Ромб это четырехугольник в котором все стороны

Что такое ромб: определение, свойства, признаки

В данной публикации мы рассмотрим определение, свойства и признаки (с рисунками) одной из основных геометрических фигур – ромба.

Видео:Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 классСкачать

Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 класс

Определение ромба

Ромб – это фигура на плоскости; разновидность параллелограмма, у которого все четыре стороны равны и попарно параллельны. Обычно ромб обозначается названиями его вершин (например, ABCD), а длина его стороны – строчной латинской буквой (например, a).

Ромб это четырехугольник в котором все стороны

Примечание: квадрат является частным случаем ромба.

Видео:В четырехугольник вписан ромб, стороны которого параллельны диагоналям четырехугольника.Скачать

В четырехугольник вписан ромб, стороны которого параллельны диагоналям четырехугольника.

Свойства ромба

Свойство 1

Противоположные углы ромба равны между собой, а сумма соседних углов составляет 180°.

Ромб это четырехугольник в котором все стороны

Свойство 2

Диагонали ромба пересекаются под прямым углом и в точке пересечения делятся пополам.

Ромб это четырехугольник в котором все стороны

В результате пересечения диагоналей ромб делится на 4 прямоугольных треугольника: ΔAEB, ΔBEC, ΔAED и ΔDEC.

Свойство 3

Диагонали ромба являются биссектрисами его углов.

Ромб это четырехугольник в котором все стороны

Свойство 4

Сторону ромба a можно найти через его диагонали d1 и d2 (согласно теореме Пифагора).

Ромб это четырехугольник в котором все стороны

Ромб это четырехугольник в котором все стороны

  • a – гипотенуза любого из 4 прямоугольных треугольников (например, ΔBEC );
  • половины диагоналей d1 и d2 – катеты треугольников.

Свойство 5

В любой ромб можно вписать окружность, центр которой лежит на пересечении его диагоналей.

Ромб это четырехугольник в котором все стороны

Радиус вписанной в ромб окружности r вычисляется по формуле:

Ромб это четырехугольник в котором все стороны

Видео:Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!

Признаки ромба

Параллелограмм является ромбом только в том случае, если для него верно одно из следующих утверждений:

  1. Его диагонали пересекаются под прямым углом.
  2. Если его диагонали являются биссектрисами его углов.
  3. Две смежные стороны равны (следовательно, все стороны равны).

Примечание: Любой четырехугольник, стороны которого равны, является ромбом.

Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Ромб это четырехугольник в котором все стороны

Определение 1. Ромб − это параллелограмм, у которого все стороны равны.

На рисунке 1 изображен ромб ABCD.

Ромб это четырехугольник в котором все стороны

Определение 2. Ромб − это четырехугольник, у которого все стороны равны.

Ромб разделяет плоскость на две части, одна из которых называется внутренней областью ромба, а другая внешней областью ромба.

Объединение ромба и ограниченной им части плоскости также называют ромбом.

Видео:Ромб. 8 класс.Скачать

Ромб. 8 класс.

Свойства ромба

Поскольку ромб является параллелограммом, то имеет следующие свойства:

  • 1. У ромба противолежащие углы равны (( small angle A = angle C, ; angle B = angle D.) )
  • 2. У ромба противолежащие стороны равны (( small AB = DC, ; BC=AD.) )
  • 3. У ромба противолежащие стороны параллельны ( small( AB || DC, ; BC || AD).)
  • 4. У ромба соседние углы дополняют друг друга до 180° ( small ( angle A +angle B=180°, ) ( small angle C + angle D=180°).)
  • 5. Диагонали ромба точкой пересечения делятся пополам ( small ( AO = OC, ) ( small BO=OD).)

Ромб имеет также и следующие свойства:

  • 6. Диагонали ромба пересекаются под прямым углом (( small AC perp BD.) )
  • 7. Диагонали ромба являются биссектрисами его углов (( small angle ABD = angle CBD, ) ( small angle ADB = angle CDB, ) ( small angle DAC = angle BAC, ) ( small angle BCA = angle DCA. ))
  • 8. В любой ромб можно вписать окружность, центр которой лежит на пересечении его диагоналей.
  • 9. Сумма квадратов диагоналей ромба равна квадрату стороны, умноженная на четыре ( small (AC^2+BD^2=4AB^2). )

Докажем свойства 6 и 7, сформулировав следующую теорему:

Теорема 1. Диагонали ромба перпендикулярны и являются биссектрисами его углов.

Доказательство. По определению 1, ( small AD = DC ) (Рис.2). Следовательно треугольник ( small DAC ) равнобедренный. Тогда ( small angle DCO = angle DAO. ) Учитывая, что ( small AO = OC ) (свойство 5 ромба), получим, что треугольники ( small DOA ) и ( small DOC ) равны по двум сторонам и углу между ними (см. статью Треугольники. Признаки равенства треугольников). Тогда равны углы DOC и DOA. Но эти углы смежные и их сумма равна 180°. Следовательно ( small angle DOC= angle DOA=90°. ) То есть диагонали AC и BD перпендикулярны.

Ромб это четырехугольник в котором все стороны

Из равенства треугольников ( small DOA ) и ( small DOC ) также следует, что ( small angle CDO= angle ADO,) следовательно BD является биссектрисой угла ADС, то есть BD является биссектрисой ромба ABCD.Ромб это четырехугольник в котором все стороны

Видео:Геометрия 8. Урок 4 - Прямоугольник, ромб, квадрат - свойства и признаки.Скачать

Геометрия 8. Урок 4 - Прямоугольник, ромб, квадрат - свойства и признаки.

Признаки ромба

Признак 1. Если смежные стороны параллелограмма равны, то этот параллелограмм − ромб.

Ромб это четырехугольник в котором все стороны

Доказательство. Пусть смежные стороны параллелограмма ABCD равны. То есть имеем: AB=BC (Рис.3). У параллелограмма противоположные стороны равны (Свойство 1 статьи Параллелограмм). Тогда DC=AB=BC=AD. То есть все стороны параллелограмма равны и по определению 1, этот параллелограмм является ромбом.Ромб это четырехугольник в котором все стороны

Признак 2. Если диагонали параллелограмма перпендикулярны, то этот параллелограмм − ромб.

Доказательство. Пусть диагонали параллелограмма ABCD перпендикулярны (Рис.3). Рассмотрим прямоугольные треугольники AOB и COB. Так как у параллелограмма диагонали точкой пересечения разделяются пополам (Свойство 2 статьи Параллелограмм), то AO=OC. Тогда прямоугольные треугольники AOB и COB равны по двум катетам (AO=OC, BO общий катет (см. статью Прямоугольный треугольник. Свойства, признаки равенства)). Следовательно AB=BC. Тогда по признаку 1 этот параллелограмм является ромбом.Ромб это четырехугольник в котором все стороны

Признак 3. Если диагональ параллелограмма является биссектрисой его угла, то этот параллелограмм − ромб.

Ромб это четырехугольник в котором все стороны

Доказательство. Пусть диагональ AC параллелограмма ABCD является биссектрисой угла BAD (Рис.4). Тогда ( small angle 1= angle 2 .) У параллелограмма ABCD ( small AB || DC .) Тогда для параллельных прямых AB и DC и секущей AC справедливо равенство ( small angle 1= angle 4 .) (см теорему 1 статьи Теоремы об углах, образованных двумя параллельными прямыми и секущей). Аналогично, для параллельных прямых BC и AD и секущей AC справедливо равенство ( small angle 2= angle 3 .) Так как ( small angle 1= angle 2 ,) то ( small angle 1= angle 2=angle 3= angle 4 .) Из ( small angle 1= angle 3) следует, что треугольник ABC равнобедренный (Признак 2 статьи Равнобедренный треугольник). Тогда AB=BC. У параллелограмма противоположные стороны равны (Свойство 1 статьи Параллелограмм). Тогда AB=BC=CD=DA. То есть все стороны параллелограмма равны и по определению 1, этот параллелограмм является ромбом.Ромб это четырехугольник в котором все стороны

Признак 4. Если стороны четырехугольника равны, то этот четырехугольник − ромб.

Доказательство. Пусть у четырехугольника все стороны равны. Тогда этот четырехугольник является параллелограммом (признак 2 статьи Параллелограмм). А по определению 1, этот параллелограмм является ромбом.

Видео:Площадь ромба. Легче понять...Скачать

Площадь ромба. Легче понять...

Ромб. Свойства и признаки ромба

Ромб – это параллелограмм, у которого все стороны равны.

Ромб это четырехугольник в котором все стороны

Если у ромба – прямые углы, то он называется квадратом.

Видео:8 класс, 8 урок, Ромб и квадратСкачать

8 класс, 8 урок, Ромб и квадрат

Свойства ромба

1. Поскольку ромб – это параллелограмм, то все свойства параллелограмма верны для ромба.

Помимо этого:

2. Диагонали ромба перпендикулярны.

Ромб это четырехугольник в котором все стороны

3. Диагонали ромба являются биссектрисами его углов.

Ромб это четырехугольник в котором все стороны

4. Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4.

Ромб это четырехугольник в котором все стороны

Видео:Я СДЕЛАЛ СВОЙ ДОМ ТРЕУГОЛЬНЫМ В МАЙНКРАФТ | Компот MinecraftСкачать

Я СДЕЛАЛ СВОЙ ДОМ ТРЕУГОЛЬНЫМ В МАЙНКРАФТ | Компот Minecraft

Признаки ромба

Чтобы параллелограмм Ромб это четырехугольник в котором все стороныоказался ромбом, необходимо выполнение одного из следующих условий:

1. Все стороны параллелограмма равны между собой (Ромб это четырехугольник в котором все стороны).

2. Диагонали пересекаются под прямым углом (Ромб это четырехугольник в котором все стороны).

3. Диагонали параллелограмма являются биссектрисами его углов.

Видео:Геометрия 7 класса в одной задаче. Геометрия 7 класс кратко | МатематикаСкачать

Геометрия 7 класса в одной задаче. Геометрия 7 класс кратко | Математика

Площадь ромба

Ромб это четырехугольник в котором все стороны

Ромб это четырехугольник в котором все стороны

Ромб это четырехугольник в котором все стороны

Ромб это четырехугольник в котором все стороны

Ромб это четырехугольник в котором все стороны

Ромб это четырехугольник в котором все стороны

Ромб это четырехугольник в котором все стороны

Смотрите также таблицу-шпаргалку «Площади простейших фигур» здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

🔥 Видео

Ромб, признаки. 8 класс.Скачать

Ромб, признаки. 8 класс.

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

№568. Докажите, что четырехугольник — ромб, если его вершинами являются середины сторон:Скачать

№568. Докажите, что четырехугольник — ромб, если его вершинами являются середины сторон:

Геометрия 8 класс: Ромб и квадратСкачать

Геометрия 8 класс: Ромб и квадрат

8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Геометрия 8 класс (Урок№6 - Прямоугольник. Ромб. Квадрат.)Скачать

Геометрия 8 класс (Урок№6 - Прямоугольник. Ромб. Квадрат.)

№175. Докажите, что если все ребра тетраэдра равны, то все его двугранные углы также равны.Скачать

№175. Докажите, что если все ребра тетраэдра равны, то все его двугранные углы также равны.

Геометрия Признак ромба Если диагонали параллелограмма перпендикулярны, то этот параллелограмм ромбСкачать

Геометрия Признак ромба Если диагонали параллелограмма перпендикулярны, то этот параллелограмм ромб

Геометрия 10 класс (Урок№2 - Четырехугольники.)Скачать

Геометрия 10 класс (Урок№2 - Четырехугольники.)

8 класс, 4 урок, ПараллелограммСкачать

8 класс, 4 урок, Параллелограмм
Поделиться или сохранить к себе: