве и докажем теорему о том, что через любую точку пространства можно провести только одну прямую, параллельную данной. Далее докажем лемму о двух параллельных прямых, пересекающих плоскость. И с ее помощью докажем теорему о двух прямых, параллельных третьей прямой.
Видео:10 класс, 4 урок, Параллельные прямые в пространствеСкачать
Тест по теме: «Аксиомы стереометрии и некоторые следствия из них»
тест по теме: «Аксиомы стереометрии
и некоторые следствия из них»
1. Какое утверждение неверное?
1) Через любые три точки проходит плоскость, и притом только одна.
2) Через две пересекающиеся прямые проходит плоскость, и притом только одна.
3) Через две параллельные прямые проходит плоскость, и притом только одна.
2. Параллелограмм ABCD лежит в плоскости , если…
1)
2)
3)
3. ABCDA1B1C1D1 – куб. Тогда плоскости (ABC) и (DD1C1)…
2) не пересекаются;
4. Прямая MN не пересекает плоскость…
5. SABCD – четырёхугольная пирамида. Прямая SD не пересекает прямую…
6. Две различные плоскости не могут иметь…
3) три общих точки, не лежащие на одной прямой.
7. Какое утверждение неверное?
1)
2)
3)
8. Через прямые m и k можно провести более одной плоскости. Тогда прямые m и k…
9. Точка А принадлежит прямой а. Тогда через них можно провести…
1) хотя бы одну плоскость;
2) только одну плоскость;
3) не более одной плоскости.
1) любые три точки лежат в одной плоскости;
2) любые четыре точки не лежат в одной плоскости;
3) через любые три точки, не лежащие на одной прямой, проходит плоскость, и при том только одна.
2. AB и CD – диаметры окружности с центром O. Все точки окружности лежат в плоскости, если…
1)
2)
3)
3. Верно ли, что прямая лежит в плоскости данного треугольника, если она…
1) пересекает две стороны треугольника;
2) проходит через одну из вершин треугольника;
3) содержит одну из сторон треугольника.
4. ABCDA1B1C1D1 – куб. Тогда плоскости (AB1C1) и (СDD1)…
2) не пересекаются;
5. Прямая MN не пересекает плоскость…
6. DABC – треугольная пирамида. Прямая BD не пересекает прямую…
7. Сколько общих точек, не лежащих на одной прямой, не могут иметь две различные плоскости?
8. Даны две параллельные прямые a и b и точка M, не лежащая ни на одной из них. Точка M лежит в одной плоскости с прямыми a и b, если через точку M можно провести прямую, пересекающую…
1) хотя бы одну из данных прямых;
2) только одну из данных прямых;
3) две данные прямые.
9. Через три точки A, B и C можно провести единственную плоскость. Тогда точки…
🔥 Видео
Параллельность прямой и плоскости. 10 класс.Скачать
10 класс, 3 урок, Некоторые следствия из аксиомСкачать
Параллельность прямых. 10 класс.Скачать
Параллельные прямые. Видеоурок 2. Геометрия 10 классСкачать
Стереометрия 10 класс. Часть 1 | МатематикаСкачать
Параллельные прямые | Математика | TutorOnlineСкачать
№5. Докажите, что через три данные точки, лежащие на прямой, проходит плоскость.Скачать
10 класс, 6 урок, Параллельность прямой и плоскостиСкачать
Геометрия 10 класс (Урок№6 - Параллельность плоскостей.)Скачать
10 класс, 16 урок, Параллельные прямые, перпендикулярные к плоскостиСкачать
Стереометрия - это ПРОСТО! Урок 1. Аксиомы Теоремы Задачи. Геометрия 10 классСкачать
№3. Верно ли, что: а) любые три точки лежат в одной плоскости;Скачать
Перпендикулярность прямой и плоскости. 10 класс.Скачать
№61. Даны пересекающиеся прямые а и b и точка А, не лежащая в плоскости этих прямых.Скачать
Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.Скачать
10 класс, 2 урок, Аксиомы стереометрииСкачать
Геометрия 10 класс : Введение в стереометрию. АксиомыСкачать
10 класс, 5 урок, Параллельность трех прямыхСкачать