Сколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторах

Коллинеарность векторов, условия коллинеарности векторов.

Вектора, параллельные одной прямой или лежащие на одной прямой называют коллинеарными векторами (рис. 1).

Сколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторах
рис. 1

Видео:89. Разложение вектора по двум неколлинеарным векторамСкачать

89. Разложение вектора по двум неколлинеарным векторам

Условия коллинеарности векторов

Два вектора будут коллинеарны при выполнении любого из этих условий:

Условие коллинеарности векторов 1. Два вектора a и b коллинеарны, если существует число n такое, что

N.B. Условие 2 неприменимо, если один из компонентов вектора равен нулю.

N.B. Условие 3 применимо только для трехмерных (пространственных) задач.

Доказательство третего условия коллинеарности

Пусть есть два коллинеарные вектора a = < ax ; ay ; az > и b = < nax ; nay ; naz >. Найдем их векторное произведение

Видео:Геометрия 9 класс (Урок№7 - Разложение вектора по двум неколлинеарным векторам. Координаты вектора.)Скачать

Геометрия 9 класс (Урок№7 - Разложение вектора по двум неколлинеарным векторам. Координаты вектора.)

Примеры задач на коллинеарность векторов

Примеры задач на коллинеарность векторов на плоскости

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае плоской задачи для векторов a и b примет вид:

ax=ay.
bxby
Вектора a и b коллинеарны т.к.1=2.
48
Вектора a и с не коллинеарны т.к.12.
59
Вектора с и b не коллинеарны т.к.59.
48

Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:

Для этого найдем ненулевой компонент вектора a в данном случае это ay . Если вектора колинеарны то

n =by=6= 2
ay3

Найдем значение n a :

Так как b = n a , то вектора a и b коллинеарны.

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности

ax=ay.
bxby
3=2.
9n

Решим это уравнение:

n =2 · 9= 6
3

Ответ: вектора a и b коллинеарны при n = 6.

Примеры задач на коллинеарность векторов в пространстве

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае пространственной задачи для векторов a и b примет вид:

ax=ay=az.
bxbybz

Вектора a и b коллинеарны т.к. 1 4 = 2 8 = 3 12

Вектора a и с не коллинеарны т.к. 1 5 = 2 10 ≠ 3 12

Вектора с и b не коллинеарны т.к. 5 4 = 10 8 ≠ 12 12

Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:

Для этого найдем ненулевой компонент вектора a в данном случае это ay . Если вектора колинеарны то

n =by=6= 2
ay3

Найдем значение n a :

Так как b = n a , то вектора a и b коллинеарны.

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности

ax=ay=az.
bxbybz
3=2=m
9n12

Из этого соотношения получим два уравнения:

3=2
9n
3=m
912

Решим эти уравнения:

n =2 · 9= 6
3
m =3 · 12= 4
9

Ответ: вектора a и b коллинеарны при n = 6 и m = 4.

Видео:9 класс, 1 урок, Разложение вектора по двум неколлинеарным векторамСкачать

9 класс, 1 урок, Разложение вектора по двум неколлинеарным векторам

Условие коллинеарности векторов

В статье ниже рассмотрим условия, при которых векторы считаются коллинеарными, а также разберем тему на конкретных примерах. И, прежде чем приступить к обсуждению, напомним некоторые определения.

Коллинеарные векторы – ненулевые векторы, лежащие на одной прямой или на параллельных прямых. Нулевой вектор считается коллинеарным любому другому.

Данное определение дает возможность убедиться в коллинеарности векторов в их геометрическом отображении, однако точность такого способа может иметь погрешности, например, в зависимости, от качества самого чертежа. Поэтому обратимся к алгебраическому толкованию: сформируем условие, которое будет явным признаком коллинеарности.

Согласно схемам операций над векторами умножение вектора на некоторое заданное число приводит к соответствующему сжатию или растяжению вектора при сохранении или смене направления. Тогда вектор b → = λ · a → коллинеарен вектору a → , где λ – некоторое действительное число. Справедливым будет и обратное утверждение: если вектор b → коллинеарен вектору a → , его можно представить в виде λ · a → . Это является необходимым и достаточным условием коллинеарности двух ненулевых векторов.

Для коллинеарности двух векторов необходимо и достаточно, чтобы они были связаны равенствами: b → = λ · a → или a → = μ · b → , μ ∈ R

Видео:Вектор. Определение. Коллинеарные векторы. Равные векторы.Скачать

Вектор. Определение. Коллинеарные векторы. Равные векторы.

Координатная форма условия коллинеарности векторов

Исходные данные: вектор a → задан в некоторой прямоугольной системе координат на плоскости и имеет координаты ( a x , a y ) , тогда, согласно полученному выше условию, вектор b → = λ · a → имеет координаты ( λ · a x , λ · a y ) .

По аналогии: если вектор a → задан в трехмерном пространстве, то он будет представлен в виде координат a = ( a x , a y , a z ) , а вектор b → = λ · a → имеет координаты ( λ · a x , λ · a y , λ · a z ) . Из полученных утверждений следуют условия коллинеарности двух векторов в координатном толковании.

  1. ​​​Для коллинеарности двух ненулевых векторов на плоскости необходимо и достаточно, чтобы их координаты были связаны соотношениями: b x = λ · a x b y = λ · a y или a x = μ · b x a y = μ · b y
  2. Для коллинеарности двух ненулевых векторов в пространстве необходимо и достаточно, чтобы их координаты были связаны соотношениями: b x = λ · a x b y = λ · a y b z = λ · a z или a x = μ · b x a y = μ · b y a z = μ · b z

Мы можем также получить еще одно условие коллинеарности векторов, опираясь на понятие их произведения.

Если ненулевые векторы a → = ( a x , a y , a z ) и b → = ( b x , b y , b z ) коллинеарны, то согласно векторному определению произведения a → × b → = 0 → . И это также соответствует равенству: i → j → k → a x a y a z b x b y b z = 0 → , что, в свою очередь, возможно только тогда, когда заданные векторы связаны соотношениями b → = λ · a → и a → = μ · b → , где μ — произвольное действительное число (на основании теоремы о ранге матрицы), что указывает на факт коллинеарности векторов.

Два ненулевых вектора коллинеарны тогда и только тогда, когда их векторное произведение равно нулевому вектору.

Рассмотрим применение условия коллинеарности на конкретных примерах.

Исходные данные: векторы a → = ( 3 — 2 2 , 1 ) и b → = ( 1 2 + 1 , 2 + 1 ) . Необходимо определить, коллинеарны ли они.

Решение

Выполним задачу, опираясь на условие коллинеарности векторов на плоскости в координатах: b x = λ · a x b y = λ · a y Подставив заданные значения координат, получим: b x = λ · a x ⇔ 1 2 + 1 = λ · ( 3 — 2 2 ) ⇒ λ = 1 ( 2 + 1 ) · ( 3 — 2 2 ) = 1 3 2 — 4 + 3 — 2 2 = 1 2 — 1 b y = λ · a y ⇔ 2 + 1 = 1 2 — 1 · 1 ⇔ ( 2 + 1 ) · ( 2 — 1 ) = 1 ⇔ 1 ≡ 1

Т.е. b → = 1 2 — 1 · a → , следовательно, заданные векторы коллинеарны.

Ответ: заданные векторы коллинеарны.

Исходные данные: векторы a → = ( 1 , 0 , — 2 ) и b → = ( — 3 , 0 , 6 ) . Необходимо убедиться в их коллинеарности.

Решение

Т.к. b x = λ · a x b y = λ · a y b z = λ · a z ⇔ — 3 = — 3 · 1 0 = — 3 · 0 6 = — 3 · ( — 2 ) , то верным будет равенство: b → = — 3 · a → , что является необходимым и достаточным условием коллинеарности. Таким образом, заданные векторы коллинеарны.

Найдем также векторное произведение заданных векторов и убедимся, что оно равно нулевому вектору: a → × b → = i → j → k → a x a y a z b x b y b z = i → j → k → 1 0 — 2 — 3 0 6 = i → · 0 · 6 + j → · ( — 2 ) · ( — 3 ) + k → · 1 · 0 — k → · 0 · ( — 3 ) — j → · 1 · 6 — i → · ( — 2 ) · 0 = 0 → Ответ: заданные векторы коллинеарны.

Исходные данные: векторы a → = ( 2 , 7 ) и b → = ( p , 3 ) . Необходимо определить, при каком значении p заданные векторы будут коллинеарны.

Решение

Согласно выведенному выше условию, векторы коллинеарны, если

b → = λ · a → ⇔ b x = λ · a x b y = λ · a y ⇔ p = λ · 2 3 = λ · 7

тогда λ = 3 7 , а p = λ · 2 ⇔ p = 6 7 .

Ответ: при p = 6 7 заданные векторы коллинеарны.

Также распространены задачи на нахождения вектора, коллинеарного заданному. Решаются они без затруднений, основываясь на условии коллинеарности: : достаточным будет взять произвольное действительное число λ и определить вектор, коллинеарный данному.

Исходные данные: вектор a → = ( 2 , — 6 ) . Необходимо найти любой ненулевой вектор, коллинеарный заданному.

Решение

Ответом может послужить, например, 1 2 · a → = ( 1 , — 3 ) или вектор 3 · a → = ( 6 , — 18 ) .

Ответ: вектор, коллинеарный заданному имеет координаты ( 1 , — 3 ) .

Исходные данные: вектор a → = ( 3 , 4 , — 5 ) . Необходимо определить координаты вектора единичной длины, коллинеарного заданному.

Решение

Вычислим длину заданного вектора по его координатам: a → = a x 2 + b x 2 + c x 2 = 3 2 + 4 2 + ( — 5 ) 2 = 5 2 Разделим каждую из заданных координат на полученную длину и получим единичный вектор, коллинеарный данному: 1 a → · a → = ( 3 5 2 , 4 5 2 , — 1 2 )

Видео:Разложение вектора по двум неколлинеарным векторам - 1 часть. Геометрия 9Скачать

Разложение вектора по двум неколлинеарным векторам - 1 часть. Геометрия 9

Доказательства леммы о коллинеарных векторах

Видео:Коллинеарность векторовСкачать

Коллинеарность векторов

Основные сведения о коллинеарных векторах — свойства координат

Видео:Разложение вектора по базису. 9 класс.Скачать

Разложение вектора по базису. 9 класс.

Общие сведения

Изучать векторную алгебру начинают на уроках геометрии в средней школе (7 – 9 классы).

Вектор — это отрезок заданной длины и имеющий определенное направление.

С векторами можно выполнять различные математические операции: сложение, вычитание, умножение вектора на число и т. д.

Остановимся на операции умножения вектора на число. Пусть имеется вектор a → , умножим его на некоторое число k. Получим новый вектор b → = k · a → . Векторы a → и b → параллельны и направлены в одну сторону, отличие между ними заключается лишь в длине. Тогда данные векторы можно считать коллинеарными.

Коллинеарностью называется характеристика положения векторов, при котором векторы расположены на одной прямой или на параллельных прямых.

Видео:Разложение вектора по двум неколлинеарным векторам | Геометрия 7-9 класс #85 | ИнфоурокСкачать

Разложение  вектора по двум неколлинеарным векторам | Геометрия 7-9 класс #85 | Инфоурок

Понятие коллинеарности векторов

Из определения следует, что понятие коллинеарный является синонимом понятию параллельный.

Векторы могут быть направлены в одну сторону или же в противоположные. Существует следующее правило для обозначения сонаправленных векторов b → и d → — b → ↑ ↑ d → и противоположно направленных — b → ↑ ↓ d → .

Узнать, являются ли векторы b → ( b 1 ; b 2 ) и d → ( d 1 ; d 2 ) коллинеарными, можно, проверив соблюдение одного из следующих условий:

  1. b → и d → — пара коллинеарных векторов, если можно найти такое число λ, что b → = λ · d → . Это условие называют леммой о коллинеарности векторов. Докажем ее. Рассмотрим случай, когда b → ↑ ↑ d → . Тогда число λ = b → d → . Векторы являются сонаправленными, так как λ>0. Из условия равенства длин векторов, получим λ · d → = λ · d → = b → d → · d → = b → , что и требовалось доказать. Случай, когда b → ↑ ↓ d → , доказывается аналогично. Возьмем λ = — b → d → , чтобы получить сонаправленные векторы b → и d → . Тогда λ · d → = λ · d → = — b → d → · d → = b → . Лемма доказана. Чтобы понять, являются ли векторы сонаправленными, нужно определить знак λ. Если λ>0, направления векторов совпадают, иначе — не совпадают.
  2. b → и d → — пара коллинеарных векторов, если соотношения их координат равны между собой: b 1 d 1 = b 2 d 2 . Способ применяется для векторов, среди координат которых нет нулей. Отметим, что данное условие идентично условию параллельности прямых, заданных каноническими уравнениями.

Видео:Разложение вектора по двум неколлинеарным векторам. Урок 4. Геометрия 9 классСкачать

Разложение вектора по двум неколлинеарным векторам. Урок 4. Геометрия 9 класс

Теорема о разложении векторов

Пусть на плоскости имеются три вектора b → , d → , c → . Тогда, если вектор d → выражается через b → и с → , говорят, что d → можно разложить по b → и c → . При этом вектор d → может быть как коллинеарным с одним из векторов, так и нет.

Сформулируем теорему о разложении векторов.

Любой вектор d → на плоскости можно представить в виде d → = x c → + y b → . При этом c → и b → — пара не коллинеарных векторов, и b → ≠ 0 , c → ≠ 0 . Такое представление называют разложением вектора.

Предположим, что d → коллинеарен b → .

Тогда согласно лемме: d → = y b → . Коэффициент x будет равным нулю, то есть d → = 0 · c → + y b → . Вектор разложен по векторам c → и b → . Теорема доказана.

В пространстве три вектора, два из которых коллинеарны, будут являться компланарными.

Рассмотрим случай, когда среди векторов d → , c → и b → нет коллинеарных.

На плоскости выберем точку M, из которой отложим отрезки M C → = c → , M D → = d → , M B = b → . Из точки D проведем прямую DC1||BM. Вектор d → можно найти по правилу треугольника, то есть d → = М С 1 → + D C 1 → .

D C 1 → и b → — пара коллинеарных векторов, так как лежат на параллельных прямых. Векторы M C 1 → и c → коллинеарны, поскольку лежат на одной прямой. Согласно лемме, D C 1 → = y · b → и M C 1 → = x · c → . Тогда d → = x · c → + y · b → , что и требовалось доказать.

Приведем доказательство, что x и y — однозначно определяемые коэффициенты. Предположим, что существуют x1 и y1, и d → = x 1 · c → + y 1 · b → . Получим, что x · c → + y · b → = x 1 · c → + y 1 · b → , или ( x — x 1 ) · c → + ( y — y 1 ) · b → = 0 .

По условию b → ≠ 0 и c → ≠ 0 , значит, равенство выполнимо только если x — x 1 = 0 и y — y 1 = 0 .

Тогда x = x 1 и y = y 1 , то есть x и y — единственно возможные коэффициенты разложения вектора d → .

Видео:10 класс, 43 урок, Компланарные векторыСкачать

10 класс, 43 урок, Компланарные векторы

Признаки и свойства коллинеарности векторов

Коллинеарные векторы на плоскости или в пространстве обладают следующими свойствами:

  • каждый вектор коллинеарен самому себе b → ↑ ↑ d → ;
  • если вектор b → коллинеарен вектору d → , то справедливо обратное утверждение: вектор d → коллинеарен вектору b → ( b → ↑ ↑ d → ⇔ d → ↑ ↑ b → ) ;
  • если ненулевой вектор b → коллинеарен ненулевому d → , а d → коллинеарен ненулевому c → , т о b → коллинеарен c → ;
  • нулевой вектор коллинеарен любому другому. Нулевым вектор называют вектор, длина которого равна нулю, а начальная и конечная точки совпадают;
  • скалярное произведение коллинеарных векторов b → и d → можно вычислить по формулам: b → ↑ ↑ d → ⇒ ( b → · d → ) = b → · d → и b → ↑ ↓ d → ⇒ ( b → · d → ) = — b → · d → .

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Примеры задач на коллинеарность векторов на плоскости

Определить, являются ли векторы f → ( 4 ; 10 ) и s → ( 2 ; 5 ) коллинеарными.

У векторов нет нулевых координат, проверим соблюдение условия коллинеарности векторов.

Для этого запишем отношения соответствующих координат по форме f 1 s 1 = f 2 s 2 .

Получим: 4 2 = 10 5 .

Ответ: векторы коллинеарные.

Даны три вектора с → ( 1 ; — 2 ) , b → ( 2 , x ) и d → ( 2 ; 2 ) , при этом с → и b → перпендикулярные.

Найти неизвестную координату x. Найти такое число α, при котором b → и d → будут коллинеарными.

Решение. Скалярное произведение перпендикулярных векторов равно нулю. Отсюда найдем неизвестную координату x:

c 1 b 1 + c 2 x = 0 ;

Запишем соотношения координат b → и d → , подставив найденное значение координаты х ( 1 ) :

b 1 d 1 = b 2 d 2 ⇔ 1 2 = 1 2 .

Как видно соотношения координат одинаковы при любом α ∈ R , где R – область действительных чисел.

Ответ: b → и d → коллинеарны при любом α ∈ R .

Дано два вектора d → = 3 , b → = 6 . Найти такое число α, чтобы зависимость вида d → = α b → отображала:

  • коллинеарные сонаправленные векторы;
  • коллинеарные противоположно направленные векторы.

Решение. Если векторы сонаправлены, то α>0. Получим: 3=6α. Откуда: α=0,5.

Видео:Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?Скачать

Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?

План-график размещения заказов на поставки товаров, выполнение работ, оказание услуг для нужд заказчиков

Сколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторах

УРОК: «РАЗЛОЖЕНИЕ ВЕКТОРА ПО ДВУМ НЕКОЛЛИНЕАРНЫМ ВЕКТОРАМ»

Тема: Разложение вектора по двум неколлинеарным векторам

Класс: 9 класс
Педагог: , заместитель директора по воспитательной работе, учитель математики и информатики.

Учреждение образования: МОУ Шуринская средняя общеобразовательная школа Кемеровской области
Город: Кемеровская область

Знать формулировку и доказательство леммы о коллинеарных векторах и теорему о разложении по двум неколлинеарным векторам;

Уметь решать задачи, применяя полученные знания.

I. Организационный момент: назвать цели урока.

III. Объяснение нового материала:

1. Разложение вектора по двум неколлинеарным векторам.

При решении задач часто возникает необходимость выразить какой-либо вектор через уже заданные векторы. Такая операция называется разложением вектора по неколлинеарным векторам.

Сколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторах

2. Лемма о коллинеарных векторах.

Лемма — это вспомогательное утверждение, с помощью которого доказывается следующая теорема или несколько теорем.

Теорема:Если векторы Сколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторахи Сколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторахколлинеарны и Сколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторах0, то существует такое число k, что Сколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторах= kСколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторах.

Так как рассматриваемые векторы, по условию коллинеарны, то они могут иметь одинаковые направления. Рассмотрим два случая, когда векторы Сколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторахи Сколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторахсонаправлены и противоположно направлены.

Сколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторахДоказательство:

1) Сколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторахСколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторахСколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторах. Возьмем число Сколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторах. Так как k ³0, то векторы k Сколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторахи Сколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторахсонаправлены (рисунок 1). Кроме того, их длины равны: ½kСколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторах½=½ k½½Сколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторах½ = Сколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторах½Сколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторах½=½Сколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторах½. Поэтому Сколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторах= kСколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторах

Сколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторах2) Сколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторахСколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторахСколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторах. Возьмем число Сколько случаев необходимо рассматривать в доказательстве леммы о коллинеарных векторах. Так как k

Видео:РАЗЛОЖЕНИЕ ВЕКТОРА ПО ДВУМ неколлинеарным ВЕКТОРАМ 9 классСкачать

РАЗЛОЖЕНИЕ ВЕКТОРА ПО ДВУМ неколлинеарным ВЕКТОРАМ 9 класс

Условие коллинеарности векторов

В статье ниже рассмотрим условия, при которых векторы считаются коллинеарными, а также разберем тему на конкретных примерах. И, прежде чем приступить к обсуждению, напомним некоторые определения.

Коллинеарные векторы – ненулевые векторы, лежащие на одной прямой или на параллельных прямых. Нулевой вектор считается коллинеарным любому другому.

Данное определение дает возможность убедиться в коллинеарности векторов в их геометрическом отображении, однако точность такого способа может иметь погрешности, например, в зависимости, от качества самого чертежа. Поэтому обратимся к алгебраическому толкованию: сформируем условие, которое будет явным признаком коллинеарности.

Согласно схемам операций над векторами умножение вектора на некоторое заданное число приводит к соответствующему сжатию или растяжению вектора при сохранении или смене направления. Тогда вектор b → = λ · a → коллинеарен вектору a → , где λ – некоторое действительное число. Справедливым будет и обратное утверждение: если вектор b → коллинеарен вектору a → , его можно представить в виде λ · a → . Это является необходимым и достаточным условием коллинеарности двух ненулевых векторов.

Для коллинеарности двух векторов необходимо и достаточно, чтобы они были связаны равенствами: b → = λ · a → или a → = μ · b → , μ ∈ R

Видео:Разложение вектора по двум неколлинеарным векторам. Координаты вектораСкачать

Разложение вектора по двум неколлинеарным векторам. Координаты вектора

Координатная форма условия коллинеарности векторов

Исходные данные: вектор a → задан в некоторой прямоугольной системе координат на плоскости и имеет координаты ( a x , a y ) , тогда, согласно полученному выше условию, вектор b → = λ · a → имеет координаты ( λ · a x , λ · a y ) .

По аналогии: если вектор a → задан в трехмерном пространстве, то он будет представлен в виде координат a = ( a x , a y , a z ) , а вектор b → = λ · a → имеет координаты ( λ · a x , λ · a y , λ · a z ) . Из полученных утверждений следуют условия коллинеарности двух векторов в координатном толковании.

  1. ​​​Для коллинеарности двух ненулевых векторов на плоскости необходимо и достаточно, чтобы их координаты были связаны соотношениями: b x = λ · a x b y = λ · a y или a x = μ · b x a y = μ · b y
  2. Для коллинеарности двух ненулевых векторов в пространстве необходимо и достаточно, чтобы их координаты были связаны соотношениями: b x = λ · a x b y = λ · a y b z = λ · a z или a x = μ · b x a y = μ · b y a z = μ · b z

Мы можем также получить еще одно условие коллинеарности векторов, опираясь на понятие их произведения.

Если ненулевые векторы a → = ( a x , a y , a z ) и b → = ( b x , b y , b z ) коллинеарны, то согласно векторному определению произведения a → × b → = 0 → . И это также соответствует равенству: i → j → k → a x a y a z b x b y b z = 0 → , что, в свою очередь, возможно только тогда, когда заданные векторы связаны соотношениями b → = λ · a → и a → = μ · b → , где μ — произвольное действительное число (на основании теоремы о ранге матрицы), что указывает на факт коллинеарности векторов.

Два ненулевых вектора коллинеарны тогда и только тогда, когда их векторное произведение равно нулевому вектору.

Рассмотрим применение условия коллинеарности на конкретных примерах.

Исходные данные: векторы a → = ( 3 — 2 2 , 1 ) и b → = ( 1 2 + 1 , 2 + 1 ) . Необходимо определить, коллинеарны ли они.

Решение

Выполним задачу, опираясь на условие коллинеарности векторов на плоскости в координатах: b x = λ · a x b y = λ · a y Подставив заданные значения координат, получим: b x = λ · a x ⇔ 1 2 + 1 = λ · ( 3 — 2 2 ) ⇒ λ = 1 ( 2 + 1 ) · ( 3 — 2 2 ) = 1 3 2 — 4 + 3 — 2 2 = 1 2 — 1 b y = λ · a y ⇔ 2 + 1 = 1 2 — 1 · 1 ⇔ ( 2 + 1 ) · ( 2 — 1 ) = 1 ⇔ 1 ≡ 1

Т.е. b → = 1 2 — 1 · a → , следовательно, заданные векторы коллинеарны.

Ответ: заданные векторы коллинеарны.

Исходные данные: векторы a → = ( 1 , 0 , — 2 ) и b → = ( — 3 , 0 , 6 ) . Необходимо убедиться в их коллинеарности.

Решение

Т.к. b x = λ · a x b y = λ · a y b z = λ · a z ⇔ — 3 = — 3 · 1 0 = — 3 · 0 6 = — 3 · ( — 2 ) , то верным будет равенство: b → = — 3 · a → , что является необходимым и достаточным условием коллинеарности. Таким образом, заданные векторы коллинеарны.

Найдем также векторное произведение заданных векторов и убедимся, что оно равно нулевому вектору: a → × b → = i → j → k → a x a y a z b x b y b z = i → j → k → 1 0 — 2 — 3 0 6 = i → · 0 · 6 + j → · ( — 2 ) · ( — 3 ) + k → · 1 · 0 — k → · 0 · ( — 3 ) — j → · 1 · 6 — i → · ( — 2 ) · 0 = 0 → Ответ: заданные векторы коллинеарны.

Исходные данные: векторы a → = ( 2 , 7 ) и b → = ( p , 3 ) . Необходимо определить, при каком значении p заданные векторы будут коллинеарны.

Решение

Согласно выведенному выше условию, векторы коллинеарны, если

b → = λ · a → ⇔ b x = λ · a x b y = λ · a y ⇔ p = λ · 2 3 = λ · 7

тогда λ = 3 7 , а p = λ · 2 ⇔ p = 6 7 .

Ответ: при p = 6 7 заданные векторы коллинеарны.

Также распространены задачи на нахождения вектора, коллинеарного заданному. Решаются они без затруднений, основываясь на условии коллинеарности: : достаточным будет взять произвольное действительное число λ и определить вектор, коллинеарный данному.

Исходные данные: вектор a → = ( 2 , — 6 ) . Необходимо найти любой ненулевой вектор, коллинеарный заданному.

Решение

Ответом может послужить, например, 1 2 · a → = ( 1 , — 3 ) или вектор 3 · a → = ( 6 , — 18 ) .

Ответ: вектор, коллинеарный заданному имеет координаты ( 1 , — 3 ) .

Исходные данные: вектор a → = ( 3 , 4 , — 5 ) . Необходимо определить координаты вектора единичной длины, коллинеарного заданному.

Решение

Вычислим длину заданного вектора по его координатам: a → = a x 2 + b x 2 + c x 2 = 3 2 + 4 2 + ( — 5 ) 2 = 5 2 Разделим каждую из заданных координат на полученную длину и получим единичный вектор, коллинеарный данному: 1 a → · a → = ( 3 5 2 , 4 5 2 , — 1 2 )

📸 Видео

Разложение вектора по 2 неколлинеарным векторам - bezbotvyСкачать

Разложение вектора по 2 неколлинеарным векторам - bezbotvy

§15 Коллинеарность векторовСкачать

§15 Коллинеарность векторов

Разложение вектора на неколлинеарные вектора.Скачать

Разложение вектора на неколлинеарные вектора.

10 класс, 45 урок, Разложение вектора по трем некомпланарным векторамСкачать

10 класс, 45 урок, Разложение вектора по трем некомпланарным векторам

Найдите разложение вектора по векторам (базису)Скачать

Найдите разложение вектора по векторам (базису)

Геометрия. 9 класс. Разложение любого вектора по двум неколлинеарным векторам /17.09.2020/Скачать

Геометрия. 9 класс. Разложение любого вектора по двум неколлинеарным векторам /17.09.2020/
Поделиться или сохранить к себе: