- теория по физике 🧲 магнетизм
- Направление силы Лоренца
- Работа силы Лоренца
- Полная сила, действующая на заряд
- Формула силы Лоренца
- Определение и формула силы Лоренца
- Направление силы Лоренца
- Следствия свойств силы Лоренца
- Формула силы Лоренца при наличии магнитного и электрического полей
- Единицы измерения силы Лоренца
- Примеры решения задач
- Сила Лоренца
- Сила Лоренца. Определение и формула
- Применение силы Лоренца
- Магнитное поле
- 🎦 Видео
теория по физике 🧲 магнетизм
Сила Лоренца — сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.
Модуль силы Лоренца обозначается как FЛ. Единица измерения — Ньютон (Н).
Модуль силы Лоренца численно равен отношению модуля силы F, действующий на участок проводника длиной l, к числу N заряженных частиц, упорядоченно движущихся на этом участке проводника:
Рассмотрим отрезок тонкого прямого проводника с током. Пусть длина отрезка ∆l и площадь поперечного сечения проводника S настолько малы, что вектор индукции магнитного поля → B можно считать неизменным в пределах этого отрезка проводника.
Сила тока I в проводнике связана с зарядом частиц q, концентрацией заряженных частиц (число зарядов в единице объема) и скоростью их упорядоченного движения v следующей формулой:
Модуль силы, действующей со стороны магнитного поля на выбранные элемент тока, равен:
F = | I | Δ l B sin . α
Подставляя сюда выражение, полученное для силы тока, получим:
F = | q n v S | Δ l B sin . α = | q | n v S Δ l B sin . α
Учтем, что число заряженных частиц в рассматриваемом объеме равно произведению величины этого объема на концентрацию самих частиц:
F = | q | v N B sin . α
Следовательно, на каждый движущийся заряд действует сила Лоренца, равная:
F Л = F N . . = | q | v N B sin . α N . . = | q | v B sin . α
α — угол между вектором скорости движущегося заряда и вектором магнитной индукции.
Пример №1. Определить силу, действующую на заряд 0,005 Кл, движущийся в магнитном поле с индукцией 0,3 Тл со скоростью 200 м/с под углом 45 o к вектору магнитной индукции.
F Л = | q | v B sin . α = 0 , 005 · 200 · 0 , 3 · √ 2 2 . . ≈ 0 , 2 ( Н )
Видео:МАГНИТНАЯ ИНДУКЦИЯ 11 класс физика сила Ампера сила ЛоренцаСкачать
Направление силы Лоренца
Сила Лоренца перпендикулярна вектору магнитной индукции и вектору скорости движущегося заряда. Ее направление определяется с помощью правила левой руки:
Если левую руку расположить так, чтобы составляющая магнитной индукции → B , перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90 градусов большой палец покажет направление действующей на заряд силы Лоренца.
Пример №2. Протон p имеет скорость → v , направленную горизонтально вдоль прямого длинного проводника с током I (см. рисунок). Куда направлена действующая на протон сила Лоренца?
В точке, в которой находится протон, вектор магнитной индукции направлен в сторону от наблюдателя. Это следует из правила буравчика. Теперь применим правило левой руки. Для этого четыре пальца левой руки направим в сторону движения протона — вправо. Ладонь развернем в сторону наблюдателя, чтобы линии магнитной индукции входили в нее перпендикулярно. Теперь отставим на 90 градусов большой палец. Он показывает вверх. Следовательно, сила Лоренца, действующая на протон, направлена вверх.
Видео:Урок 276. Сила Лоренца. Движение заряженных частиц в магнитном полеСкачать
Работа силы Лоренца
Поскольку вектор силы Лоренца направлен перпендикулярно скорости движения заряда, угол между перемещением этого заряда и этой силы равен 90 о . Работа любой силы определяется формулой:
Но так как косинус 90 о равен 0, сила Лоренца не совершает работу. Это значит, что сила Лоренца не влияет на модуль скорости перемещения заряда. Но она может менять вектора его скорости.
Видео:Правило ПРАВОЙ и ЛЕВОЙ руки. Сила Ампера и Сила Лоренца. ЕГЭ Физика. Николай НьютонСкачать
Полная сила, действующая на заряд
При решении задач, в которых заряженная частица находится одновременно в электрическом и магнитном полях, нужно учитывать, что не нее действует сразу две силы. Со стороны магнитного поля — сила Лоренца. Со стороны электрического поля — сила → F э л , действующая на неподвижный заряд, помещенный в данную точку поля. Она равна произведению этого заряда на напряженность электрического поля:
Следовательно, полная сила, действующая на заряд, равна:
→ F = → F э л + → F л = q → E + | q | → v → B sin . α
Пример №3. В пространстве, где существует одновременно однородное и постоянное электрическое и магнитное поля, по прямолинейной траектории движется протон. Известно, что напряженность электрического поля равна → E . Какова индукция → B магнитного поля?
Прямолинейное движение протона возможно в двух случаях:
- Вектор → E направлен вдоль траектории движения протона. Тогда вектор → B также должен быть направлен вдоль этой траектории, и его модуль может быть любым, так как магнитное поле на частицу действовать не будет.
- Векторы → E , → B и → v взаимно перпендикулярны, и сила, действующая на протон со стороны электрического поля, равна по модулю и противоположна по направлению силе Лоренца, действующей на протон со стороны магнитного поля (см. рисунок).
Заряд протона равен модулю заряда электрона — e . Сложим силы, действующие на протон по оси ОУ:
В скалярной форме:
Протон ускоряется постоянным электрическим полем конденсатора, напряжение на обкладках которого 2160 В. Затем он влетает в однородное магнитное поле и движется по дуге окружности радиуса 20 см в плоскости, перпендикулярной линиям магнитной индукции. Каков модуль вектора индукции магнитного поля? Начальной скоростью протона в электрическом поле пренебречь. Ответ выразить в мТл, округлив до десятых.
Видео:Сила Ампера | Сила Лоренца | ЕГЭ Физика | Николай НьютонСкачать
Формула силы Лоренца
Видео:Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??Скачать
Определение и формула силы Лоренца
Сила $bar$ , действующая на движущуюся заряженную частицу в магнитном поле, равная:
называется силой Лоренца (магнитной силой).
Исходя из определения (1) модуль рассматриваемой силы:
$$F=q v B sin alpha(2)$$
где $bar$ – вектор скорости частицы, q – заряд частицы, $bar$ – вектор магнитной индукции поля в точке нахождения заряда, $alpha$ – угол между векторами $bar$ и $bar$. Из выражения (2) следует, что если заряд движется параллельно силовым линиям магнитного поля,то сила Лоренца равна нулю. Иногда силу Лоренца стараясь выделить, обозначают, используя индекс: $bar_L$
Видео:Сила ЛоренцаСкачать
Направление силы Лоренца
Сила Лоренца (как и всякая сила) – это вектор. Ее направление перпендикулярно вектору скорости $bar$ и вектору $bar$ (то есть перпендикулярно плоскости, в которой находятся векторы скорости и магнитной индукции) и определяется правилом правого буравчика (правого винта) рис.1 (a). Если мы имеем дело с отрицательным зарядом, тонаправление силы Лоренца противоположно результату векторного произведения (рис.1(b)).
вектор $bar$ направлен перпендикулярно плоскости рисунков на нас.
Видео:Действие магнитного поля на движущийся заряд. Сила Лоренца | Физика 11 класс #3 | ИнфоурокСкачать
Следствия свойств силы Лоренца
Так как сила Лоренца направлена всегда перпендикулярно направлению скорости заряда, то ее работа над частицей равна нулю. Получается, что воздействуя на заряженную частицу при помощи постоянного магнитного поля нельзя изменить ее энергию.
Если магнитное поле однородно и направлено перпендикулярно скорости движения заряженной частицы, то заряд под воздействием силы Лоренца будет перемещаться по окружности радиуса R=const в плоскости, которая перпендикулярна вектору магнитной индукции. При этом радиус окружности равен:
где m – масса частицы,|q|- модуль заряда частицы, $gamma=frac<sqrt<1-frac<v^><c^>>>$ – релятивистский множитель Лоренца, c – скорость света в вакууме.
Сила Лоренца — это центростремительная сила. По направлению отклонения элементарной заряженной частицы в магнитном поле делают вывод о ее знаке (рис.2).
Видео:Сила ЛоренцаСкачать
Формула силы Лоренца при наличии магнитного и электрического полей
Если заряженная частица перемещается в пространстве, в котором находятся одновременно два поля (магнитное и электрическое), то сила, которая действует на нее, равна:
где $bar$ – вектор напряженности электрического поля в точке, в которой находится заряд. Выражение (4) было эмпирически получено Лоренцем. Сила $bar$, которая входит в формулу (4) так же называется силой Лоренца (лоренцевой силой). Деление лоренцевой силы на составляющие: электрическую $(bar = q bar)$ и магнитную $(bar=q[bar times bar])$ относительно, так как связано с выбором инерциальной системы отсчета. Так, если система отсчета будет двигаться с такой же скоростью $bar$, как и заряд, то в такой системе сила Лоренца, действующая на частицу, будет равна нулю.
Видео:ФИЗИКА С НУЛЯ — Сила Лоренца, Правило Левой рукиСкачать
Единицы измерения силы Лоренца
Основной единицей измерения силы Лоренца (как и любой другой силы) в системе СИ является: [F]=H
Видео:27 Сила ЛоренцаСкачать
Примеры решения задач
Задание. Какова угловая скорость электрона, который движется по окружности в магнитном поле с индукцией B?
Решение. Так как электрон (частица имеющая заряд) совершает перемещение в магнитном поле, то на него действует сила Лоренца вида:
где q=qe – заряд электрона. Так как в условии сказано, что электрон движется по окружности, то это означает, что $bar perp bar$, следовательно, выражение для модуля силы Лоренца примет вид:
Сила Лоренцаявляется центростремительной и кроме того, по второму закону Ньютона будет в нашем случае равна:
Приравняем правые части выражений (1.2) и (1.3), имеем:
Из выражения (1.3) получим скорость:
Период обращения электрона по окружности можно найти как:
Зная период, можно найти угловую скорость как:
Ответ. $omega=frac <q_B>$
Задание. Заряженная частица (заряд q, масса m) со скоростью vвлетает в область, где имеется электрическое поле напряженностью E и магнитное поле с индукцией B. Векторы $bar$ и $bar$ совпадают по направлению. Каково ускорение частицы в моментначалаперемещения в полях, если $bar uparrow bar uparrow bar$?
Решение. Сделаем рисунок.
На заряженную частицу действует сила Лоренца:
Магнитная составляющая имеет направление перпендикулярное вектору скорости ($bar$) и вектору магнитной индукции ($bar$). Электрическая составляющая сонаправлена с вектором напряжённости ($bar$) электрического поля. В соответствии со вторым законом Ньютона имеем:
Получаем, что ускорение равно:
Если скорость заряда параллельна векторам $bar$ и $bar$, тогда $[bar times bar]=0$, получим:
Видео:сила ЛоренцаСкачать
Сила Лоренца
Видео:сила Лоренца | правило левой руки | физика 11 классСкачать
Сила Лоренца. Определение и формула
Сила Ампера, воздействующая на часть проводника длиной Δ l с некоторой силой тока I , находящийся в магнитном поле B , F = I · B · Δ l · sin α может выражаться через действующие на конкретные носители заряда силы.
Пускай заряд носителя обозначается как q , а n является значением концентрации носителей свободного заряда в проводнике. В этом случае произведение n · q · υ · S , в котором S представляет собой площадь поперечного сечения проводника, эквивалентно току, протекающему в проводнике, а υ – это модуль скорости упорядоченного движения носителей в проводнике:
Формула силы Ампера может записываться в следующем виде:
F = q · n · S · Δ l · υ · B · sin α .
По причине того, что полное число N носителей свободного заряда в проводнике сечением S и длиной Δ l равняется произведению n · S · Δ l , действующая на одну заряженную частицу сила равняется выражению: F Л = q · υ · B · sin α .
Найденная сила носит название силы Лоренца. Угол α в приведенной формуле эквивалентен углу между вектором магнитной индукции B → и скоростью ν → .
Направление силы Лоренца, которая воздействует частицу с положительным зарядом, таким же образом, как и направление силы Ампера, находится по правилу буравчика или же с помощью правила левой руки. Взаимное расположение векторов ν → , B → и F Л → для частицы, несущей положительный заряд, проиллюстрировано на рис. 1 . 18 . 1 .
Рисунок 1 . 18 . 1 . Взаимное расположение векторов ν → , B → и F Л → . Модуль силы Лоренца F Л → численно эквивалентен произведению площади параллелограмма, построенного на векторах ν → и B → и заряда q .
Сила Лоренца направлена нормально, то есть перпендикулярно, векторам ν → и B → .
Сила Лоренца не совершает работы при движении несущей заряд частицы в магнитном поле. Данный факт приводит к тому, что модуль вектора скорости в условиях движения частицы так же не меняет своего значения.
Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость ν → лежит в плоскости, которая направлена нормально по отношению к вектору B → , то частица будет совершать движение по окружности некоторого радиуса, рассчитывающегося с помощью следующей формулы:
Сила Лоренца в данном случае применяется в качестве центростремительной силы (рис. 1 . 18 . 2 ).
Рисунок 1 . 18 . 2 . Круговое движение заряженной частицы в однородном магнитном поле.
Для периода обращения частицы в однородном магнитном поле будет справедливо следующее выражение:
T = 2 π R υ = 2 π m q B .
Данная формула наглядно демонстрирует отсутствие зависимости заряженных частиц заданной массы m от скорости υ и радиуса траектории R .
Видео:Урок 278. Задачи на силу Лоренца - 1Скачать
Применение силы Лоренца
Приведенное снизу соотношение представляет собой формулу угловой скорости движения заряженной частицы, происходящего по круговой траектории:
ω = υ R = υ q B m υ = q B m .
Оно носит название циклотронной частоты. Данная физическая величина не имеет зависимости от скорости частицы, из чего можно сделать вывод, что и от ее кинетической энергии она не зависит.
Данное обстоятельство находит свое применение в циклотронах, а именно в ускорителях тяжелых частиц (протонов, ионов).
На рисунке 1 . 18 . 3 приводится принципиальная схема циклотрона.
Рисунок 1 . 18 . 3 . Движение заряженных частиц в вакуумной камере циклотрона.
Дуант – это полый металлический полуцилиндр, помещенный в вакуумную камеру между полюсами электромагнита в качестве одного из двух ускоряющих D -образного электрода в циклотроне.
К дуантам приложено переменное электрическое напряжение, чья частота эквивалентна циклотронной частоте. Частицы, несущие некоторый заряд, инжектируются в центре вакуумной камеры. В промежутке между дуантами они испытывают ускорение, вызываемое электрическим полем. Частицы, находящиеся внутри дуантов, в процессе движения по полуокружностям испытывают на себе действие силы Лоренца. Радиус полуокружностей возрастает с увеличением энергии частиц. Как и во всех других ускорителях, в циклотронах ускорение заряженной частицы достигается путем применения электрического поля, а ее удержание на траектории с помощью магнитного поля. Циклотроны дают возможность ускорять протоны до энергии, приближенной к 20 М э В .
Однородные магнитные поля используются во многих устройствах самых разных типов назначений. В частности, они нашли свое применение так называемых масс-спектрометрах.
Масс-спектрометры – это такие устройства, использование которых позволяет нам измерять массы заряженных частиц, то есть ионов или ядер различных атомов.
Данные приборы используются для разделения изотопов (ядер атомов с одинаковым зарядом, но разными массами, к примеру, Ne 20 и Ne 22 ). На рис. 1 . 18 . 4 изображен простейшая версия масс-спектрометра. Вылетающие из источника S ионы проходят через несколько малых отверстий, которые в совокупности формируют узкий пучок. После этого они попадают в селектор скоростей, где частицы движутся в скрещенных однородных электрическом, создающимся между пластинами плоского конденсатора, и магнитном, возникающим в зазоре между полюсами электромагнита, полях. Начальная скорость υ → заряженных частиц направлена перпендикулярно векторам E → и B → .
Частица, которая движется в скрещенных магнитном и электрическом полях, испытывает на себе воздействия электрической силы q E → и магнитной силы Лоренца. В условиях, когда выполняется E = υ B , данные силы полностью компенсируют воздействие друг друга. В таком случае частица будет двигаться равномерно и прямолинейно и, пролетев через конденсатор, пройдет через отверстие в экране. При заданных значениях электрического и магнитного полей селектор выделит частицы, которые движутся со скоростью υ = E B .
После данных процессов частицы с одинаковыми значениями скорости попадают в однородное магнитное поле B → камеры масс-спектрометра. Частицы под действием силы Лоренца движутся в камере перпендикулярной магнитному полю плоскости. Их траектории представляют собой окружности с радиусами R = m υ q B ‘ . В процессе измерения радиусов траекторий при известных значениях υ и B ‘ , мы имеем возможность определить отношение q m . В случае изотопов, то есть при условии q 1 = q 2 , масс-спектрометр может разделить частицы с разными массами.
С помощью современных масс-спектрометров мы имеем возможность измерять массы заряженных частиц с точностью, превышающей 10 – 4 .
Рисунок 1 . 18 . 4 . Селектор скоростей и масс-спектрометр.
Видео:Урок 279. Задачи на силу Лоренца - 2Скачать
Магнитное поле
В случае, когда скорость частицы υ → имеет составляющую υ ∥ → вдоль направления магнитного поля, подобная частица в однородном магнитном поле будет совершать спиралевидное движение. Радиус такой спирали R зависит от модуля перпендикулярной магнитному полю составляющей υ ┴ вектор υ → , а шаг спирали p – от модуля продольной составляющей υ ∥ (рис. 1 . 18 . 5 ).
Рисунок 1 . 18 . 5 . Движение заряженной частицы по спирали в однородном магнитном поле.
Исходя из этого, можно сказать, что траектория заряженной частицы в каком-то смысле «навивается» на линии магнитной индукции. Данное явление используется в технике для магнитной термоизоляции высокотемпературной плазмы — полностью ионизированного газа при температуре порядка 10 6 K . При изучении управляемых термоядерных реакций вещество в подобном состоянии получают в установках типа «Токамак». Плазма не должна касаться стенок камеры. Термоизоляция достигается путем создания магнитного поля специальной конфигурации. На рисунке 1 . 18 . 6 в качестве примера проиллюстрирована траектория движения несущей заряд частицы в магнитной «бутылке» (или ловушке).
Рисунок 1 . 18 . 6 . Магнитная «бутылка». Заряженные частицы не выходят за ее пределы. Необходимое магнитное поле может быть создано с помощью двух круглых катушек с током.
Такое же явление происходит в магнитном поле Земли, которое защищает все живое от потока несущих заряд частиц из космического пространства.
Быстрые заряженные частицы из космоса, по большей степени от Солнца, «перехватываются» магнитным полем Земли, вследствие чего образуются радиационные пояса (рис. 1 . 18 . 7 ), в которых частицы, будто в магнитных ловушках, перемещаются туда и обратно по спиралеобразным траекториям между северным и южным магнитными полюсами за доли секунды.
Исключением являются полярные области, в которых часть частиц прорывается в верхние слои атмосферы, что может приводить к возникновению таких явлений, как «полярные сияния». Радиационные пояса Земли простираются от расстояний около 500 к м до десятков радиусов нашей планеты. Стоит вспомнить, что южный магнитный полюс Земли находится поблизости с северным географическим полюсом на северо-западе Гренландии. Природа земного магнетизма до сих пор не изучена.
Рисунок 1 . 18 . 7 . Радиационные пояса Земли. Быстрые заряженные частицы от Солнца, в основном электроны и протоны, попадают в магнитные ловушки радиационных поясов.
Возможно их вторжение в верхние слои атмосферы, служащее причиной возникновения «северных сияний».
Рисунок 1 . 18 . 8 . Модель движения заряда в магнитном поле.
Рисунок 1 . 18 . 9 . Модель Масс-спектрометра.
Рисунок 1 . 18 . 10 . Модель селектора скоростей.
🎦 Видео
ИНДУКЦИЯ МАГНИТНОГО ПОЛЯ сила Ампера правило левой рукиСкачать
Сила ЛоренцаСкачать
Движение заряженной частицы в магнитном поле | Физика ЕГЭ с Никитой АрхиповымСкачать
Урок 271. Модуль вектора магнитной индукции. Закон АмпераСкачать
Сила Лоренца. Эффект Холла. Движение заряда в магнитном поле.Скачать
Сила Ампера. 10 класс.Скачать