Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

Геометрия. 7 класс
Конспект урока

Свойства параллельных прямых

Перечень рассматриваемых вопросов:

  • Углы, образованные при пересечении двух прямых секущей.
  • Доказательство свойств параллельных прямых и их применение при решении задач.
  • Формулирование теоремы об углах с соответственно параллельными сторонами.

Две прямые на плоскости называются параллельными, если они не пересекаются.

Утверждение, обратное данной теореме– это утверждение, в котором условие является заключением теоремы, а заключение – условием теоремы.

  1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
  1. Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
  2. Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
  3. Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
  4. Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
  5. Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.

Теоретический материал для самостоятельного изучения.

Ранее мы узнали и научились применять признаки параллельности прямых.

Рассмотрим утверждения, обратные к теоремам, выражающим признаки параллельности двух прямых.

В любой теореме есть две части: условие (это то, что дано)и заключение (это то, что требуется доказать).

Утверждением, обратным данному, называется утверждение, в котором условием является заключение, а заключением – условие.

Итак, вспомним один из признаков параллельности прямых. Если при пересечении двух прямых секущей накрест лежащие углы, образованные этими прямыми и секущей, равны (это условие), то прямые параллельны (заключение).

Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

Сформулируем и докажем обратное утверждение.

Если две параллельные прямые пересечены секущей, то накрест лежащие углы,образованные этими прямыми и секущей,равны.

∠1 и ∠2 – накрест лежащие.

Доказательство:( метод от противного):

Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

Отложим ∠PMN =∠2 (накрест лежащие) → МР║b→ через точку М проходит 2 параллельные прямые прямой b (МР║b– доказательство;a║b– условие).→∠1=∠2.

Это противоречит теореме о единственности прямой параллельной данной и проходящей через точку.

Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой.

Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

С пересекает а, значит, и пересекает параллельную ей прямую b(по следствию из аксиомы параллельных прямых).→ с – секущая к прямым а и b→∠1 = ∠2 = 90° (по только что доказанному свойству параллельных прямых).→ с ┴ b.

Что и требовалось доказать.

Вспомним ещё один признак параллельности двух прямых. Если при пересечении двух прямых секущей соответственные углы равны(это условие), то прямые параллельны(заключение).

Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

Сформулируем и докажем обратное утверждение

Если две параллельные прямые пересечены секущей, то соответственные углы, образованные этими прямыми и секущей, равны.

Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

Дано:

Доказать:

По условию a║b→∠1 = ∠3 (накрест лежащие углы). → ∠2 = ∠3 (вертикальные углы).

Значит, ∠1 = ∠2, что и требовалось доказать.

Вспомним ещё один признак параллельности двух прямых. Если при пересечении двух прямых секущей сумма односторонних углов, образованных этими прямыми и секущей, равна 180° (условие), то прямые параллельны (заключение).

Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

Сформулируем и докажем обратное утверждение.

Если две параллельные прямые пересечены секущей, то сумма односторонних углов, образованных этими прямыми и секущей, равна 180°.

Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

Дано:a║b,

Доказать:

По условию a║b→∠1=∠2 ‑соответственные углы, (в силу предыдущей теоремы).

∠2+∠4=180° (по свойству смежных углов).

→ ∠1+∠4= 180°,что и требовалось доказать.

Материал для углубленного изучения темы.

Задача на доказательство.

Прямая m пересекает параллельные прямые а и b в точках А и В. Прямая р, проходящая через середину отрезка АВ, точку О, пересекает прямые а и b в точках С и D.

Докажем, что ОС=ОD.

По условию дано: а ║b, рՈа= А, рՈb = В, mՈа = D, mՈb = C.

Доказать: ОС = ОD.

Доказательство: рассмотрим, образовавшиеся при построении, треугольники AOD и BOC. Они равны по 2 признаку равенства треугольников, т.к. АО=ВО (О– середина отрезка АВ по условию); ∠1=∠2(накрест лежащие углы); ∠3=∠4 (вертикальные углы). →Все элементы равных треугольников соответственно равны → ОС=ОD. Что и требовалось доказать.

Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

Разбор заданий тренировочного модуля.

1. Три прямых а,р,с пересечены прямой k, при этом образуются соответственные углы: ∠1= 30°,∠2 = 40°,∠3= 30°,как показано на рисунке. Какие из прямых параллельны?

Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

На рисунке изображены прямые а, р, с, которые пересечены секущей k. При этом углы 1,2,3 соответственные. По условию: ∠3= ∠1= 30°,∠2 ≠ ∠1,∠2 ≠ ∠3.

Следовательно, прямые а и р параллельные, прямые а и с, р и с не параллельные(по свойствам параллельных прямых).

2. На рисунке прямые аb, при этомMO и ЕО – биссектрисы углов М и Е соответственно, пересекаются в точке О. Чему равна градусная мера угла МОЕ, если сумма углов в треугольнике равна 180°?

Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

По условию аb→∠М+∠Е=180° (по теореме о параллельных прямых об односторонних углах). Т.к. MO и ЕО – биссектрисы углов М и Е →∠М = 2∠ОМЕ,

∠М+∠Е =2∠ОМЕ +2∠МЕО =180°.

По условию сумма углов в треугольнике равна 180° → в ∆МОЕ.

Видео:7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать

7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущей

Теоремы об углах образованных двумя параллельными прямыми и секущей

Видео:Теоремы об углах, образованных двумя парал. прямыми и секущей | Геометрия 7-9 класс #30 | ИнфоурокСкачать

Теоремы об углах, образованных двумя парал. прямыми и секущей | Геометрия 7-9 класс #30 | Инфоурок

«Календарь счастливой жизни:
инструменты и механизм работы
для достижения своих целей»

Сертификат и скидка на обучение каждому участнику

Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

Видео:29. Теорема об углах, образованных двумя параллельными прямыми и секущейСкачать

29. Теорема об углах, образованных двумя параллельными прямыми и секущей

«Управление общеобразовательной организацией:
новые тенденции и современные технологии»

Свидетельство и скидка на обучение каждому участнику

Описание презентации по отдельным слайдам:

Теоремы об углах, образованных двумя параллельными прямыми и секущей.

Теорема: Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны. а в А В 1 2  1 =  2 c

Доказательство: A B C D M N 1 2 A B C D M N 1 2 K O Пусть прямые АВ и СD параллельны, МN — их секущая. Докажем, что накрест лежащие углы 1 и 2 равны между собой. Допустим, что  1 и  2 не равны. Проведем через точку О прямую КF. Тогда при точке О можно построить  KON, накрест лежащий и равный  2. Но если  KON =  2, то прямая КF будет параллельна СD. Получили, что через точку О проведены две прямые АВ и КF, параллельные прямой СD. Но этого не может быть. Мы пришли к противоречию, потому что допустили, что  1 и  2 не равны. Следовательно, наше допущение является неправильным и  1 должен быть равен  2, т. е. накрест лежащие углы равны. F

Теорема: Если две параллельные прямые пересечены секущей, то соответственные углы равны. а в А В 1 2  1 =  2

Доказательство: 2 а в А В 3 1 Пусть параллельные прямые а и b пересечены секущей АВ, то накрест лежащие  1 и  3 будут равны.  2 и  3 равны как вертикальные. Из равенств 1 = 3 и 2 = 3 следует, что 1 = 2. Теорема доказана

Теорема: Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°. а в А В 3 1  1 +  3 = 180°

Доказательство: Пусть параллельные прямые а и b пересечены секущей АВ, то соответственные  1 и  2 будут равны,  2 и  3 – смежные, поэтому  2 +  3 = 180°. Из равенств 1 = 2 и 2 + 3 = 180° следует, что 1 + 3 = 180°. Теорема доказана. 2 а в А В 3 1

Решение: 1. Пусть Х – это  2, тогда  1 = (Х+70°), т.к. сумма углов 1 и 2 = 180°, в силу того, что они смежные. Составим уравнение: Х+ (Х+70°) = 180° 2Х = 110 ° Х = 55° (Угол 2) 2. Найдем  1. 55° + 70° = 125° 3.  1 =  3, т.к. они вертикальные.  3 =  5, т.к. они накрест лежащие. 125°  5 =  7, т.к. они вертикальные.  2 =  4, т.к. они вертикальные.  4 =  6, т.к. они накрест лежащие. 55°  6 =  8, т.к. они вертикальные. Задача №1: A B 4 3 5 8 7 2 1 6 Условие: найдите все углы, образованные при пересечении двух параллельных A и B секущей C, если один из углов на 70° больше другого.

Решение: 1. Т.к. 4 = 45°, то2 = 45°, потому что 2 =4(как соответственные) 2.  3 смежен с  4, поэтому 3+4=180°, и из этого следует, что 3= 180° — 45°= 135°. 3.  1 =  3, т.к. они накрест лежащие.  1 = 135°. Ответ:  1=135°;  2=45°;  3=135°. Задача №2: A B 1 Условие: на рисунке прямые А II B и C II D,  4=45°. Найти углы 1, 2, 3. 3 2 4

Решение: 1. 1=2, т.к. они вертикальные, значит 2= 45°. 2.  3 смежен с  2, поэтому 3+2=180°, и из этого следует, что 3= 180° — 45°= 135°. 3.  4 + 3=180°, т.к. они односторонние.  4 = 45°. Ответ:  4=45°;  3=135°. Задача №3: A B 2 Условие: две параллельные прямые А и B пересечены секущей С. Найти, чему будут равны 4 и 3, если 1=45°. 3 4 1

Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 966 человек из 79 регионов

Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 340 человек из 71 региона

Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 690 человек из 74 регионов

Ищем педагогов в команду «Инфоурок»

Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

  • Давыдова Инна ЕвгеньевнаНаписать 12415 21.04.2014

Номер материала: 78254042147

    21.04.2014 1548
    21.04.2014 655
    21.04.2014 3795
    21.04.2014 1701
    21.04.2014 3655
    21.04.2014 15118
    21.04.2014 1447

Не нашли то, что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

В России разработают рекомендации по сопровождению студентов с ОВЗ

Время чтения: 2 минуты

Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

Россия направит $10,3 млн на развитие школьного питания в нескольких странах

Время чтения: 1 минута

Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

В Госдуме предложили продлить каникулы для школьников до 16 января

Время чтения: 1 минута

Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

Названы главные риски для детей на зимних каникулах

Время чтения: 3 минуты

Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

В Минпросвещения рассказали о формате обучения школьников после праздников

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Видео:29 Теоремы об углах, образованных двумя параллельными прямыми и секущей - Геометрия 7-9 АтанасянСкачать

29 Теоремы об углах, образованных двумя параллельными прямыми и секущей - Геометрия 7-9 Атанасян

Теоремы об углах, образованных двумя параллельными прямыми и секущей
презентация к уроку по геометрии (7 класс)

Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

Теоремы об углах,образованных двумя параллельными прямыми и секущей

Видео:Теоремы об углах, образованных двумя параллельными прямыми и секущей. Решение задач.Скачать

Теоремы об углах, образованных двумя параллельными прямыми и секущей. Решение задач.

Скачать:

ВложениеРазмер
aks_paral_pryam._teoremy_ob_uglah_pri_paral_pryam.pptx822.68 КБ

Сформулируйте теоремы об углах образованных двумя параллельными прямыми и секущей

Бесплатный марафон подготовки к ЕГЭ на зимних каникулах

Учи.Дома запускает бесплатный марафон в котором каждый день. В течении 5 дней утром ты будешь получать одно задание по выбранному предмету, а вечером его решение. Твоя задача, успеть выполнение задание до того как получишь ответ.

Бесплатно, онлайн, подготовка к ЕГЭ

Предварительный просмотр:

Видео:Теоремы об углах, образованных двумя параллельными прямыми и секущей.Скачать

Теоремы об углах, образованных двумя параллельными прямыми и секущей.

Подписи к слайдам:

Классная работа 15.01.19

Как называются углы при прямых m и l и секущей h ?

Если при пересечении двух прямых секущей соответственные углы равны , то прямые параллельны. Если при пересечении двух прямых секущей сумма односторонних углов равна 180 0 , то прямые параллельны. 1 2 а b c c а b 1 2 c а b 1 2 Если при пересечении двух прямых секущей накрест лежащие углы равны , то прямые параллельны. Признаки параллельности прямых

Аксиома параллельных прямых

Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной. Следствие 1. Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую . a II b , c ∩ b ⇒ c ∩ a а А Следствие 2. Если две прямые параллельны третьей прямой, то они параллельны. a II с , b II с ⇒ a II b а b с c b

Теоремы об углах, образованных двумя параллельными прямыми и секущей

Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны. а b M N Дано: a II b , MN — секущая . Доказать: 1= 2 (НЛУ) Доказательство: способ от противного. Допустим, что 1 2. Отложим от луча М N угол N МР, равный углу 2. По построению накрест лежащие углы N МР= ∠ 2 => РМ II b . Получили, что через точку М проходит две прямые (а и МР), параллельные прямой b . Это противоречит аксиоме параллельных прямых. Значит наше допущение неверно. 1= 2. Теорема доказана. 1 2 Р

1 2 b а c 3 Дано: а II b, c- секущая. Доказать: O У 1 + 2=180 0 . Доказательство: 3+ 2 =180 0 , т. к. они смежные. 1= 3, т. к. это НЛУ при а II b 3 + 2 =180 0 1 Теорема доказана. Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180 0 .

1 2 b а c 3 Дано: а II b, c- секущая. Доказать: СУ 1 = 2. Доказательство: 2 = 3, т. к. они вертикальные. 3 = 1, т. к. это НЛУ при а II b 1 = 3 = 2 Теорема доказана. 1 2 Если две параллельные прямые пересечены секущей, соответственные углы равны.

a b 34 0 1 a b 2 1 1 + 2 = 76 0 . a b 136 1 44 0 44 0 a II b a II b 2 2 3 a b 1 34 0 2 a II b 1: 2 = 4 : 5. a b 1 a II b 1 2 a II b № 1 № 2 № 3 № 4 № 5 с с с с с d

Домашнее задание: стр. 58 – 63, учить аксиомы, теоремы и их доказательства; решить задачи № 201, 202, 205.

Используя данные рисунка, найдите углы 1, 2 и 3. а b с d 20 0 120 0 160 0 1 2 3

Может ли еще один из семи остальных углов, образованных при пересечении прямых a и b с прямой d , быть равен 110 0 ? 60 0 ? Почему? а b m d 11 0 0 4 0 0 4 0 0 4 0 0 11 0 0 11 0 0 11 0 0

2 х+30 0 х 1 х 2= х+30 180 0 , т.к. ОУ при а II b ВОА=х, Составь уравнение… Найди сам угол. М N В A B Задача Если MN II AB, а угол 2 больше угла 1 на 30 0 , то угол 2 равен… Решение: 1= х, 2= х+30 1= ВОС, они вертикальные. О С

Тренировочные упражнения 2 1 b а c Дано: а II b , с – секущая 1 = 4 2 Найдите: 1 и 2 Угол 1 в 4 раза больше угла 2 х 4х

Тренировочные упражнения 2 1 b а c Дано: а II b , с – секущая 1 – 2 = 30 0 Найдите: 1 и 2 х х+30 b а c Угол 1 на 30 0 больше угла 2

Тренировочные упражнения 2 1 b а c Дано: а II b , с – секущая 2 = 0,8 1 Найдите: 1 и 2 Угол 2 составляет 0,8 части угла 1 х 0,8х

Тренировочные упражнения 2 1 b а c Дано: а II b , с – секущая 1 : 2 = 5 : 4 Найдите: 1 и 2 5х 4х 5 : 4 Пусть х – 1 часть

% Тренировочные упражнения 2 1 b а c Дано: а II b , с – секущая 2 составляет 80% от 1 Найдите: 1 и 2 х 0,8х

2 1 b а c Дано: а II b , с – секущая 1 : 2 = 5 : 4 Найдите: 1 и 2 5х 4х AB = BC, A=60 0 , CD – биссектриса угла ВСЕ. Докажите, что АВ II CD . A С B D E 60 0 60 0 120 0 60 0 60 0 биссектриса 5 : 4 Пусть х – 1 часть

На рисунке АС II В D и АС = АВ, МАС = 40 0 . Найдите СВ D. С D M A 40 0 2 1 3 B

4 3 2 1 E D A Построим CN II AB B На рисунке АВ II Е D . Докажите, что ВС D = B + D C Подсказка N

E D A Построим CN II AB B C Подсказка N 140 0 130 0 40 0 50 0 На рисунке АВ II Е D . C ВА = 140 0 , С DE = 130 0 Докажите, что ВС С D

6 4 5 На рисунке a II b , c – секущая, DM и DN – биссектрисы смежных углов, образованных прямыми a и c . DE = 5 ,8 см Найдите MN. с D M 40 0 2 1 3 E а b N 5 ,8 см ?

A D E 3 4 0 B C M На рисунке АВ ED и KM ED, ABE = 34 0 MN – биссектриса КМС Найдите EMN. K 146 0 3 4 0 73 0 73 0 ? N

A D E 48 0 B C M На рисунке АС II BD и KC II MD, ACK = 48 0 CDK в 3 раза больше EDM Найдите К DE. K 48 0 48 0 x 3x

📸 Видео

Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Геометрия 7 класс. Теоремы об углах, образованных двумя параллельными прямымСкачать

Геометрия 7 класс. Теоремы об углах, образованных двумя параллельными прямым

Геометрия/7 кл/Теоремы об углах, образованных двумя параллельными прямыми и секущей/11.03.22Скачать

Геометрия/7 кл/Теоремы об углах, образованных двумя параллельными прямыми и секущей/11.03.22

Пары углов в геометрииСкачать

Пары углов в геометрии

Свойства углов, образованных двумя параллельными прямыми и секущей Задачи на признаки параллельностСкачать

Свойства углов, образованных двумя параллельными прямыми и секущей  Задачи на признаки параллельност

Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)Скачать

Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)

Углы, образованные параллельными прямыми и секущейСкачать

Углы, образованные параллельными прямыми и секущей

7 кл. Геометрия. Аксиомы + теоремы об углах, образованных параллельными прямыми и секущейСкачать

7 кл. Геометрия. Аксиомы + теоремы об углах, образованных параллельными прямыми и секущей

Углы, образованные при пересечении двух прямых секущейСкачать

Углы, образованные при пересечении двух прямых секущей

№203. Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей сСкачать

№203. Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей с

УГЛЫ: Односторонние, Накрест Лежащие, Внутренние, Внешние // Теорема об углах — Геометрия 7 классСкачать

УГЛЫ: Односторонние, Накрест Лежащие, Внутренние, Внешние // Теорема об углах — Геометрия 7 класс

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

УГЛЫ ПРИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ И СЕКУЩЕЙСкачать

УГЛЫ ПРИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ И СЕКУЩЕЙ

Параллельные прямые (задачи).Скачать

Параллельные прямые (задачи).
Поделиться или сохранить к себе: