Секущая виды углов при пересечении двух параллельных прямых третьей 7 класс

Углы при пересечении двух прямых

Если какие-нибудь две прямые пересечены третьей прямой, то пересекающая их прямая называется секущей по отношению к прямым, которые она пересекает.

При пересечении двух прямых третьей, образуется два вида углов: внешние и внутренние.

Секущая виды углов при пересечении двух параллельных прямых третьей 7 класс

На рисунке изображены две прямые a и b, пересекаемые прямой c. Прямая c по отношению к прямым a и b является секущей. Синим цветом на рисунке обозначены внешние углы (∠1, ∠2, ∠7 и ∠8), а красным — внутренние углы (∠3, ∠4, ∠5 и ∠6).

Также при пересечении двух прямых третьей, образовавшиеся углы получают попарно следующие названия:

Соответственные углы: ∠1 и ∠5, ∠3 и ∠7, ∠2 и ∠6, ∠4 и ∠8.Секущая виды углов при пересечении двух параллельных прямых третьей 7 класс
Внутренние накрест лежащие углы: ∠3 и ∠6, ∠4 и ∠5.Секущая виды углов при пересечении двух параллельных прямых третьей 7 класс
Внешние накрест лежащие углы: ∠1 и ∠8, ∠2 и ∠7.Секущая виды углов при пересечении двух параллельных прямых третьей 7 класс
Внутренние односторонние углы: ∠3 и ∠5, ∠4 и ∠6.Секущая виды углов при пересечении двух параллельных прямых третьей 7 класс
Внешние односторонние углы: ∠1 и ∠7, ∠2 и ∠8.Секущая виды углов при пересечении двух параллельных прямых третьей 7 класс

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Углы при пересечении параллельных прямых

Если секущая пересекает две параллельные прямые линии, то:

  • внутренние накрест лежащие углы равны;
  • сумма внутренних односторонних углов равна 180°;
  • соответственные углы равны;
  • внешние накрест лежащие углы равны;
  • сумма внешних односторонних углов равна 180°.

Видео:Углы при пересечении двух прямых секущей (третьей прямой). Виды углов урок 5. Геометрия 7 класс.Скачать

Углы при пересечении двух прямых секущей (третьей прямой). Виды углов урок 5. Геометрия 7 класс.

Урок-практикум по геометрии в 7-м классе «Свойства углов, образованных при пересечении параллельных прямых секущей»

Разделы: Математика

Цели урока: (Слайд №1)
Образовательные: закрепление умений использовать знания признаков, свойств углов, образованных при пересечении параллельных прямых секущей, научить видеть различные способы при решении одной задачи.
Воспитательные: воспитание познавательной активности, чувства ответственности, культуры общения.
Развивающие: развитие логического мышления учащихся, внимания, активности, чувство ответственности, самостоятельности, культуры общения.
Тип урока: урок обобщения и систематизации знаний учащихся.
Организационные формы: парная, дифференцированно групповая.
Технология: уровневая дифференциация.
Структура урока:

  • вводное слово учителя
  • самостоятельная работа групп №2, №3
  • актуализация знаний учащихся группы №1
    1. диктант
    2. тест
  • самостоятельная работа группы №1
  • защита у доски работ группами №2, №3

К данному уроку прилагается презентация (Приложение 1)

Ход урока:
Вводное слово учителя
Многие великие люди всех времен и народов говорили о значении математики. Не только ученые — математики, но и поэты, писатели, философы. Высказывание одного великого мыслителя: «ни одно человеческое исследование не может называться истинной наукой, если оно не прошло через математические доказательства» Леонардо да Винчи (слайд №2).
Предметом исследования нашего урока будут углы, образованные при пересечении параллельных прямых секущей. Задачей нашего урока является обобщение и систематизация ваших знаний по данной теме.
В ходе групповой, парной, самопроверки вы еще раз закрепите знания свойств углов, образованных при пересечении параллельных прямых секущей (слайд №3).

Организация работы групп

  • класс делится на 3 группы по уровню их обученности
  • каждая группа получает определенные задания
  1. группа №3 — уровень «4-5». Решают по 3 задачи с последующей защитой у доски.
    Выполняют в тетрадях и сдают учителю.

    Задания для групп с уровнем обученности «4-5»

    Видео:7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать

    7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущей

    Геометрия. Урок 2. Углы

    Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

    Секущая виды углов при пересечении двух параллельных прямых третьей 7 класс

    Видео-уроки на канале Ёжику Понятно. Подпишись!

    Содержание страницы:

    • Углы

    Видео:Углы, образованные при пересечении двух прямых секущейСкачать

    Углы, образованные при пересечении двух прямых секущей

    Понятие угла

    Угол – геометрическая фигура, образованная двумя лучами, выходящими из одной точки.

    Стороны угла – лучи, которые образуют угол.

    Вершина угла – точка, из которой выходят лучи.

    Секущая виды углов при пересечении двух параллельных прямых третьей 7 класс

    Угол называют тремя заглавными латинскими буквами, которыми обозначены вершина и две точки, расположенные на сторонах угла.

    Важно: в названии буква, обозначающая вершину угла, стоит между двумя буквами, обозначающими точки на сторонах угла. Так, угол, изображенный на рисунке, можно назвать: ∠ A O B или ∠ B O A , но ни в коем случае не ∠ O A B , ∠ O B A , ∠ A B O , ∠ B A O .

    Величину угла измеряют в градусах. ∠ A O B = 24 ° .

    Видео:Пары углов в геометрииСкачать

    Пары углов в геометрии

    Виды углов:

    Видео:Углы при пересечении двух прямых третьейСкачать

    Углы при пересечении двух прямых  третьей

    Биссектриса угла

    Биссектриса угла – это луч с началом в вершине угла, делящий его на два равных угла.

    Биссектриса угла – это геометрическое место точек, равноудаленных от сторон угла.

    O D – биссектриса угла ∠ A O B . Она делит этот угол на два равных угла.

    ∠ A O D = ∠ B O D = ∠ A O B 2

    Точка D – произвольная точка на биссектрисе. Она равноудалена от сторон O A и O B угла ∠ A O B .

    Видео:УГЛЫ ПРИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ И СЕКУЩЕЙСкачать

    УГЛЫ ПРИ ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ И СЕКУЩЕЙ

    Углы, образованные при пересечении двух прямых

    Вертикальные углы – пара углов, у которых стороны одного угла являются продолжением сторон второго.

    Свойство: вертикальные углы равны.

    Смежные углы – пара углов, у которых одна сторона общая, а две другие стороны расположены на одной прямой.

    Свойство: сумма смежных углов равна 180 ° .

    ( 1 ) и ( 3 )
    ( 2 ) и ( 4 )

    называются вертикальными .

    По свойству вертикальных углов:

    ∠ C O D = ∠ A O B
    ∠ B O D = ∠ A O C

    ( 1 ) и ( 2 )
    ( 2 ) и ( 3 )
    ( 3 ) и ( 4 )
    ( 4 ) и ( 1 )

    называются смежными .

    По свойству смежных углов:

    ∠ C O D + ∠ D O B = 180 ° ∠ D O B + ∠ B O A = 180 ° ∠ B O A + ∠ A O C = 180 ° ∠ A O C + ∠ C O D = 180 °

    Видео:№203. Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей сСкачать

    №203. Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей с

    Углы, образованные при пересечении двух прямых секущей

    Прямая, пересекающая две заданные прямые, называется секущей этих прямых.

    Существует пять видов углов, которые образуются при пересечении двух прямых секущей.

    ( 1 ) и ( 5 )
    ( 2 ) и ( 6 )
    ( 3 ) и ( 7 )
    ( 4 ) и ( 8 )

    называются соответственными .
    (Легко запомнить: они соответствуют друг другу, похожи друг на друга).

    ( 3 ) и ( 5 )
    ( 4 ) и ( 6 )

    называются внутренними односторонними .
    (Легко запомнить: лежат по одну сторону от секущей, между двумя прямыми).

    ( 1 ) и ( 7 )
    ( 2 ) и ( 8 )

    называются внешними односторонними .
    (Легко запомнить: лежат по одну сторону от секущей по разные стороны от двух прямых).

    ( 3 ) и ( 6 )
    ( 4 ) и ( 5 )

    называются внутренними накрест лежащими .
    (Легко запомнить: лежат между двумя прямыми, расположены наискосок друг относительно друга).

    ( 1 ) и ( 8 )
    ( 2 ) и ( 7 )

    называются внешними накрест лежащими .
    (Легко запомнить: лежат по разные стороны от двух прямых, расположены наискосок друг относительно друга).

    Если прямые, которые пересекает секущая, параллельны , то углы имеют следующие свойства:

    • Соответственные углы равны.
    • Внутренние накрест лежащие углы равны.
    • Внешние накрест лежащие углы равны.
    • Сумма внутренних односторонних углов равна 180 ° .
    • Сумма внешних односторонних углов равна 180 ° .

    Видео:Геометрия 7 класс | Вертикальные, смежные, накрест лежащие и другие углы (теория) | МАТЕМАТИКА 2021Скачать

    Геометрия 7 класс | Вертикальные, смежные, накрест лежащие и другие углы (теория) | МАТЕМАТИКА 2021

    Сумма углов многоугольника

    Сумма углов произвольного n -угольника вычисляется по формуле:

    S n = 180 ° ⋅ ( n − 2 )

    где n – это количество углов в n -угольнике.

    Пользуясь этой формулой, можно вычислить сумму углов для произвольного n -угольника.

    Сумма углов треугольника: S 3 = 180 ° ⋅ ( 3 − 2 ) = 180 °

    Сумма углов четырехугольника: S 4 = 180 ° ⋅ ( 4 − 2 ) = 360 °

    Сумма углов пятиугольника: S 5 = 180 ° ⋅ ( 5 − 2 ) = 540 °

    Так можно продолжать до бесконечности.

    Правильный многоугольник – это выпуклый многоугольник, у которого все стороны равны и все углы равны.

    На рисунках изображены примеры правильных многоугольников:

    Секущая виды углов при пересечении двух параллельных прямых третьей 7 класс Секущая виды углов при пересечении двух параллельных прямых третьей 7 классСекущая виды углов при пересечении двух параллельных прямых третьей 7 класс

    Чтобы найти величину угла правильного n -угольника , необходимо сумму углов этого многоугольника разделить на количество углов.

    α n = 180 ° ⋅ ( n − 2 ) n

    Видео:Углы, образованные при пересечении двух прямых секущейСкачать

    Углы, образованные при пересечении двух прямых секущей

    Примеры решений заданий из ОГЭ

    Модуль геометрия: задания, связанные с углами

    📽️ Видео

    7 класс, 11 урок, Смежные и вертикальные углыСкачать

    7 класс, 11 урок, Смежные и вертикальные углы

    ОСНОВНЫЕ ПОНЯТИЯ ГЕОМЕТРИИ 4. Углы, образованные при пересечении двух параллельных прямых третьейСкачать

    ОСНОВНЫЕ ПОНЯТИЯ ГЕОМЕТРИИ 4. Углы, образованные при пересечении двух параллельных прямых третьей

    Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать

    Геометрия 7 класс (Урок№18 - Параллельные прямые.)

    Что такое угол? Виды углов: прямой, острый, тупой, развернутый уголСкачать

    Что такое угол? Виды углов: прямой, острый, тупой,  развернутый угол

    №201. Сумма накрест лежащих углов при пересечении двух параллельных прямых секущей равна 210Скачать

    №201. Сумма накрест лежащих углов при пересечении двух параллельных прямых секущей равна 210

    Теорема о пересечении двух параллельных прямых третьейСкачать

    Теорема о пересечении двух параллельных прямых третьей

    Урок 4 Угол. Виды углов (7 класс)Скачать

    Урок 4  Угол.  Виды углов (7 класс)

    SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnlineСкачать

    SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnline

    Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)Скачать

    Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)

    УГЛЫ: Односторонние, Накрест Лежащие, Внутренние, Внешние // Теорема об углах — Геометрия 7 классСкачать

    УГЛЫ: Односторонние, Накрест Лежащие, Внутренние, Внешние // Теорема об углах — Геометрия 7 класс
Поделиться или сохранить к себе: