Скорость изменения вектора магнитной индукции

Закон электромагнитной индукции

Скорость изменения вектора магнитной индукции

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Урок 271. Модуль вектора магнитной индукции. Закон АмпераСкачать

Урок 271. Модуль вектора магнитной индукции. Закон Ампера

Магнитный поток

Прежде, чем разобраться с тем, что такое электромагнитная индукция, нужно определить такую сущность, как магнитный поток.

Представьте, что вы взяли обруч в руки и вышли на улицу в ливень. Чем сильнее ливень, тем больше через этот обруч пройдет воды — поток воды больше.

Скорость изменения вектора магнитной индукции

Если обруч расположен горизонтально, то через него пройдет много воды. А если начать его поворачивать — уже меньше, потому что он расположен не под прямым углом к вертикали.

Скорость изменения вектора магнитной индукции

Теперь давайте поставим обруч вертикально — ни одной капли не пройдет сквозь него (если ветер не подует, конечно).

Скорость изменения вектора магнитной индукции

Магнитный поток по сути своей — это тот же самый поток воды через обруч, только считаем мы величину прошедшего через площадь магнитного поля, а не дождя.

Магнитным потоком через площадь ​S​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​B​, площади поверхности ​S​, пронизываемой данным потоком, и косинуса угла ​α​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Скорость изменения вектора магнитной индукции

Магнитный поток

Скорость изменения вектора магнитной индукции

Ф — магнитный поток [Вб]

B — магнитная индукция [Тл]

S — площадь пронизываемой поверхности [м^2]

n — вектор нормали (перпендикуляр к поверхности) [-]

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​α магнитный поток может быть положительным (α 90°). Если α = 90°, то магнитный поток равен 0. Это зависит от величины косинуса угла.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура, магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Видео:Урок 281. Электромагнитная индукция. Магнитный поток. Правило ЛенцаСкачать

Урок 281. Электромагнитная индукция. Магнитный поток. Правило Ленца

Электромагнитная индукция

Электромагнитная индукция — явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

Майкл Фарадей провел ряд опытов, которые помогли открыть явление электромагнитной индукции.

Опыт раз. На одну непроводящую основу намотали две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй — подключены к источнику тока.

При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.

Опыт два. Первую катушку подключили к источнику тока, а вторую — к гальванометру. При этом вторая катушка перемещалась относительно первой. При приближении или удалении катушки фиксировался ток.

Опыт три. Катушка замкнута на гальванометр, а магнит движется вдвигается (выдвигается) относительно катушки

Скорость изменения вектора магнитной индукции

Вот, что показали эти опыты:

  1. Индукционный ток возникает только при изменении линий магнитной индукции.
  2. Направление тока будет различно при увеличении числа линий и при их уменьшении.
  3. Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Почему возникает индукционный ток?

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС.

Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!

Видео:Поток вектора магнитной индукцииСкачать

Поток вектора магнитной индукции

Закон электромагнитной индукции

Закон электромагнитной индукции (закон Фарадея) звучит так:

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром.

Математически его можно описать формулой:

Закон Фарадея

Скорость изменения вектора магнитной индукции

Ɛi — ЭДС индукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре всегда направлен так, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​N витков (то есть он — катушка), то ЭДС индукции будет вычисляться следующим образом.

Закон Фарадея для контура из N витков

Скорость изменения вектора магнитной индукции

Ɛi — ЭДС индукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

N — количество витков [-]

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​R​:

Закон Ома для проводящего контура

Скорость изменения вектора магнитной индукции

Ɛi — ЭДС индукции [В]

I — сила индукционного тока [А]

R — сопротивление контура [Ом]

Если проводник длиной l будет двигаться со скоростью ​v​ в постоянном однородном магнитном поле с индукцией ​B​ ЭДС электромагнитной индукции равна:

ЭДС индукции для движущегося проводника

Скорость изменения вектора магнитной индукции

Ɛi — ЭДС индукции [В]

B — магнитная индукция [Тл]

v — скорость проводника [м/с]

l — длина проводника [м]

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле
  • вследствие изменения во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Видео:Электромагнитная индукция. Простыми словамиСкачать

Электромагнитная индукция. Простыми словами

Правило Ленца

Чтобы определить направление индукционного тока, нужно воспользоваться правилом Ленца.

Академически это правило звучит следующим образом: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Скорость изменения вектора магнитной индукции

Давайте попробуем чуть проще: катушка в данном случае — это недовольная бабуля. Забирают у нее магнитный поток — она недовольна и создает магнитное поле, которое этот магнитный поток хочет обратно отобрать.

Дают ей магнитный поток, забирай, мол, пользуйся, а она такая — «Да зачем сдался мне ваш магнитный поток!» и создает магнитное поле, которое этот магнитный поток выгоняет.

Видео:Индукция магнитного поля | Физика 9 класс #37 | ИнфоурокСкачать

Индукция магнитного поля | Физика 9 класс #37 | Инфоурок

Закон электромагнитной индукции

теория по физике 🧲 магнетизм

Магнитный поток наглядно истолковывается как число линий магнитной индукции, пронизывающих поверхность площадью S. Поэтому скорость изменения этого числа есть не что иное, как скорость изменения магнитного потока.

Если за малое время ∆t магнитный поток поменялся на ∆Ф, то скорость изменения магнитного потока равна Δ Φ Δ t . . . Поэтому утверждение, которое вытекает непосредственно из опыта, можно сформулировать так:

Сила индукционного тока пропорциональная скорости изменения магнитного потока через поверхность, ограниченную контуром:

Известно, что в цепи появляется электрический ток в том случае, когда на свободные заряды проводника действуют сторонние силы. Работу этих сил при перемещении единичного положительного заряда вдоль замкнутого контура называют электродвижущей силой. Следовательно, при изменении магнитного потока через поверхность, ограниченную контуров, появляются сторонние силы, действие которых характеризуется ЭДС, называемой ЭДС индукции. Обозначают ее как ε i .

Согласно закону Ома для замкнутой цепи:

Сопротивление проводника не зависит от изменения магнитного потока. Следовательно, сила индукционного тока пропорциональна скорости изменения магнитного потока только потому, что ЭДС индукции тоже пропорциональна этой скорости изменения потока.

Закон электромагнитной индукции

ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

ε i = ∣ ∣ ∣ Δ Φ Δ t . . ∣ ∣ ∣

Закон электромагнитной индукции формулируется именно для ЭДС, а не для силы тока. При такой формулировке закон выражает сущность явления, не зависящую от свойств проводников, в которых возникает индукционный ток.

Видео:Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??Скачать

Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??

Определение знака ЭДС индукции

На рисунке изображен замкнутый контур. Будем считать положительным направление обхода контура против часовой стрелки. Нормаль → n к контуру образует правый винт с направлением обхода.

Скорость изменения вектора магнитной индукции

Пусть магнитная индукция → B внешнего магнитного поля направлена вдоль нормали к контуру и возрастает со временем. Тогда Φ > 0 и Δ Φ Δ t . . > 0 . Согласно правилу Ленца индукционный ток создает магнитный поток Φ ‘ 0 . Линии магнитной индукции B’ магнитного поля индукционного тока изображены черным цветом. Следовательно, индукционный ток Ii согласно правилу буравчика направлен по часовой стрелке (против направления положительного обхода) и ЭДС индукции отрицательна. Поэтому в законе электромагнитной индукции должен стоять знак «–», указывающий на то, что ε i и Δ Φ Δ t . . имеют разные знаки:

Пример №1. Магнитный поток через контур проводника сопротивлением 3∙10 –2 Ом за 2 с изменился на 1,2∙10 –2 Вб. Найдите силу тока в проводнике, если изменение потока происходило равномерно.

ε i = ∣ ∣ ∣ Δ Φ Δ t . . ∣ ∣ ∣

Скорость изменения вектора магнитной индукции

Видео:Электромагнитная индукция. ЕГЭ Физика. Николай НьютонСкачать

Электромагнитная индукция. ЕГЭ Физика. Николай Ньютон

ЭДС индукции в движущихся проводниках

Электроны в неподвижном проводнике приводятся в движение электрическим полем, и это поле порождается переменным магнитным полем. Следовательно, изменяясь во времени, магнитное поле порождает электрическое поле. Но если проводник движется в постоянном во времени магнитном поле, то ЭДС индукции в проводнике обусловлена не вихревым электрическим полем, которое в этом случае не может возникнуть, а другой причиной.

При движении проводника его свободные заряды движутся вместе с ним. Поэтому на заряды со стороны магнитного поля действует сила Лоренца. Она и вызывает перемещение зарядов внутри проводника. ЭДС индукции, следовательно, имеет магнитное происхождение.

Вычислим ЭДС индукции, возникающую в проводнике, движущемся в однородном магнитном поле (см. рисунок). Пусть сторона контура MN длиной l скользит с постоянной скоростью → v вдоль сторон NC и MD, оставаясь все это время параллельной стороне CD. Вектор магнитной индукции → B однородного поля перпендикулярен проводнику и составляет угол α с направлением его скорости.

Скорость изменения вектора магнитной индукции

Сила, с которой магнитное поле действует на движущуюся заряженную частицу, равна по модулю:

F L = | q | v B sin . α

Направлена эта сила вдоль проводника MN. Работа силы Лоренца на пути l положительна и составляет:

A = F L l = | q | v B l sin . α

Формула выше определяет неполную работу силы Лоренца. Кроме силы Лоренца имеется составляющая силы Лоренца, направленная против скорости проводника → v . Такая составляющая тормозит проводник и совершает отрицательную работу. В результате полная работа силы Лоренца оказывается равной нулю.

Электродвижущая сила индукции в проводнике MN равна по определению отношению работы по перемещению заряда q к этому заряду:

ε i = A | q | . . = v B l sin . α

Эта формула справедлива для любого проводника длиной l, движущегося со скоростью → v в однородном магнитном поле.

В других проводниках контура ЭДС равна нулю, так как проводники неподвижны. Следовательно, ЭДС во всем контуре MNCD равна ε i и остается неизменной, если скорость движения → v постоянна. Электрический ток при этом будет увеличиваться, так как при смещении проводника MN вправо уменьшается общее сопротивление контура.

С другой стороны, ЭДС индукции можно вычислить с помощью закона электромагнитной индукции. Магнитный поток через контур MNCD равен:

Φ = B S cos . ( 90 ° − α ) = B S sin . α

угол 90 ° − α представляет собой угол между векторами → B и нормалью → n к поверхности контура, а S — площадь контура MNCD. Если считать, что в начальный момент времени t=0 проводник MN находится на расстоянии NC от проводника CD, то при перемещении проводника площадь S изменяется со временем следующим образом:

За время ∆t площадь контура меняется на Δ S = − l v Δ t . Знак «минус» указывает на то, что она уменьшается. Изменение магнитного потока за это время равно:

Δ Φ = − B v l Δ t sin . α

ε i = − Δ Φ Δ t . . = B v l sin . α

Если весь контур MNCD движется в однородном магнитном поле, сохраняя свою ориентацию по отношению к вектору → B , то ЭДС индукции в контуре будет равна нулю, так как поток Φ через поверхность, ограниченную контуром, не меняется. Объяснить это можно так. При движении контура в проводниках MN и CD возникают силы, действующие на электроны в направлениях от N к M и от C к D. Суммарная работа этих сил при обходе контура по часовой стрелке или против нее равна нулю.

Пример №2. Проводник длиной 50 см движется в однородном магнитном поле со скоростью 4 м/с перпендикулярно силовым линиям. Найдите разность потенциалов, возникающую на концах проводника, если вектор магнитной индукции 8 мТл.

8 мТл = 8∙10 –3 Тл

Так как проводник движется перпендикулярно силовым линиям, то угол α равен 90 градусам, а синус прямого угла равен единице. Поэтому:

ε i = B v l sin . α = 8 · 10 − 3 · 4 · 0 , 5 · 1 = 16 · 10 − 3 ( В )

Скорость изменения вектора магнитной индукцииВ заштрихованной области на рисунке действует однородное магнитное поле, направленное перпендикулярно плоскости рисунка, В = 0,1 Тл. Проволочную квадратную рамку сопротивлением R=10Ом и стороной l=10см перемещают в плоскости рисунка поступательно со скоростью υ=1м/с. Чему равен индукционный ток в рамке в состоянии 1?

Видео:Линии магнитной индукции наглядно. Правило правой рукиСкачать

Линии магнитной индукции наглядно. Правило правой руки

Закон электромагнитной индукции.

М. Фарадеем было установлено, что сила индукционного тока пропорциональна скорости из­менения магнитного потока через поверхность, ограниченную контуром:

Возникновение тока в замкнутом контуре означает наличие сторонних сил, работа которых по перемещению единичного заряда в контуре называется электродвижущей силой (ЭДС). Это означает, что при изменении потока через поверхность, ограниченную замкнутым контуром, в кон­туре возникает ЭДС ɛi которую называют ЭДС индукции. Согласно закону Ома для замкнутой цепи, Скорость изменения вектора магнитной индукции. Следовательно, ЭДС индукции пропорциональна ΔФ/Δt, поскольку сопротивление R не зависит от изменения магнитного потока.

Закон электромагнитной индукции формулируется так:

ЭДС индукции ɛi в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:

Скорость изменения вектора магнитной индукции.

Применение правила Ленца к замкнутому контуру с положительной нормалью приводит к выражению:

Скорость изменения вектора магнитной индукции.

Видео:Физика Поток вектора магнитной индукцииСкачать

Физика Поток вектора магнитной индукции

Формула ( ) выражает основной закон электромагнитной индук­ции .

Скорость изменения вектора магнитной индукции

На рисунке внешнее магнитное поле индукции В возрастает со вре­менем и направлено вдоль положительной нормали к контуру с током. Индуцированный ток противоположен выбранному направлению обхода в соответствии с индуцированным магнитным полем В’.

Описанные выше опыты свидетельствуют о том, что электромагнит­ная индукция — это возникновение электрического поля и электрического тока при изменении во времени магнитного поля или при движении проводника в магнитном поле. Эти два типа эффектов электромагнитной индукции отличаются физической природой процессов, отвечающих за их возникновение. Первый тип обусловлен наведением вихревого элект­рического поля переменным магнитным полем, второй — действием сил Лоренца на движущиеся заряды в стационарном магнитном поле. В обоих случаях выполняется основной закон индукции, выраженный формулой (Скорость изменения вектора магнитной индукции).

📺 Видео

Закон электромагнитной индукцииСкачать

Закон электромагнитной индукции

МАГНИТНАЯ ИНДУКЦИЯ 11 класс физика сила Ампера сила ЛоренцаСкачать

МАГНИТНАЯ ИНДУКЦИЯ 11 класс физика сила Ампера сила Лоренца

ИНДУКЦИЯ МАГНИТНОГО ПОЛЯ сила Ампера правило левой рукиСкачать

ИНДУКЦИЯ МАГНИТНОГО ПОЛЯ сила Ампера правило левой руки

Физика 9 класс (Урок№21 - Электромагнитная индукция.)Скачать

Физика 9 класс (Урок№21 - Электромагнитная индукция.)

Физика 11 класс (Урок№5 - Электромагнитная индукция.)Скачать

Физика 11 класс (Урок№5 - Электромагнитная индукция.)

Электромагнитная индукция за 1 минутуСкачать

Электромагнитная индукция за 1 минуту

14. Вектор магнитной индукции. Правило правого винта.Скачать

14. Вектор магнитной индукции. Правило правого винта.

Вектор магнитной индукции, принцип суперпозиции магнитных полейСкачать

Вектор магнитной индукции, принцип суперпозиции магнитных полей

Галилео. Эксперимент. Электромагнитная индукцияСкачать

Галилео. Эксперимент. Электромагнитная индукция

Модуль вектора магнитной индукцииСкачать

Модуль вектора магнитной индукции

Зависимость индукционного тока от скорости изменения магнитного потокаСкачать

Зависимость индукционного тока от скорости изменения магнитного потока
Поделиться или сохранить к себе: