Содержание:
Четырехугольником называют фигуру, состоящую из четырех точек и четырех последовательно соединяющих их отрезков.
Никакие три из этих точек не должны лежать на одной прямой, а соединяющие их отрезки не должны иметь никаких других общих точек, кроме данных.
Любой четырехугольник ограничивает некоторую часть плоскости, являющуюся внутренней областью четырехугольника.
На рисунке 1 изображен четырехугольник
Вершины четырехугольника, являющиеся концами его стороны, называют соседними, несоседние вершины называют противолежащими. На рисунке 1 вершины и — соседние, и — противолежащие.
Стороны четырехугольника, имеющие общую вершину, называют соседними, а не имеющие общей вершины — противолежащими. На рис. 1 стороны и — соседние, и — противолежащие.
Сумму длин всех сторон четырехугольника называют его периметром. Периметр обозначают буквой Например, периметр четырехугольника можно обозначить как
Отрезки, соединяющие противолежащие вершины четырехугольника, называют диагоналями четырехугольника.
На рисунке 2 отрезки и — диагонали четырехугольника Каждый четырехугольник имеет две диагонали.
Углами четырехугольника называют углы и (рис. 1). Углы четырехугольника называют противолежащими, если их вершины — противолежащие вершины четырехугольника, и соседними, если их вершины — соседние вершины четырехугольника. На рисунке 1 углы и — противолежащие, и — соседние.
Один из углов четырехугольника может быть больше развернутого угла. Например, на рисунке 3 в четырехугольнике угол больше развернутого. Такой четырехугольник называют невыпуклым. Если все углы четырехугольника меньше 180°, его называют выпуклым. Диагонали выпуклого четырехугольника пересекаются (рис. 2), а невыпуклого не пересекаются (рис. 4).
Теорема (о сумме углов четырехугольника). Сумма углов четырехугольника равна 360°.
Доказательство:
Пусть — некоторый четырехугольник. Проведем в нем диагональ (рис. 5). Тогда Учитывая, что (как сумма углов (как сумма углов будем иметь:
Пример:
Найдите углы четырехугольника, если их градусные меры относятся как 3 : 10 : 4 : 1. Выпуклым или невыпуклым является этот четырехугольник?
Решение:
Пусть углы четырехугольника равны и Имеем уравнение откуда Следовательно, углы четырехугольника равны и Так как один из углов четырехугольника больше 180°, то этот четырехугольник — невыпуклый.
Ответ. 60°, 200°, 80°, 20°; невыпуклый.
- Четырехугольник и его элементы
- Параллелограмм. Свойства параллелограмма
- Пример №1
- Пример №2
- Признаки параллелограмма
- Пример №3
- Необходимо и достаточно
- Прямоугольник
- Ромб
- Квадрат
- Средняя линия треугольника
- Пример №4
- Трапеция
- Пример №5 (свойства равнобокой трапеции)
- Центральные и вписанные углы
- Пример №6 (свойство угла между касательной и хордой).
- Пример №7
- Описанная и вписанная окружности четырехугольника
- Пример №8 (признак принадлежности четырех точек одной окружности).
- Вписанные и описанные четырехугольники
- Теорема Фалеса
- Пример №9
- Серединный перпендикуляр — определение, свойства и формулы
- Общие сведения
- Аксиомы геометрии Евклида
- Информация о треугольниках
- Основные теоремы
- Важные свойства
- Пример решения задачи
- Четырехугольники
- теория по математике 📈 планиметрия
- Выпуклый четырехугольник
- Виды и свойства выпуклых четырехугольников
- Прямоугольник
- Квадрат
- Параллелограмм
- Трапеция
- Виды трапеций
- Средняя линия трапеции
- 💥 Видео
Видео:8 класс, 36 урок, Свойства серединного перпендикуляра к отрезкуСкачать
Четырехугольник и его элементы
На рисунке 1 отрезки АВ и ВС имеют только одну общую точку В, которая является концом каждого из них. Такие отрезки называют соседними. На рисунке 2 каждые два отрезка являются соседними.
Отрезки АВ и CD на рисунке 3 не являются соседними.
Рассмотрим фигуру, состоящую из четырех точек А, В, С, D и четырех отрезков АВ, ВС, CD, DA таких, что никакие два соседних отрезка не лежат на одной прямой и никакие два несоседних отрезка не имеют общих точек (рис. 4, а).
Фигура, образованная этими отрезками, ограничивает часть плоскости, выделенную на рисунке 4, б зеленым цветом. Эту часть плоскости вместе с отрезками АВ, ВС, CD и DA называют четырехугольником. Точки А, В, С, D называют вершинами четырехугольника, а отрезки АВ, ВС, CD, DA — сторонами четырехугольника.
На рисунке 5 изображены фигуры, состоящие из четырех отрезков АВ, ВС, CD, DA и части плоскости, которую они ограничивают. Однако эти фигуры не являются четырехугольниками. Поясните почему.
Стороны четырехугольника, являющиеся соседними отрезками, называют соседними сторонами четырехугольника. Вершины, являющиеся концами одной стороны, называют соседними вершинами многоугольника. Стороны, не являющиеся соседними, называют противолежащими сторонами четырехугольника. Несоседние вершины называют противолежащими вершинами четырехугольника.
На рисунке 6 изображен четырехугольник, в котором, например, стороны MQ и MN являются соседними, а стороны NP и MQ — противолежащими. Вершины Q и Р — соседние, а вершины М и Р — противолежащие.
Четырехугольник называют и обозначают по его вершинам. Например, на рисунке 4, б изображен четырехугольник ABCD, а на рисунке 6 — четырехугольник MNPQ. В обозначении четырехугольника буквы, стоящие рядом, соответствуют соседним вершинам четырехугольника. Например, четырехугольник, изображенный на рисунке 6, можно обозначить еще и так: PQMN, или MQPN, или NPQM и т. д.
Сумму длин всех сторон четырехугольника называют периметром четырехугольника.
Отрезок, соединяющий противолежащие вершины четырехугольника, называют диагональю. На рисунке 7 отрезки АС и BD — диагонали четырехугольника АВСD.
Углы ABC, BCD, CDA, DAB (рис. 8) называют углами четырехугольника ABCD. В этом четырехугольнике каждый из них меньше развернутого угла. Такой четырехугольник называют выпуклым. Однако существуют четырехугольники, в которых не все углы меньше развернутого. Например, на рисунке 9 угол В четырехугольника ABCD больше 180°. Такой четырехугольник называют невыпуклым 1 .
Углы АВС и ADC называют противолежащими углами четырехугольника ABCD (рис. 8, 9). Также противолежащими являются углы BAD и BCD.
Теорема 1.1. Сумма углов четырехугольника равна 360°.
Доказательство. Проведем в четырехугольнике диагональ, разбивающую его на два треугольника. Например, на рисунке 10
1 Более подробно с понятием «выпуклость» вы ознакомитесь в п. 19.
это диагональ BD. Тогда сумма углов четырехугольника ABCD равна сумме углов треугольников ABD и CBD. Поскольку сумма углов треугольника равна 180°, то сумма углов четырехугольника равна 360°.
Следствие. В четырехугольнике только один из углов может быть больше развернутого.
Докажите это свойство самостоятельно.
Пример:
Докажите, что длина любой стороны четырехугольника меньше суммы длин трех остальных его сторон.
Решение:
Рассмотрим произвольный четырехугольник ABCD (рис. 11). Покажем, например, что АВ 1 В учебнике задачи на построение не обязательны для рассмотрения.
В треугольнике АВС известны две стороны АВ и ВС и угол В между ними. Следовательно, этот треугольник можно построить. Теперь можем от лучей АВ и СВ отложить углы, равные углам четырехугольника при вершинах А и С.
Проведенный анализ показывает, как строить искомый четырехугольник.
Строим треугольник по двум данным сторонам четырехугольника и углу между ними. На рисунке 12 это треугольник АВС. Далее от лучей АВ и СВ откладываем два известных угла четырехугольника. Два построенных луча пересекаются в точке D. Четырехугольник ABCD — искомый.
Параллелограмм. Свойства параллелограмма
Определение. Параллелограммом называют четырехугольник, у которого каждые две противолежащие стороны параллельны.
На рисунке 19 изображен параллелограмм ABCD. По определению параллелограмма имеем:
Рассмотрим некоторые свойства параллелограмма.
Теорема 2.1. Противолежащие стороны параллелограмма равны.
Доказательство. На рисунке 19 изображен параллелограмм ABCD. Докажем, что АВ = CD и ВС = AD.
Проведем диагональ АС. Докажем, что треугольники АВС и CDA равны (рис. 20).
В этих треугольниках сторона АС — общая, углы 1 и 2 равны как накрест лежащие при параллельных прямых ВС и AD и секущей АС, углы 3 и 4 равны как накрест лежащие при параллельных прямых АВ и CD и секущей АС. Следовательно, треугольники АВС и CDA равны по второму признаку равенства треугольников. Отсюда АВ = CD и ВС = AD.
Теорема 2.2. Противолежащие углы параллелограмма равны.
Доказательство. На рисунке 19 изображен параллелограмм ABCD. Докажем, что
При доказательстве предыдущей теоремы было установлено, что (рис. 20). Отсюда Из равенства углов 1 и 2 и равенства углов 3 и 4 следует, что Следовательно,
Теорема 2.3. Диагонали параллелограмма точкой пересечения делятся пополам.
Доказательство. На рисунке 21 изображен параллелограмм ABCD, диагонали которого пересекаются в точке О. Докажем, что АО = ОС и ВО = OD.
Рассмотрим треугольники AOD и СОВ.
Имеем: равны как накрест лежащие при параллельных прямых AD и ВС и секущих АС и BD соответственно. Из теоремы 2.1 получаем: AD = ВС.
Следовательно, треугольники AOD и СОВ равны по второму признаку равенства треугольников. Отсюда АО = ОС, ВО = OD.
Определение. Высотой параллелограмма называют перпендикуляр, опущенный из любой точки прямой, содержащей сторону параллелограмма, на прямую, содержащую противолежащую сторону.
На рисунке 22 каждый из отрезков AF, QE, ВМ, PN, СК является высотой параллелограмма ABCD.
Из курса геометрии 7 класса вы знаете, что все точки одной из двух параллельных прямых равноудалены от другой прямой. Поэтому AF = QE и ВМ = PN = СК.
Говорят, что высоты ВМ, СК, PN проведены к сторонам ВС и AD, а высоты AF, QE — к сторонам АВ и CD.
Пример №1
Докажите, что прямые, содержащие высоты треугольника, переcекаются в одной точке.
Решение:
Через каждую вершину данного треугольника АВС проведем прямую, параллельную противолежащей стороне. Получим треугольник (рис. 23).
Из построения следует, что четырехугольники — параллелограммы. Отсюда Следовательно, точка А является серединой отрезка
Поскольку прямые параллельны, то высота АН треугольника АВС перпендикулярна отрезку Таким образом, прямая АН — серединный перпендикуляр стороны треугольника Аналогично можно доказать, что прямые, содержащие две другие высоты треугольника АВС, являются серединными перпендикулярами сторон треугольника
Так как серединные перпендикуляры сторон треугольника пересекаются в одной точке, то утверждение теоремы доказано.
Пример №2
Биссектриса тупого угла параллелограмма делит его сторону в отношении 2 : 1, считая от вершины острого угла. Найдите стороны параллелограмма, если его периметр равен 60 см.
Решение:
Пусть биссектриса тупого угла В параллелограмма ABCD (рис. 24) пересекает сторону AD в точке М. По условию AM : MD = 2 : 1.
Углы ABM и CBM равны по условию.
Углы СВМ и AM В равны как накрест лежащие при параллельных прямых ВС и AD и секущей ВМ.
Тогда Следовательно, треугольник ВАМ равнобедренный, отсюда АВ = AM.
Пусть MD = х см, тогда АВ =АМ = 2х см, AD = Зх см. Поскольку противолежащие стороны параллелограмма равны, то его периметр равен 2 (АВ + AD). Учитывая, что по условию периметр параллелограмма равен 60 см, получаем:
2 (2х + Зх) = 60;
х = 6.
Следовательно, АВ = 12 см, AD = 18 см.
Ответ: 12 см, 18 см.
Признаки параллелограмма
Определение параллелограмма позволяет среди четырехугольников распознавать параллелограммы. Этой же цели служат следующие три теоремы, которые называют признаками параллелограмма.
Теорема 3.1 (обратная теореме 2.1). Если в четырехугольнике каждые две противолежащие стороны равны, то этот четырехугольник — параллелограмм.
Доказательство. На рисунке 29 изображен четырехугольник ABCD, в котором АВ = CD и ВС = AD. Докажем, что четырехугольник ABCD — параллелограмм.
Проведем диагональ АС. Треугольники АВС и CDA равны по третьему признаку равенства треугольников. Отсюда и Углы 1 и 3 являются накрест лежащими при прямых ВС и AD и секущей АС. Следовательно, Аналогично из равенства следует, что
Таким образом, в четырехугольнике ABCD каждые две противолежащие стороны параллельны, поэтому этот четырехугольник — параллелограмм.
Теорема 3.2. Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Доказательство. На рисунке 30 изображен четырехугольник ABCD, в котором ВС = AD и Докажем, что четырехугольник ABCD — параллелограмм.
Проведем диагональ АС. В треугольниках АВС и CDA имеем: ВС = AD по условию, углы 1 и 2 равны как накрест лежащие при параллельных прямых ВС и AD и секущей АС, а сторона АС общая. Следовательно, треугольники АВС и CDA равны по первому признаку равенства треугольников. Отсюда АВ = CD. Значит, в четырехугольнике ABCD каждые две противолежащие стороны равны. Поэтому по теореме 3.1 четырехугольник ABCD — параллелограмм.
Теорема 3.3 (обратная теореме 2.3). Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Доказательство. На рисунке 31 изображен четырехугольник ABCD, в котором диагонали АС и BD пересекаются в точке О, причем АО = ОС и ВО = OD. Докажем, что четырехугольник ABCD — параллелограмм.
Поскольку углы ВОС и DOA равны как вертикальные, АО = ОС и ВО = OD, то треугольники ВОС и DOA равны по первому признаку равенства треугольников. Отсюда ВС = AD и Углы 1 и 2 являются накрест лежащими при прямых ВС и AD и секущей АС. Следовательно,
Таким образом, в четырехугольнике ABCD две противолежащие стороны равны и параллельны. По теореме 3.2 четырехугольник ABCD — параллелограмм.
Вы знаете, что треугольник можно однозначно задать его сторонами, то есть задача построения треугольника по трем сторонам имеет единственное решение. Иначе обстоит дело с параллелограммом. На рисунке 32 изображены параллелограммы стороны которых равны, то есть Однако очевидно, что сами параллелограммы не равны.
Сказанное означает, что если четыре рейки скрепить так, чтобы образовался параллелограмм, то полученная конструкция не будет жесткой.
Это свойство параллелограмма широко используют на практике. Благодаря его подвижности лампу можно устанавливать в удобное для работы положение, а раздвижную решетку — отодвигать на нужное расстояние в дверном проеме (рис. 33).
На рисунке 34 изображена схема механизма, являющегося частью паровой машины. При увеличении скорости вращения оси шары отдаляются от нее под действием центробежной силы, тем самым поднимая заслонку, регулирующую количество пара. Механизм назван параллелограммом Уатта в честь изобретателя первой универсальной паровой машины.
Пример №3
Докажите, что если в четырехугольнике каждые два противолежащих угла равны, то этот четырехугольник — параллелограмм.
Решение:
На рисунке 35 изображен четырехугольник ABCD, в котором Докажем, что четырехугольник ABCD — параллелограмм.
По теореме о сумме углов четырехугольника (теорема 1.1) Учитывая, что получим:
Поскольку углы А и В — односторонние углы при прямых AD и ВС и секущей АВ, а их сумма равна 180°, то
Аналогично доказываем, что
Следовательно, четырехугольник ABCD — параллелограмм.
Необходимо и достаточно
Из курса геометрии 7 класса вы узнали, что большинство теорем состоят из двух частей: условия (то, что дано) и заключения (то, что требуется доказать).
Если утверждение, выражающее условие, обозначить буквой А, а утверждение, выражающее заключение, — буквой В, то формулировку теоремы можно изобразить следующей схемой: если А, то В.
Например, теорему 2.3 можно сформулировать так:
Тогда теорему 3.3, обратную теореме 2.3, можно сформулировать так:
Часто в повседневной жизни в своих высказываниях мы пользуемся словами «необходимо», «достаточно». Приведем несколько примеров.
- Для того чтобы уметь решать задачи, необходимо знать теоремы.
- Если вы на математической олимпиаде правильно решили все предложенные задачи, то этого достаточно для того, чтобы занять первое место.
Употребление слов «необходимо» и «достаточно» тесно связано с теоремами.
Условие А является достаточным для заключения В. Вместе с тем делимость числа нацело на 5 (утверждение В) необходима для делимости числа нацело на 10 (утверждение А).
Приведем еще один пример:
В этой теореме утверждение А является достаточным условием для утверждения В, то есть для того, чтобы два угла были равны, достаточно, чтобы они были вертикальными. В этой же теореме утверждение В является необходимым условием для утверждения А, то есть для того, чтобы два угла были вертикальными, необходимо, чтобы они были равны. Отметим, что утверждение В не является достаточным условием для утверждения А. Действительно, если два угла равны, то это совсем не означает, что они вертикальные.
Итак, в любой теореме вида если А, то В утверждение А является достаточным для утверждения В, а утверждение В — необходимым для утверждения А.
Если справедлива не только теорема если А, то В, но и обратная теорема если В, то А, то А является необходимым и достаточным условием для В, а В — необходимым и достаточным условием для А.
Например, теоремы 3.3 и 2.3 являются взаимно обратными. На языке «необходимо — достаточно» этот факт можно сформулировать так: для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его диагонали точкой пересечения делились пополам.
Подчеркнем, что если в теореме есть слова «необходимо и достаточно», то она объединяет две теоремы: прямую и обратную (прямой теоремой может быть любая из двух теорем, тогда другая будет обратной). Следовательно, доказательство такой теоремы должно состоять из двух частей: доказательств прямой и обратной теорем. Теорему, объединяющую прямую и обратную теоремы, называют критерием.
Иногда вместо «необходимо и достаточно» говорят «тогда и только тогда». Например, взаимно обратные теоремы 2.1 и 3.1 можно объединить в следующий критерий:
- четырехугольник является параллелограммом тогда и только тогда, когда каждые две его противолежащие стороны равны.
Сформулируйте самостоятельно теорему 2.2 и ключевую задачу п. 3 в виде теоремы-критерия.
Прямоугольник
Параллелограмм — это четырехугольник, однако очевидно, что не каждый четырехугольник является параллелограммом. В этом случае говорят, что параллелограмм — это отдельный вид четырехугольника. Рисунок 42 иллюстрирует этот факт.
Существуют также отдельные виды параллелограммов.
Определение. Прямоугольником называют параллелограмм, у которого все углы прямые.
На рисунке 43 изображен прямоугольник ABCD.
Из определения следует, что прямоугольник имеет все свойства параллелограмма. В прямоугольнике:
- противолежащие стороны равны;
- диагонали точкой пересечения делятся пополам.
Однако прямоугольник имеет свои особые свойства, которыми не обладает параллелограмм, отличный от прямоугольника. Так, из определения следует, что все углы прямоугольника равны. Еще одно свойство прямоугольника выражает следующая теорема.
Теорема 4.1. Диагонали прямоугольника равны.
Доказательство. На рисунке 44 изображен прямоугольник ABCD. Докажем, что его диагонали АС и BD равны.
В прямоугольных треугольниках ABD и DCA катеты АВ и DC равны, а катет AD общий. Поэтому треугольники ABD и DCA равны по двум катетам. Отсюда BD = АС.
Определение прямоугольника позволяет среди параллелограммов распознавать прямоугольники. Этой же цели служат следующие две теоремы, которые называют признаками прямоугольника.
Теорема 4.2. Если один из углов параллелограмма прямой, то этот параллелограмм — прямоугольник.
Докажите эту теорему самостоятельно.
Теорема 4.3. Если диагонали параллелограмма равны, то этот параллелограмм — прямоугольник.
Доказательство. На рисунке 45 изображен параллелограмм ABCD, диагонали АС и BD которого равны. Докажем, что параллелограмм ABCD — прямоугольник.
Рассмотрим треугольники ABD и DCА. У них АВ = CD, BD =АС, AD — общая сторона. Следовательно, эти треугольники равны по третьему признаку равенства треугольников. Отсюда Эти углы являются односторонними при параллельных прямых АВ и DC и секущей AD. Таким образом, Тогда Поэтому по теореме 4.2 параллелограмм ABCD — прямоугольник.
Ромб
Вы уже знаете, что прямоугольник — это отдельный вид параллелограмма. Познакомимся еще с одним видом параллелограмма — ромбом.
Определение. Ромбом называют параллелограмм, у которого все стороны равны.
На рисунке 47 изображен ромб ABCD.
Из определения следует, что ромб имеет все свойства параллелограмма. В ромбе:
- противолежащие углы равны;
- диагонали точкой пересечения делятся пополам.
Однако ромб имеет и свои особые свойства.
Теорема 5.1. Диагонали ромба перпендикулярны и являются биссектрисами его углов.
Доказательство. На рисунке 48 изображен ромб ABCD, диагонали которого пересекаются в точке О. Докажем, что и
Поскольку по определению ромба все его стороны равны, то треугольник АВС равнобедренный (АВ = ВС). По свойству диагоналей параллелограмма АО = ОС. Тогда отрезок ВО является медианой треугольника АВС, а значит, и высотой и биссектрисой этого треугольника. Следовательно,
Распознавать ромбы среди параллелограммов позволяют не только определение ромба, но и следующие две теоремы, которые называют признаками ромба.
Теорема 5.2. Если диагонали параллелограмма перпендикулярны, то этот параллелограмм — ромб.
Теорема 5.3. Если диагональ параллелограмма является биссектрисой его угла, то этот параллелограмм — ромб.
Докажите эти теоремы самостоятельно.
Квадрат
Определение. Квадратом называют прямоугольник, у которого все стороны равны.
На рисунке 50 изображен квадрат ABCD.
Из приведенного определения следует, что квадрат — это ромб, у которого все углы равны. Значит, квадрат является отдельным видом и прямоугольника, и ромба. Это иллюстрирует рисунок 51. Поэтому квадрат обладает всеми свойствами прямоугольника и ромба. Отсюда следует, что:
- все углы квадрата прямые;
- диагонали квадрата равны, перпендикулярны и являются биссектрисами его углов.
Средняя линия треугольника
Определение. Средней линией треугольника называют отрезок, соединяющий середины двух его сторон.
На рисунке 56 отрезки MN, NE, ЕМ — средние линии треугольника АВС.
Теорема 7.1. Средняя линия треугольника, соединяющая середины двух его сторон, параллельна третьей стороне и равна ее половине.
Доказательство. Пусть MN — средняя линия треугольника АВС (рис. 57). Докажем, что
На прямой MN отметим точку Е так, что MN = NE (рис. 57). Соединим отрезком точки Е и С. Поскольку точка N является серединой отрезка ВС, то BN = NC. Углы 1 и 2 равны как вертикальные. Следовательно, треугольники MBN и ECN равны по первому признаку равенства треугольников. Отсюда Учитывая, что AM = ВМ, получим: ЕС = AM. Углы 3 и 4 являются накрест лежащими при прямых АВ и ЕС и секущей ВС. Тогда
Таким образом, в четырехугольнике АМЕС стороны AM и ЕС параллельны и равны. Следовательно, по теореме 3.2 четырехугольник АМЕС является параллелограммом. Отсюда то есть
Также ME = АС. Поскольку
Пример №4
Докажите, что середины сторон четырехугольника являются вершинами параллелограмма.
Решение:
В четырехугольнике ABCD точки М, N, К и Р — середины сторон АВ, ВС, CD и AD соответственно (рис. 58).
Отрезок MN — средняя линия треугольника АВС. По свойству средней линии треугольника
Отрезок РК — средняя линия треугольника ADC. По свойству средней линии треугольника
Поскольку то
Из равенств и получаем:
Следовательно, в четырехугольнике MNKP стороны MN и РК равны и параллельны, поэтому четырехугольник MNKP — параллелограмм.
Трапеция
Определение. Трапецией называют четырехугольник, у которого две стороны параллельны, а две другие не параллельны.
Каждый из четырехугольников, изображенных на рисунке 62, является трапецией.
Параллельные стороны трапеции называют основаниями, а непараллельные — боковыми сторонами (рис. 63).
В трапеции ABCD углы Аи D называют углами при основании AD, а углы В и С — углами при основании ВС.
Определение. Высотой трапеции называют перпендикуляр, опущенный из любой точки прямой, содержащей одно из оснований, на прямую, содержащую другое основание.
На рисунке 64 каждый из отрезков ВМ, EF, DK, PQ является высотой трапеции ABCD. Длины этих отрезков равны расстоянию между параллельными прямыми ВС и AD. Поэтому ВМ = EF = DK = PQ.
На рисунке 65 изображена трапеция ABCD, у которой боковые стороны АВ и CD равны. Такую трапецию называют равнобокой или равнобедренной.
Если боковая сторона трапеции является ее высотой, то такую трапецию называют прямоугольной (рис. 66).
Трапеция — это отдельный вид четырехугольника. Связь между четырехугольниками и их отдельными видами показана на рисунке 67.
Определение. Средней линией трапеции называют отрезок, соединяющий середины ее боковых сторон.
На рисунке 68 отрезок MN — средняя линия трапеции ABCD.
Теорема 8.1. Средняя линия трапеции параллельна основаниям и равна половине их суммы.
Доказательство. Пусть MN — средняя линия трапеции ABCD (рис. 69). Докажем, что
Проведем прямую BN и точку ее пересечения с прямой AD обозначим буквой Е.
Поскольку точка N — середина отрезка CD, то CN = ND. Углы 1 и 2 равны как вертикальные, а углы 3 и 4 равны как накрест лежащие при параллельных прямых ВС и АЕ и секущей CD. Следовательно, треугольники BCN и EDN равны по второму признаку равенства треугольников. Отсюда ВС = DE и BN = NE. Тогда отрезок MN — средняя линия треугольника АВЕ. Из этого следует, что то есть и Имеем:
Пример №5 (свойства равнобокой трапеции)
Докажите, что в равнобокой трапеции:
- углы при каждом основании равны;
- диагонали равны;
- высота трапеции, проведенная из вершины тупого угла, делит основание трапеции на два отрезка, меньший из которых равен половине разности оснований, а больший — половине суммы оснований (средней линии трапеции).
Решение:
Рассмотрим равнобокую трапецию ABCD (АВ = CD).
1) Проведем высоты ВМ и СК (рис. 70). Поскольку АВ = CD и ВМ = СК, то прямоугольные треугольники АМВ и DKC равны по катету и гипотенузе. Тогда
Имеем: Следовательно,
2) Рассмотрим треугольники ACD и DBA (рис. 71).
Имеем: АВ = CD, AD — общая сторона, углы BAD и CDA равны как углы при основании равнобокой трапеции. Следовательно, треугольники ACD и DBA равны по двум сторонам и углу между ними. Тогда АС = BD.
3) В четырехугольнике ВМКС (рис. 70) угол ВМК прямой. Следовательно, этот четырехугольник является прямоугольником. Отсюда МК = ВС.
Из равенства треугольников АМВ и DKC следует, что Тогда
Центральные и вписанные углы
Определение. Центральным углом окружности называют угол с вершиной в центре окружности.
На рисунке 76 угол АОВ — центральный. Стороны этого угла пересекают окружность в точках А и В. Эти точки делят окружность на две дуги, выделенные на рисунке 76 разным цветом.
Точки А и В называют концами дуги, они принадлежат каждой из выделенных дуг. Каждую из этих дуг можно обозначить так: (читают: «дуга АВ»).
Однако по записи невозможно отличить дуги на рисунке 76. Если на какой-нибудь из двух дуг отметить точку (на рисунке 77 это точка М), то понятно, что обозначение относится к «синей» дуге. Если на одной из двух дуг АВ отмечена точка, то договоримся, что обозначение относится к дуге, которой эта точка не принадлежит (на рисунке 77 это «зеленая» дуга).
Дуга АВ принадлежит центральному углу АОВ (рис. 77). В этом случае говорят, что центральный угол АОВ опирается на дугу АВ.
Каждая дуга окружности, как и вся окружность, имеет градусную меру. Градусную меру всей окружности считают равной 360°. Если центральный угол MON опирается на дугу MN (рис. 78), то градусную меру дуги MN считают равной градусной мере угла MON и записывают: (читают: «градусная мера дуги MN равна градусной мере угла MON). Градусную меру дуги MEN (рис. 78) считают равной 360° —
На рисунке 79 изображена окружность, в которой проведены два перпендикулярных диаметра АВ и CD.
Тогда Каждую из дуг АСВ и ADB называют полуокружностью. На рисунке 79 полуокружностями являются также дуги CAD и CBD.
О хорде, соединяющей концы дуги, говорят, что хорда стягивает дугу. На рисунке 80 хорда АВ стягивает каждую из дуг АВ и АКВ.
Любая хорда стягивает две дуги, сумма градусных мер которых равна 360°.
Определение. Вписанным углом окружности называют угол, вершина которого принадлежит окружности, а стороны пересекают окружность.
На рисунке 81 угол АВС — вписанный. Дуга АС принадлежит этому углу, а дуга АВС — не принадлежит. В таком случае говорят, что вписанный угол АВС опирается на дугу АС. Также можно сказать, что вписанный угол АВС опирается на хорду АС.
Теорема 9.1. Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.
Доказательство. О На рисунке 81 угол АВС вписанный.
Докажем, что
Рассмотрим три случая расположения центра О окружности относительно вписанного угла АВС.
Случай 1. Центр О принадлежит одной из сторон угла, например стороне ВС (рис. 82).
Проведем радиус ОА. Центральный угол АОС — внешний угол равнобедренного треугольника АВО (стороны ОА и ОВ равны как радиусы). Тогда Однако Отсюда
Случай 2. Центр О принадлежит углу, однако не принадлежит ни одной из его сторон (рис. 83).
Проведем диаметр ВК. Согласно доказанному
Имеем:
Случай 3. Центр О не принадлежит углу (рис. 84).
Для третьего случая проведите доказательство самостоятельно.
Следствие 1. Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 85).
Следствие 2. Вписанный угол, опирающийся на диаметр (полуокружность), — прямой (рис. 86).
Докажите эти свойства самостоятельно.
Пример №6 (свойство угла между касательной и хордой).
Отрезок АВ — хорда окружности с центром О (рис. 87). Через точку А проведена касательная MN. Докажите, что
Решение:
Проведем диаметр AD (рис. 87). Тогда угол В равен 90° как вписанный, опирающийся на диаметр AD. В прямоугольном треугольнике ABD Поскольку MN — касательная, то Тогда Получаем, что
Следовательно,
Имеем:
Пример №7
Постройте касательную к данной окружности, проходящую через данную точку, лежащую вне окружности.
Решение:
На рисунке 88 изображены окружность с центром О и точка М, лежащая вне этой окружности.
Пусть X — такая точка окружности, что прямая MX является касательной (рис. 88). Тогда угол МХО прямой. Следовательно, его можно рассматривать как вписанный в окружность с диаметром МО.
Проведенный анализ показывает, как провести построение.
Построим отрезок МО и разделим его пополам (рис. 89). Пусть точка К — его середина. Построим окружность радиуса КО с центром К. Обозначим точки пересечения построенной и данной окружностей буквами Е и F. Тогда каждая из прямых ME и MF является искомой касательной.
Действительно, угол МЕО равен 90° как вписанный угол, опирающийся на диаметр МО. Отрезок ОЕ — радиус данной окружности. Тогда по признаку касательной прямая ME — искомая касательная.
Описанная и вписанная окружности четырехугольника
Определение. Окружность называют описанной около четырехугольника, если она проходит через все его вершины.
На рисунке 103 изображена окружность, описанная около четырехугольника ABCD. В этом случае также говорят, что четырехугольник вписан в окружность.
Теорема 10.1. Если четырехугольник является вписанным в окружность, то сумма его противолежащих углов равна 180°.
Доказательство. Пусть четырехугольник ABCD вписан в окружность (рис. 103). Докажем, что
Поскольку углы А и С являются вписанными, то
Имеем:
Аналогично можно показать, что
Вы знаете, что около любого треугольника можно описать окружность. Однако не всякий четырехугольник обладает таким свойством. Например, нельзя описать окружность около параллелограмма, отличного от прямоугольника. Распознавать четырехугольники, около которых можно описать окружность, позволяет следующая теорема.
Теорема 10.2 (обратная теореме 10.1). Если в четырехугольнике сумма противолежащих углов равна 180°, то около него можно описать окружность.
Доказательство. Рассмотрим четырехугольник ABCD, в котором Докажем, что около него можно описать окружность.
Предположим, что около этого четырехугольника нельзя описать окружность. Опишем окружность около треугольника ABD. По предположению точка С не принадлежит этой окружности. Поэтому возможны два случая.
Случай 1. Точка С лежит вне описанной окружности треугольника ABD (рис. 104).
Пусть сторона ВС пересекает окружность в точке Четырехугольник вписан в окружность. Тогда по теореме 10.1 получаем, что Но по условию Отсюда Однако это равенство выполняться не может, так как по свойству внешнего угла треугольника
Итак, точка С не может лежать вне окружности, описанной около треугольника ABD.
Случай 2. Точка С лежит внутри описанной окружности треугольника ABD (рис. 105). Рассуждая аналогично, можно показать, что точка С не может лежать внутри рассматриваемой окружности. Убедитесь в этом самостоятельно.
Таким образом, предположив, что точка С не принадлежит окружности, описанной около треугольника ABD, мы получили противоречие.
Теорему 10.2 можно рассматривать как признак принадлежности четырех точек одной окружности.
Если четырехугольник вписан в окружность, то существует точка, равноудаленная от всех его вершин (центр описанной окружности). Чтобы найти эту точку, достаточно найти точку пересечения серединных перпендикуляров двух соседних сторон четырехугольника.
Определение. Окружность называют вписанной в четырехугольник, если она касается всех его сторон.
На рисунке 106 изображена окружность, вписанная в четырехугольник ABCD. В этом случае также говорят, что четырехугольник описан около окружности.
Теорема 10.3. Если четырехугольник является описанным около окружности, то суммы его противолежащих сторон равны.
Доказательство. Пусть четырехугольник ABCD описан около окружности (рис. 107). Докажем, что АВ + CD = ВС + AD.
Точки М, N, Р, К — точки касания окружности со сторонами четырехугольника.
Поскольку отрезки касательных, проведенных к окружности через одну точку, равны, то АК =АМ, ВМ = BN, CN = СР, DP = DK. Пусть АК = а, ВМ = b, CN = с, DP = d.
Тогда АВ + CD = a + b + c + d,
ВС + AD = b + c + a + d.
Следовательно, АВ + CD = ВС + AD.
Вы знаете, что в любой треугольник можно вписать окружность. Однако не всякий четырехугольник обладает таким свойством. Например, нельзя вписать окружность в прямоугольник, отличный от квадрата. Распознавать четырехугольники, в которые можно вписать окружность, позволяет следующая теорема.
Теорема 10.4. Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можно вписать окружность.
Доказательство. Рассмотрим выпуклый четырехугольник ABCD, в котором АВ + CD = ВС + AD. Докажем, что в него можно вписать окружность.
Пусть биссектрисы углов А и В пересекаются в точке О (рис. 108). Тогда точка О равноудалена от сторон АВ, ВС и AD. Следовательно, существует окружность с центром в точке О, которая касается этих трех сторон.
Предположим, что эта окружность не касается стороны CD. Тогда возможны два случая.
Случай 1. Сторона CD не имеет общих точек с построенной окружностью.
Проведем касательную параллельно стороне CD (рис. 108). Четырехугольник описан около окружности. Тогда по теореме 10.3 получаем, что
Однако по условию
Вычтем из равенства (2) равенство (1):
Отсюда имеем:
Это равенство противоречит утверждению, доказанному в ключевой задаче п. 1.
Итак, сторона CD должна иметь общие точки с рассматриваемой окружностью.
Случай 2. Сторона CD имеет две общие точки с построенной окружностью.
Рассуждая аналогично, можно показать, что сторона CD не может иметь две общие точки с построенной окружностью. Убедитесь в этом самостоятельно.
Таким образом, предположив, что построенная окружность не касается стороны CD, мы получили противоречие.
Если четырехугольник описан около окружности, то существует точка, равноудаленная от всех его сторон (центр вписанной окружности). Чтобы найти эту точку, достаточно найти точку пересечения биссектрис двух соседних углов этого четырехугольника.
Пример №8 (признак принадлежности четырех точек одной окружности).
Точки А, М, N, В таковы, что причем точки M и N лежат в одной полуплоскости относительно прямой АВ. Докажите, что точки А, М, N, В лежат на одной окружности.
Решение:
Пусть Около треугольника АМВ опишем окружность (рис. 109). Пусть С — произвольная точка окружности, не принадлежащая дуге АМВ. Тогда четырехугольник АСВМ вписан в окружность. Отсюда Имеем: Следовательно, по теореме 10.2 около четырехугольника ACBN можно описать окружность. Поскольку около треугольника АВС можно описать только одну окружность, то этой окружности принадлежат как точка М, так и точка N.
Сумма углов четырехугольника
- Сумма углов четырехугольника равна 360°.
Параллелограмм
- Параллелограммом называют четырехугольник, у которого каждые две противолежащие стороны параллельны.
Свойства параллелограмма
- Противолежащие стороны параллелограмма равны.
- Противолежащие углы параллелограмма равны.
- Диагонали параллелограмма точкой пересечения делятся пополам.
Высота параллелограмма
- Высотой параллелограмма называют перпендикуляр, опущенный из любой точки прямой, содержащей сторону параллелограмма, на прямую, содержащую противолежащую сторону.
Признаки параллелограмма
- Если в четырехугольнике каждые две противолежащие стороны равны, то этот четырехугольник — параллелограмм.
- Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.
- Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Прямоугольник
- Прямоугольником называют параллелограмм, у которого все углы прямые.
Особое свойство прямоугольника
- Диагонали прямоугольника равны.
Признаки прямоугольника
- Если один из углов параллелограмма прямой, то этот параллелограмм — прямоугольник.
- Если диагонали параллелограмма равны, то этот параллелограмм — прямоугольник.
Ромб
- Ромбом называют параллелограмм, у которого все стороны равны.
Особое свойство ромба
- Диагонали ромба перпендикулярны и являются биссектрисами его углов.
Признаки ромба
- Если диагонали параллелограмма перпендикулярны, то этот параллелограмм — ромб.
- Если диагональ параллелограмма является биссектрисой его угла, то этот параллелограмм — ромб.
Квадрат
- Квадратом называют прямоугольник, у которого все стороны равны.
Средняя линия треугольника
- Средней линией треугольника называют отрезок, соединяющий середины двух его сторон.
Свойство средней линии треугольника
- Средняя линия треугольника, соединяющая середины двух его сторон, параллельна третьей стороне и равна ее половине.
Трапеция
- Трапецией называют четырехугольник, у которого две стороны параллельны, а две другие не параллельны.
Высота трапеции
- Высотой трапеции называют перпендикуляр, опущенный из любой точки прямой, содержащей одно из оснований, на прямую, содержащую другое основание.
Средняя линия трапеции
- Средней линией трапеции называют отрезок, соединяющий середины ее боковых сторон.
Свойство средней линии трапеции
- Средняя линия трапеции параллельна основаниям и равна половине их суммы.
Центральный угол окружности
- Центральным углом окружности называют угол с вершиной в центре окружности.
Вписанный угол окружности
- Вписанным углом окружности называют угол, вершина которого принадлежит окружности, а стороны пересекают окружность.
Градусная мера вписанного угла окружности
- Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.
Свойства вписанных углов
- Вписанные углы, опирающиеся на одну и ту же дугу, равны.
- Вписанный угол, опирающийся на диаметр (полуокружность), — прямой.
Окружность, описанная около четырехугольника
- Окружность называют описанной около четырехугольника, если она проходит через все его вершины.
Свойство четырехугольника, вписанного в окружность
- Если четырехугольник является вписанным в окружность, то сумма его противолежащих углов равна 180°.
Признак четырехугольника, около которого можно описать окружность
- Если в четырехугольнике сумма противолежащих углов равна 180°, то около него можно описать окружность.
Окружность, вписанная в четырехугольник
- Окружность называют вписанной в четырехугольник, если она касается всех его сторон.
Свойство окружности, описанной около четырехугольника
- Если четырехугольник является описанным около окружности, то суммы его противолежащих сторон равны.
Признак четырехугольника, в который можно вписать окружность
- Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можно вписать окружность.
Вписанные и описанные четырехугольники
Четырехугольник называют вписанным в окружность, если все его вершины лежат на окружности. Окружность при этом называют описанной около четырехугольника (рис. 92).
Теорема 1 (свойство углов вписанного четырехугольника). Сумма противолежащих углов вписанного четырехугольника равна 180°.
Доказательство:
Пусть в окружность с центром вписан четырехугольник (рис. 92). Тогда (по теореме о вписанном угле).
Поэтому Тогда
Следствие 1. Если около трапеции можно описать окружность, то трапеция равнобокая.
Доказательство:
Пусть трапеция вписана в окружность, (рис. 93). Тогда Но в трапеции Поэтому Следовательно, — равнобокая трапеция (по признаку равнобокой трапеции).
Как известно из курса геометрии 7 класса, около любого треугольника можно описать окружность. Для четырехугольников это не так.
Теорема 2 (признак вписанного четырехугольника). Если в четырехугольнике сумма двух противолежащих углов равна 180°, то около него можно описать окружность.
Доказательство:
Пусть в четырехугольнике Проведем через точки и окружность. Докажем (методом от противного), что вершина четырехугольника также будет лежать на этой окружности.
1) Допустим, что вершина лежит внутри круга (рис. 94). Продолжим до пересечения с окружностью в точке Тогда (по условию) и (по свойству углов вписанного четырехугольника). Тогда Но — внешний, a — не смежный с ним внутренний угол треугольника Поэтому должен быть больше, чем
Пришли к противоречию, значит, наше предположение ошибочно, и точка не может лежать внутри круга.
2) Аналогично можно доказать, что вершина не может лежать вне круга.
3) Следовательно, точка лежит на окружности, ограничивающей круг (рис. 92), а значит около четырехугольника можно описать окружность.
Следствие 1. Около любого прямоугольника можно описать окружность.
Следствие 2. Около равнобокой трапеции можно описать окружность.
Заметим, что, как и в треугольнике, центром описанной около четырехугольника окружности является точка пересечения серединных перпендикуляров к его сторонам, поскольку она равноудалена от всех его вершин. Например, в прямоугольнике такой точкой является точка пересечения диагоналей.
Четырехугольник называют описанным около окружности, если все его стороны касаются окружности. Окружность при этом называют вписанной в четырехугольник (рис. 95).
Теорема 3 (свойство сторон описанного четырехугольника). В описанном четырехугольнике суммы противолежащих сторон равны.
Доказательство:
Пусть четырехугольник — описанный, — точки касания (рис. 96). По свойству отрезков касательных, проведенных из одной точки к окружности,
Ha рисунке 96 равные отрезки обозначены одинаковым цветом.
Тогда
Следовательно,
Как известно из курса геометрии 7 класса, в любой треугольник можно вписать окружность. Для четырехугольников это не так.
Теорема 4 (признак описанного четырехугольника). Если в четырехугольнике суммы противолежащих сторон равны, то в этот четырехугольник можно вписать окружность.
Доказательство этой теоремы является достаточно громоздким, поэтому его не приводим.
Следствие. В любой ромб можно вписать окружность.
Как и в треугольнике, центром окружности, вписанной в четырехугольник, является точка пересечения биссектрис его углов. Так как диагонали ромба являются биссектрисами его углов, то центр вписанной в ромб окружности — точка пересечения диагоналей.
Теорема Фалеса
Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.
Доказательство:
Пусть параллельные прямые пересекают стороны угла с вершиной (рис. 101), при этом Докажем, что
1) Проведем через точки и прямые и параллельные прямой (по условию), (как соответственные углы при параллельных прямых и (как соответственные углы при параллельных прямых и Поэтому
(по стороне и двум прилежащим к ней углам), а значит, (как соответственные стороны равных треугольников).
2) Четырехугольник — параллелограмм (по построению). Поэтому Аналогично -параллелограмм, поэтому
Таким образом, следовательно что и требовалось доказать.
Следствие. Параллельные прямые, пересекающие две данные прямые и отсекающие на одной из них равные отрезки, отсекают равные отрезки и на другой прямой.
С помощью линейки без делений по теореме Фалеса возможно разделить отрезок на любое количество равных частей.
Пример №9
Разделите отрезок на б равных частей.
Решение:
1) Пусть — данный отрезок (рис. 102). Проведем произвольный луч и отложим на нем циркулем последовательно 6 отрезков:
2) Через точки и проведем прямую.
3) Через точки — с помощью угольника и линейки проведем прямые, параллельные прямой Тогда по теореме Фалеса эти прямые разделят отрезок АВ на 6 равных частей:
Фалес Милетский — древнегреческий математик и астроном. По давней традиции его считают одним из так называемых семи мудрецов света, ведь он был одним из самых выдающихся математиков своего времени.
В молодые годы любознательный юноша отправился путешествовать по Египту с целью познакомиться с египетской культурой и Фалес не только быстро изучил то, что в то время уже было известно египетским ученым, но и сделал ряд собственных научных открытий. Он самостоятельно определил высоту египетских пирамид по длине их тени, чем очень удивил египетского фараона Амазиса, а вернувшись на родину, создал в Милети философскую школу.
По мнению историков Фалес был первым, кто познакомил греков с геометрией и стал первым греческим астрономом. Он предсказал солнечное затмение, произошедшее 28 мая 585 года до н. э.
На гробнице Фалеса высечена надпись: «Насколько мала эта гробница, настолько велика слава этого царя астрономов в области звезд».
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Четырехугольники и окружность
- Параллелограмм, его свойства и признаки
- Площадь параллелограмма
- Прямоугольник и его свойства
- Сумма углов треугольника
- Внешний угол треугольника
- Свойство точек биссектрисы угла
- Свойство катета прямоугольного треугольника, лежащего против угла в 30°
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Видео:Урок 12. Серединный перпендикуляр к отрезку (7 класс)Скачать
Серединный перпендикуляр — определение, свойства и формулы
Видео:Серединный перпендикуляр. 7 класс геометрия. Центр описанной окружности треугольникаСкачать
Общие сведения
Серединным перпендикуляром отрезка называют прямую, которая проходит под прямым углом через среднюю точку, т. е. середину отрезка. Для полного понимания материала следует остановиться на базовых элементах геометрии.
Точка — единица, при помощи которой строятся прямые, отрезки, лучи и фигуры. Прямая — простая фигура в форме бесконечной линии, состоящей из множества точек, лежащих в одной плоскости. Луч — базовая геометрическая фигура в виде бесконечной линии с одной стороны и точки-ограничителя — с другой. Иными словами, луч имеет начало, но не имеет конца. Отрезок — некоторая часть прямой (луча или другого отрезка), ограниченная двумя точками.
Кроме того, в геометрии серединный перпендикуляр встречается в треугольниках. Из определения можно сделать вывод, что им может быть прямая, отрезок и даже луч.
Аксиомы геометрии Евклида
Евклидовой геометрией называется наука о фигурах на плоскости, основанная на аксиомах и теоремах. Аксиома — базовое утверждение, не требующее доказательства. Оно используется для доказательства каких-либо теорем. Математики выделяют пять аксиом:
- Принадлежности.
- Порядка.
- Конгруэнтности.
- Параллельности прямых.
- Непрерывности.
Формулировка первой имеет такой вид: если существует в геометрическом пространстве плоскость, состоящая из множества точек, то через любые из них можно провести только одну прямую. Иными словами, можно взять произвольные две точки и провести через них одну прямую. Чтобы начертить еще одну прямую, следует взять две другие точки.
Следующее утверждение называется аксиомой порядка. Она гласит, что существует точка, которая лежит между двумя другими на прямой. Значение слова «конгруэнтность» не совсем понятно для новичка, однако нужно постепенно привыкать к терминологии. Оно обозначает «равенство». Третий геометрический факт формулируется таким образом: когда два отрезка или угла конгруэнтны третьему, тогда они равны между собой. Аксиома касается только отрезков и углов.
Чтобы убедиться в ее правильности, нужно разобрать следующий пример: длина первого отрезка составляет 10 см, второго — тоже, а третий равен первому. Необходимо доказать, что они равны между собой. Это делается очень просто:
- Вводятся обозначения: первый — MN, второй — OP и третий — RS.
- Устанавливаются значения по условию: MN = 10 см, ОР = 10 см, а RS = MN.
- Доказательство строится таким образом: MN = RS = 10 (см). Следовательно, отрезки равны, поскольку MN = ОР = RS = 10 (см).
Следует отметить, что данные действия оказались лишними — было потрачено время на понимание простой «истины». Параллельность прямых является также аксиомой и формулируется таким образом: если существует некоторая прямая на плоскости и точка, не лежащая на ней, то через последнюю можно провести только одну параллельную ей прямую.
И последняя аксиома называется Архимедовой. Ее формулировка имеет такой вид: для произвольных отрезков, лежащих на одной прямой, существует некоторая последовательность базовых элементов (точек), лежащих на одном и другом отрезках, таких, что заданные их части равны между собой. Иными словами, на одной прямой могут быть расположены равные между собой отрезки.
Информация о треугольниках
Треугольником является любая фигура, состоящая из трех вершин (точек) соединенных отрезками (сторонами), причем точки не лежат на одной прямой в одной плоскости. Они классифицируются по такому типу:
В первом случае фигуры делятся на остроугольные, тупоугольные и прямоугольные. Остроугольным называется треугольник, у которого все углы острые (меньше 90 градусов). У тупоугольного — один угол тупой (> 90), а в прямоугольном — один из углов равен 90 градусам. Следует отметить, что сумма градусных мер углов любого треугольника эквивалентна 180.
Когда стороны у треугольника неравны между собой, тогда его называют разносторонним. При равенстве двух боковых сторон он считается равнобедренным, у которого третья сторона — основание. Если все стороны равны, то значит, фигура является равносторонней или правильной.
У треугольника есть еще и другие параметры. Их называют медианой, биссектрисой и высотой. Первый параметр является отрезком, который проводится из любой вершины на среднюю точку стороны. Высота — часть прямой, которая проводится из произвольной вершины и перпендикулярна противоположной стороне. Биссектрисой называется прямая, делящая угол на две равные части.
Медиана, высота и биссектриса, проведенные из вершины к основанию, совпадают и эквивалентны серединному перпендикуляру в треугольниках равнобедренного и равностороннего типов. Это очень важно при решении задач. Еще одним признаком, по которому выполняется классификация — подобность треугольников. У них могут быть равными только углы и некоторые стороны. Они отличаются между собой по определенному параметру, который называется коэффициентом подобия. Последний влияет только на размерность сторон. Говорят, что фигуры подобны по определенному признаку (их всего три).
Видео:Что такое выпуклый четырёхугольник? | Математика 8 класс | Геометрия 8 класс | МегаШколаСкачать
Основные теоремы
Теорема — гипотеза (предположение), которую нужно доказать. Они применяются для оптимизации расчетов и вычисления отдельных параметров заданной фигуры. Кроме того, существуют следствия, полученные при доказательстве таких научных предположений. Эти аспекты упрощают и автоматизируют вычисления. Например, при вычислении площади треугольника нет необходимости выводить формулу, достаточно воспользоваться уже готовой.
Математики выделяют всего три теоремы о СП, которые могут значительно упростить расчеты. К ним можно отнести следующие:
- Прямая.
- Обратная.
- Пересечение в треугольнике.
Первая теорема называется прямой о СП. Она показывает, каким свойством обладают точки серединного перпендикуляра. Ее формулировка следующая: произвольная точка, которая взятая на перпендикуляре, удалена на равные расстояния от конечных точек отрезка, ограничивающих его на плоскости.
Для доказательства следует рассмотреть два прямоугольных треугольника с общей вершиной (искомая точка), общей стороной — катетом и равными катетами (по определению). Фигуры равны по одному из признаков равенства треугольников. Следовательно, их гипотенузы (стороны, равенство которых нужно доказать), равны между собой. Первая теорема доказана.
Следующая теорема — обратная: если точка удалена на равные расстояния от концов отрезка, то значит, она лежит на СП. В этом случае следует рассматривать равнобедренный треугольник, вершиной которого она является. Удалена точка на одинаковые расстояния от вершин основания по условию. Следовательно, этот факт доказывает, что полученный треугольник является равнобедренным, а в нем медиана, проведенная к основанию, является биссектрисой и высотой. Значит, она лежит на серединном перпендикуляре. Утверждение доказано.
Следующую теорему нет необходимости доказывать, поскольку известно, что в равнобедренном и равностороннем треугольниках высоты (медианы и биссектрисы) имеют общую точку пересечения. Они являются также и СП. Следовательно, это утверждение справедливо для них.
Видео:ОГЭ Задание 24 Площадь выпуклого четырехугольника с перпендикулярными диагоналямиСкачать
Важные свойства
Иногда трех теорем недостаточно для решения какой-либо сложной задачи. В этом случае необходимо знать еще и некоторые свойства СП:
- Центр описанной окружности вокруг треугольника соответствует точке их пересечения.
- Точка, взятая на СП, равноудалена от конечных точек отрезка и образует равнобедренный или равносторонний треугольник.
- В треугольниках равнобедренного и равностороннего типов им является высота, медиана и биссектриса.
В первом случае все зависит от типа треугольника. Если он является остроугольным, то центр лежит внутри него. Для тупоугольного — во внешнем пространстве, а в прямоугольном — на середине гипотенузы.
Следует отметить, что есть формулы для его расчета. Если предположить, что существует некоторый произвольный треугольник со сторонами а, b и с. Кроме того, для них выполняется условие a >= b >= c. Исходя из полученных данных, можно записать формулы перпендикуляров (Р), проведенных к определенной стороне:
- а: Pa = (2 * а * S) / (a^2 + b^2 — c^2).
- b: Pb = (2 * b * S) / (a^2 + b^2 — c^2).
- c: Pc = (2 * c * S) / (a^2 — b^2 + c^2).
Иными словами, Р является отношением удвоенного произведения стороны на площадь треугольника к сумме квадратов смежных сторон без квадрата противоположной. Кроме того, справедливы неравенства: Pa >= Pb и Pс >= Pb. Стороны — известные параметры, а вот площадь находится по некоторым соотношениям, которые выглядят следующим образом:
- Основание и высоту, проведенную к нему: S = (1/2) * a * Ha = (1/2) * b * Hb = (1/2) * c * Hc.
- Через радиус вписанной окружности: S = (1/2) * r * (a + b + c).
- Формулу Герона через полупериметр (р) и без него: S = [p * (p — a) * (p — b) * (p — c)]^(1/2) и S = 1/4 * [(a + b + c) * (b + c — a) * (а + c — b) * (a + b — c)]^(1/2).
В основном по таким соотношениям и нужно определить площадь. Полупериметр вычисляется таким образом: р = (а + b + с) / 2.
Бывают задачи, в которых необходимо просто подставить значения в формулу. Они называются простейшими. Однако встречаются и сложные. К ним относятся все виды без некоторых промежуточных параметров фигуры.
Видео:8 класс, 3 урок, ЧетырехугольникСкачать
Пример решения задачи
В интернете попадаются примеры решения простых задач, а сложные приходится решать самостоятельно, просить помощи у кого-нибудь или покупать на сайтах готовое решение. Для примера нужно решить задание с такими данными:
- Прямоугольник, изображенный на рисунке 1 с диагональю равной d.
- Серединный перпендикуляр, проведенный к диагонали прямоугольника.
- Точка Е делит сторону на отрезки а и 2а.
Нужно найти: углы, указанные на рисунке, стороны и ОЕ. Кроме того, дополнительные данные можно узнать из чертежа, который используется для решения задачи (рис. 1). К любому заданию нужно делать графическое представление, поскольку оно позволяет избежать ошибок при вычислении
Рисунок 1. Чертеж для решения задачи.
Числовых значений нет, тогда необходимо решать в общем виде. Углы можно найти по такому алгоритму:
- Нужно рассмотреть треугольник ВДЕ. Он является равнобедренным, поскольку ОЕ — СП, а диагональ — отрезок. Следовательно, ВЕ = ДЕ = 2а.
- Необходимо найти угол ЕВО. Сделать это проблемно. Рекомендуется обратить внимание на треугольник АВЕ.
- При помощи тригонометрической функции синуса можно вычислить значение угла АBE: sin(АBE) = a/2а = 0,5. Следовательно, arcsin(0,5) = 30 (градусов).
- Угол СВЕ вычисляется следующим образом: 90 — 30 = 60 (градусов).
- Следовательно, искомый угол равен 30, поскольку 90 — 30 — 30 = 30.
- В равнобедренном треугольнике углы при основании равны между собой: ЕДО = ЕВО = 30 (градусов).
Для нахождения сторон нужно составить уравнение в общем виде, обозначив неизвестную величину АВ литерой «х». Рассмотрев прямоугольный треугольник АВЕ, по теореме Пифагора можно вычислить АВ: x = [4a^2 + a^2]^(1/2) = a * [5]^(1/2). Следовательно, АВ = a * [5]^(1/2) и ВС = 3а. ОЕ находится по формуле: ОЕ = (2 * 2 * а * S) / (8 * a^2 — d^2). Можно править соотношение таким образом через прямоугольный треугольник ДОЕ: ОЕ = [4 * a^2 — (d^2) / 4]^(1/2).
Таким образом, нахождение серединного перпендикуляра позволяет значительно уменьшить объемы вычислений. Однако для этого нужно знать не только основные теоремы, но и его свойства.
Видео:№368. Найдите углы выпуклого четырехугольника, если они равны друг другу.Скачать
Четырехугольники
теория по математике 📈 планиметрия
Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.
Выпуклый четырехугольник
Четырехугольник называется выпуклым, если он находится в одной полуплоскости (то есть все его стороны расположены только с одной стороны прямой, прямая НЕ разбивает фигуру) относительно прямой, содержащей любую его сторону. На рисунке показан выпуклый четырехугольник АВСD.
Определение
Диагональ четырехугольника – отрезок, соединяющий любые две не соседние вершины. На рисунке 2 диагоналями являются отрезки АС и BD.
Видео:Серединный перпендикуляр отрезкаСкачать
Виды и свойства выпуклых четырехугольников
Сумма углов выпуклого четырехугольника равна 360 градусов.
Прямоугольник
Прямоугольник – это четырехугольник, у которого все углы прямые.
На рисунке видно, что углы А, В, C и D прямые, то есть равны 90 градусов. Свойства прямоугольника, его периметр и площадь
- Противоположные стороны прямоугольника равны (АВ=CD, ВС=АD).
- Диагонали прямоугольника равны (АС=ВD).
- Диагонали пересекаются и точкой пересечения делятся пополам.
- Периметр прямоугольника – это сумма длин всех сторон: Р=(а + b) × 2, где а и b соседние (смежные) стороны прямоугольника
- Площадь прямоугольника – это произведение длин соседних (смежных) сторон, формула для нахождения площади прямоугольника:
S=ab, где a и b соседние стороны прямоугольника.
Квадрат
Квадрат – это прямоугольник, у которого все стороны равны.
Свойства квадрата
- Диагонали квадрата равны (BD=AC).
- Диагонали квадрата пересекаются под углом 90 градусов.
- Диагонали квадрата точкой пересечения делятся пополам (BO=OD, AO=OC).
- Периметр квадрата – это сумма длин всех сторон. Так как все стороны квадрата равны, то его можно найти по формуле Р=4×а, где а — длина стороны квадрата.
- Площадь квадрата – это произведение длин соседних сторон, формула для нахождения площади прямоугольника S=a 2 , где a — длина стороны квадрата.
Параллелограмм
Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны.
Ромб – это параллелограмм, у которого все стороны равны.
Трапеция
Трапеция – это четырехугольник, у которого только две противоположные стороны параллельны. Параллельные стороны называются основаниями трапеции, а две другие стороны – боковыми сторонами трапеции.
Виды трапеций
Трапеция называется прямоугольной, если у нее боковая сторона перпендикулярна основаниям. Прямоугольная трапеция имеет два прямых угла.
углы А и С равны по 90 градусов
Средняя линия трапеции
Сделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N.
Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= BN.
Аналогично, через равенство углов CND, ADN и CDN доказывается, что треугольник CND является равнобедренным, у него CN=DC.
По условию задачи мы имеем параллелограмм, а по свойству параллелограмма – противолежащие стороны равны, т.е. АВ=СD, значит, АВ=BN=NC=CD. Таким образом, мы доказали, что BN=NC, т.е. N – середина ВС.
Ответ: см. решение
pазбирался: Даниил Романович | обсудить разбор | оценить
Найдите боковую сторону АВ трапеции ABCD, если углы АВС и BCD равны соответственно 30 0 и 135 0 , а СD =17
Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции.
Рассмотрим треугольник CНD, где CD=17, угол Н=90 0 , следовательно, треугольник прямоугольный. Найдем величину угла DCН, 135 0 – 90 0 =45 0 (так как провели высоту CН). Отсюда следует, что угол D=45 0 , так как треугольник прямоугольный. Значит, треугольник является равнобедренным (углы D и DCН равны по 45 градусов).
Найдем катеты CН и DН по теореме Пифагора, как катет равнобедренного треугольника по формуле с=а √ 2 , где с=17. Следовательно, CН = 17 √ 2 . . = 17 √ 2 2 . . .
Рассмотрим прямоугольный треугольник АВМ, где угол В равен 30 градусов, а катет АМ= CН= 17 √ 2 2 . . . Зная, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, найдем АВ (она будет в два раза больше катета). АВ=2 × 17 √ 2 2 . . =17 √ 2
Ответ: см. решение
pазбирался: Даниил Романович | обсудить разбор | оценить
Основания трапеции равны 7 и 11, а высота равна 7. Найти площадь этой трапеции.
Для нахождения площади трапеции в справочном материале есть формула
S = a + b 2 . . h , для которой у нас известны и основания, и высота. Подставим в неё эти значения и вычислим: S = 7 + 11 2 . . ∙ 7 = 18 2 . . ∙ 7 = 9 ∙ 7 = 63
pазбирался: Даниил Романович | обсудить разбор | оценить
Радиус вписанной в квадрат окружности равен 22 √ 2 . Найти диагональ этого квадрата.
Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже.
Обозначим диагональ АВ, точкой О – центр окружности, С – один из углов квадрата. Покажем расстояние от центра окружности до стороны квадрата – радиус r. Если радиус равен 22 √ 2 , то сторона квадрата будет в два раза больше, т.е. 44 √ 2 .
Рассмотрим прямоугольный треугольник АВС, который является равнобедренным (так как по условию дан квадрат) и боковые стороны равны по 44 √ 2 . Нам надо найти диагональ, т.е. гипотенузу данного треугольника. Вспомним, что для нахождения гипотенузы равнобедренного треугольника есть формула с=а √ 2 , где с – гипотенуза, а – катет. Подставим в неё наши данные:
с=44 √ 2 × √ 2 =44 √ 4 =44 × 2=88
pазбирался: Даниил Романович | обсудить разбор | оценить
Площадь четырехугольника можно вычислить по формуле S= d 1 d 2 s i n a 2 . . , где d 1 и d 2 длины диагоналей четырехугольника, а – угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d 1 , если d 2 =16, sin a= 2 5 . . , a S=12,8
Для выполнения данного задания надо подставить все известные данные в формулу:
12,8= d 1 × 16 × 2 5 . . 2 . .
В правой части можно сократить 16 и 2 на 2: 12,8= d 1 × 8 × 2 5 . . 1 . .
Теперь умножим 8 на дробь 2 5 . . , получим 3,2: 12,8= d 1 × 3 , 2
Найдем неизвестный множитель, разделив 12,8 на 3,2: d 1 =12,8:3,2=4
pазбирался: Даниил Романович | обсудить разбор | оценить
На плане изображен дачный участок по адресу: п. Сосновка, ул. Зеленая, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота.
При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв.м, а чуть подальше – жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение.
Задание №1
Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр без пробелов, запятых и других символов.
Объекты | яблони | теплица | сарай | жилой дом |
Цифры |
Решение
Для решения 1 задачи работаем с текстом и планом одновременно:
при входе на участок слева от ворот находится гараж (слева от входа находится объект под номером 2), итак, гараж — 2. Справа от ворот находится сарай площадью 24 кв.м (справа объект под номером 1), сарай – номер 1. А чуть подальше – жилой дом, следовательно, жилой дом – объект под номером 7. Напротив жилого дома расположены яблоневые посадки, на плане они обозначены цифрой 3. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, на плане видим, что к объекту под номером 4 ведет дорожка, значит баня – 4. Огород с теплицей внутри (огород отмечен на плане цифрой 6), в огороде расположена теплица – объект 5.
Итак, получили следующее:
1 – сарай; 2 – гараж; 3 – яблоневые посадки; 4 – баня; 5 – теплица; 6 – огород; 7 – жилой дом.
Заполняем нашу таблицу:
Объекты | яблони | теплица | сарай | жилой дом |
Цифры | 3 | 5 | 1 | 7 |
Записываем ответ: 3517
Задание №2
Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки и площадку между сараем и гаражом?
Решение
Для начала надо определить, как обозначены дорожки, которые надо выложить плиткой, на плане. На плане они показаны серым цветом (мы их обведём голубым цветом).
Теперь ищем в условии задачи, что сказано про плитки и дорожки: «Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м».
Сосчитаем, сколько клеточек (плиток) на плане, получаем 65. Зная по условию задачи 1, что плитки продаются в упаковках по 6 штук, разделим 65 на 6. Заметим, что 65 на 6 не делится, получается приблизительно 10,8…Учитывая, что упаковки не делятся, округляем до большего целого числа, нам понадобится 11 упаковок.
Задание №3
Найдите расстояние от жилого дома до теплицы (расстояние между двумя ближайшими точками по прямой) в метрах.
Решение
Из задания 1 знаем, что жилой дом обозначен на плане цифрой 7, а теплица цифрой 5. Следовательно, на плане находим эти объекты и расстояние между двумя ближайшими точками по прямой (обозначим это голубым цветом). Видим, что это расстояние – 2 клетки. На плане показано, что длина стороны одной клетки равна 2 метра, значит, расстояние между двумя этими объектами равно 4 метра.
Задание №4
Найдите площадь, которую занимает гараж. Ответ дайте в квадратных метрах.
Решение
Найдем на плане гараж, это объект под номером 2. Гараж имеет прямоугольную форму, следовательно, нам надо найти площадь прямоугольника. Для этого надо найти длину и ширину. На плане показано, что длина стороны 1 клетки равна 2 метра, значит, длина гаража равна 8 м (4 клетки), а ширина — 6 м (3 клетки).
Зная ширину и длину, находим площадь гаража: 6х8=48 кв.м
Задание №5
Хозяин участка решил покрасить весь забор вокруг участка (только с внешней стороны) в зелёный цвет. Площадь забора равна 232 кв.м., а купить краску можно в одном из двух ближайших магазинов. Цена и характеристика краски и стоимость доставки заказа даны в таблице.
Номер магазина | Расход краски | Масса краски в одной банке | Стоимость одной банки краски | Стоимость доставки заказа |
1 | 0,25 кг/кв.м | 6 кг | 3000 руб. | 500 руб. |
2 | 0,4 кг/кв.м | 5 кг | 1900 руб. | 800 руб. |
Во сколько рублей обойдется наиболее дешёвый вариант покупки с доставкой?
Решение
Определим, сколько килограммов краски понадобится для покраски забора площадью 232 кв.м:
1 магазин: 232х0,25=58 кг
2 магазин: 232х0,4=92,8 кг
Вычислим количество банок краски, которое надо купить, зная массу краски в 1 банке:
1 магазин: 58:6=9,7…; так как банки продаются целиком, то надо 10 банок (округляем до наибольшего целого числа)
2 магазин: 92,8:5=18,56; значит надо 19 банок.
Вычислим стоимость краски в каждом магазине плюс доставка:
1 магазин: 10х3000+500=30500 руб.
2 магазин: 19х1900+800=36900 руб.
Из решения задачи видно, что в 1 магазине купить краску выгоднее. Следовательно, наиболее дешёвый вариант покупки с доставкой будет стоить 30500 рублей.
Ответ: см. решение
pазбирался: Даниил Романович | обсудить разбор | оценить
💥 Видео
Перпендикуляр к прямой через заданную точку.Скачать
Геометрия Диагонали выпуклого четырехугольника ABCD перпендикулярны. Через середины сторон AB и ADСкачать
Выпуклый четырехугольникСкачать
Наклонная, проекция, перпендикуляр. 7 класс.Скачать
9 класс. Геометрия. ОГЭ. Окружность. Четырехугольники.Скачать
№478. В выпуклом четырехугольнике диагонали взаимно перпендикулярны. Докажите, что площадьСкачать
№429. Докажите, что выпуклый четырехугольник является параллелограммом, если сумма углов, прилежащихСкачать
№369. Найдите углы A, B и C выпуклого четырехугольника ABCD, еслиСкачать
Геометрия Найдите площадь выпуклого четырехугольника диагонали которого равны 3√3 см и 4 см а уголСкачать
Если диагонали выпуклого четырёхугольника равны ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
№370. Найдите углы выпуклого четырехугольника, если они пропорциональны числам 1, 2, 4, 5.Скачать
№371. Докажите, что выпуклый четырехугольник ABCD является параллелограммом,Скачать