Конспект урока
Признаки параллельности прямых
Перечень рассматриваемых вопросов:
- Параллельные прямые.
- Накрест лежащие, соответственные, односторонние углы.
- Признаки параллельности прямых.
- Решение задач на доказательство параллельности прямых.
Две прямые на плоскости называются параллельными, если они не пересекаются.
Признаки параллельности двух прямых:
1. Если при пересечении двух прямых секущей, накрест лежащие углы равны, то прямые параллельны.
2. Если при пересечении двух прямых секущей, соответственные углы равны, то прямые параллельны.
3. Если при пересечении двух прямых секущей, сумма односторонних углов равна 180°, то прямые параллельны.
- Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
- Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
- Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
- Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
- Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
- Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9 классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.
Теоретический материал для самостоятельного изучения.
Вы уже знаете, что при пересечении двух прямых секущей образуются углы:
- накрест лежащие: 3 и 6, 4 и 5.
- односторонние: 3 и 5, 4 и 6.
- соответственные: 1 и 5, 3 и 7, 2 и 6; 4 и 8.
Прямая c называется секущей по отношению к прямым a и b, если она пересекает их в двух точках.
Рассмотрим и докажем признаки параллельности прямых.
Если при пересечении двух прямых секущей, накрест лежащие углы равны, то прямые параллельны.
Дано: прямые a и b, секущая AB, ∠ 1 = ∠ 2 накрест лежащие.
В этом случае две прямые, перпендикулярные к третьей не пересекаются, т. е. параллельны.
2 случай: ∠ 1= ∠ 2 ≠ 90°
1) Из середины O отрезка AB проведём перпендикуляр OH к прямой а. На прямой b от точки B отложим отрезок BH1, равный отрезку AH и проведем отрезок OH1.
2) AO = OB т. к. O середина AB; AH = BH1 по построению; ∠1 = ∠2 по условию. Тогда ΔOHA = ΔOH1B по первому признаку равенства треугольников.
Далее следует из равенства треугольников: ∠3 = ∠4 и ∠5 = ∠6.
3) Из равенства углов ∠3 и ∠4 следует, что точка H1 лежит на продолжении луча OH. Это значит, что точки H1, O, H лежат на одной прямой.
4) Из равенства ∠5 и ∠6 следует, что ∠6 = 90°. Это значит, что прямые a и b перпендикулярны к третьей НН1, а значит, по теореме о двух прямых, перпендикулярных к третьей, не пересекаются, т. е. параллельны.
Если при пересечении двух прямых секущей, соответственные углы равны, то прямые параллельны.
Дано: прямые a и b, секущая AB, ∠1 = ∠2 соответственные.
∠1 = ∠2 – по условию и ∠2 = ∠3 – по свойству вертикальных углов.
Значит, ∠1 = ∠3, это накрест лежащие углы, следовательно, a║b по теореме 1.
Если при пересечении двух прямых секущей, сумма односторонних углов равна 180°, то прямые параллельны.
Прямые a и b, секущая AB, ∠1 + ∠2 = 180° ‑ односторонние.
∠3 +∠2 = 180°– по свойству смежных углов, откуда ∠3 = 180° – ∠2.
∠1 + ∠2 = 180 ° по условию, откуда ∠1 = 180° – ∠2.
Тогда ∠1 = ∠3, это накрест лежащие углы, следовательно, a║b по теореме 1.
Разбор заданий тренировочного модуля.
Дано: ∠1= 60°, ∠2 = 120°.
- ∠2 и ∠3 смежные, ∠3 = 180° – 120° = 60° по свойству смежных углов;
- ∠3 = ∠1, это накрест лежащие углы;
- Значит, прямые a и b параллельны по 1 признаку параллельности прямых.
Ответ: прямые a и b параллельны по 1 признаку параллельности прямых.
Дано: ΔABC – равнобедренный, ∠А = 60°. CD – биссектриса ∠BCK.
Докажите: AB ║ CD.
- ∠A = ∠C = 60° – углы при основании равнобедренного Δ–ка равны.
- ∠BCK и ∠С смежные. ∠BCK = 180° – 60°= 120° – по свойству смежных углов.
- ∠BCD = ∠CDK = 60° т. к. CD – биссектриса делит угол пополам.
- Значит, ∠A = ∠DCK = 60° ‑ соответственные, следовательно, AB║CD по 2 признаку параллельности прямых.
Ответ: AB║CD по 2 признаку параллельности прямых.
Видео:Параллельные прямые | Математика | TutorOnlineСкачать
Признаки параллельных прямых
Признаки двух параллельных прямых:
1-й признак параллельности прямых:
Если пересечь прямые секущей линией и накрест лежащие углы окажутся равными, то прямые параллельны.
2-й признак параллельности прямых:
Если пересечь прямые секущей линией и соответственные углы окажутся равными, то прямые параллельны.
3-й признак параллельности прямых:
Если пересечь прямые секущей линией и сумма односторонних углов окажется равна 180°, то прямые параллельны.
Также можно добавить другие признаки параллельности двух прямых:
Если две прямые параллельны третьей, то эти прямые параллельны.
Каждый признак может действовать и в обратную сторону, давая нам дополнительную информацию. Например, 1-й признак:
Если параллельные прямые пересечены секущей, то накрест лежащие углы будут равными.
Попробуйте переформулировать и другие признаки параллельности прямых в обратную сторону.
Редактировать этот урок и/или добавить задание Добавить свой урок и/или задание
Добавить интересную новость
Добавить анкету репетитора и получать бесплатно заявки на обучение от учеников
user->isGuest) »]) . ‘ или ‘ . Html::a(‘зарегистрируйтесь’, [‘/user/registration/register’], [‘class’ => »]) . ‘ , чтобы получать деньги $$$ за каждый набранный балл!’); > else user->identity->profile->first_name) || !empty(Yii::$app->user->identity->profile->surname))user->identity->profile->first_name . ‘ ‘ . Yii::$app->user->identity->profile->surname; > else echo ‘Получайте деньги за каждый набранный балл!’; > ?>—>
При правильном ответе Вы получите 1 балл
Верно ли, что если пересечь прямые секущей линией и сумма односторонних углов окажется равна 360°, то прямые параллельны?
Выберите всего один правильный ответ.
Добавление комментариев доступно только зарегистрированным пользователям
Lorem iorLorem ipsum dolor sit amet, sed do eiusmod tempbore et dolore maLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborgna aliquoLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempbore et dLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborlore m mollit anim id est laborum.
28.01.17 / 22:14, Иван Иванович Ответить +5
Lorem ipsum dolor sit amet, consectetu sed do eiusmod qui officia deserunt mollit anim id est laborum.
28.01.17 / 22:14, Иван ИвановичОтветить -2
Lorem ipsum dolor sit amet, consectetur adipisicing sed do eiusmod tempboLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod temLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborpborrum.
28.01.17 / 22:14, Иван Иванович Ответить +5
Видео:7 класс, 25 урок, Признаки параллельности двух прямыхСкачать
Параллельность прямых
О чем эта статья:
10 класс, ЕГЭ/ОГЭ
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Видео:Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать
Определение параллельности прямых
Начнем с главного — определимся, какие прямые параллельны согласно евклидовой геометрии. Мы недаром упомянули Евклида, ведь именно в его трудах, написанных за 300 лет до н. э., до нас дошли первые упоминания о параллельности.
Параллельными называются прямые в одной плоскости, не имеющие точек пересечения, даже если их продолжать бесконечно долго. Обозначаются они следующим образом: a II b.
Казалось бы, здесь все просто, но со времен Евклида над определением параллельных прямых и признаками параллельности прямых бились лучшие умы. Особый интерес вызывал 5-й постулат древнегреческого математика: через точку, которая не относится к прямой, в той же плоскости можно провести только одну прямую, параллельную первой. В XIX веке российский математик Н. Лобачевский смог опровергнуть постулат и указать на условия, при которых возможно провести как минимум 2 параллельные прямые через одну точку.
Впрочем, поскольку школьная программа ограничена евклидовой геометрией, вышеуказанное утверждение мы принимаем как аксиому.
На плоскости через любую точку, не принадлежащую некой прямой, можно провести единственную прямую, которая была бы ей параллельна.
Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.
Видео:Задачи на доказательство по геометрии. Признаки параллельности прямых.Скачать
Свойства и признаки параллельных прямых
Есть ряд признаков, по которым можно определить, что одна прямая параллельна другой. К счастью, свойства и признаки параллельности прямых тесно связаны, поэтому не придется запоминать много информации.
Начнем со свойств. Для этого проведем третью прямую, пересекающую параллельные прямые — она будет называться секущей. В результате у нас образуется 8 углов.
Если секущая проходит через две параллельные прямые, то:
- два внутренних односторонних угла образуют в сумме 180°:
∠4 + ∠6 = 180°; ∠3 + ∠5 = 180°.
два внутренних накрест лежащих угла равны между собой:
два соответственных угла равны между собой:
∠1 = ∠5, ∠3 = ∠7, ∠4 = ∠8, ∠2 = ∠6.
Вышеуказанные свойства являются одновременно признаками, по которым мы можем сделать вывод о параллельности прямых. Причем достаточно установить и доказать лишь один признак — остальные будут к нему прилагаться.
А сейчас посмотрим, как все это помогает решать задачи и практиковаться в определении параллельности двух прямых.
Задача 1
Прямые MN и KP пересекают две другие прямые, образуя несколько углов. Известно, что ∠1 = 73°; ∠3 = 92°; ∠2 = 73°. Требуется найти величину ∠4.
Решение
Поскольку ∠1 и ∠2 являются соответственными, их равенство говорит о том, что MN II KP. Следовательно, ∠3 = ∠MPK = 92°.
Согласно другому свойству параллельных прямых ∠4 + ∠MPK = 180°.
Задача 2
Две параллельные прямые а и b удалены друг от друга на расстояние 27 см. Секущая к этим прямым образует с одной из них угол в 150°. Требуется найти величину отрезка секущей, расположенного между а и b.
Решение
Поскольку а II b, значит ∠MKD + ∠KDN = 180°.
Соответственно, ∠MKD = 180° — ∠KDN = 180° — 150° = 30°.
Теперь рассмотрим треугольник KDM. Мы знаем, что отрезок DM представляет собой расстояние между прямыми а и b, а значит, DM ┴ b и наш треугольник является прямоугольным.
Поскольку катет, противолежащий углу в 30°, равен ½ гипотенузы, DM = 1/2DK.
📸 Видео
1 признак параллельности прямых.Скачать
Параллельность прямых. 10 класс.Скачать
Признаки параллельности прямых. Первый. Доказательство.Скачать
Задачи. Признак параллельности прямых. Доказать, что прямые параллельны. По рисунку.Скачать
Доказательство 2 и 3 признаков параллельности прямых.Скачать
Параллельные прямые — Признак Параллельности Прямых и Свойства УгловСкачать
Признаки параллельности прямых. Видеоурок по геометрии 7 классСкачать
Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)Скачать
Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать
7 класс. Признаки параллельности прямыхСкачать
Признаки параллельности прямых. Геометрия 7 класс.Скачать
№186. На рисунке 106 прямые а и b пересечены прямой с. Докажите, что a||b, если: a)∠1=37°Скачать
Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать
7 класс, 28 урок, Аксиома параллельных прямыхСкачать
7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать
ПРИЗНАКИ ПАРАЛЛЕЛЬНОСТИ двух прямых. §14 геометрия 7 классСкачать