Видео:Прямая y=7x-5 параллельна касательной к графику функции y=x^2+6x-8 Найдите абсциссу точки касания.Скачать
Касательная к окружности, секущая и хорда — в чем разница
В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.
Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.
Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).
Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.
Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.
Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.
Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:
окружность с центральной точкой А;
прямая а — касательная к ней;
радиус АВ, проведенный к касательной.
Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. а ⟂ АВ.
Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.
В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.
Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.
Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.
Задача
У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.
Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.
Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.
Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.
Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.
Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.
Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.
Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.
Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.
Задача 1
У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.
Решение
Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.
∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).
Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:
∠BDC = ∠BDA × 2 = 30° × 2 = 60°
Итак, угол между касательными составляет 60°.
Задача 2
К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.
Решение
Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.
Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.
∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°
Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.
Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.
Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.
Задача 1
Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.
Решение
Исходя из соотношения касательной и секущей МА 2 = МВ × МС.
Найдем длину внешней части секущей:
МС = МВ — ВС = 16 — 12 = 4 (см)
МА 2 = МВ × МС = 16 х 4 = 64
Задача 2
Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.
Решение
Допустим, что МО = у, а радиус окружности обозначим как R.
В таком случае МВ = у + R, а МС = у – R.
Поскольку МВ = 2 МА, значит:
МА = МВ : 2 = (у + R) : 2
Согласно теореме о касательной и секущей, МА 2 = МВ × МС.
(у + R) 2 : 4 = (у + R) × (у — R)
Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:
Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).
Ответ: MO = 10 см.
Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.
Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда AВ. Отметим на касательной прямой точку C, чтобы получился угол AВC.
Задача 1
Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.
Решение
Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.
АВ = ∠АВС × 2 = 32° × 2 = 64°
Задача 2
У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.
Решение
Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:
КМ = 2 ∠МКВ = 2 х 84° = 168°
Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.
∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2
Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:
∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°
Видео:Прямая y=8x+11 параллельна касательной к графику функции y=x^2+7x-7. Найдите абсциссу точки касания.Скачать
Опорный конспект по геометрии «Сфера» (11 класс)
Видео:ЕГЭ 2017 Профильный №7 найти точки, в которых касательная параллельна прямой #7Скачать
«Календарь счастливой жизни: инструменты и механизм работы для достижения своих целей»
Сертификат и скидка на обучение каждому участнику
Выбранный для просмотра документ опорн консп Касательная плоскость к сфере 11 кл.docx
Касательная плоскость к сфере
Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере , а их общая точка называется точкой касания плоскости и сферы.
Плоскость является касательной плоскостью к сфере, а точка А – есть точка касания.
Касательной плоскостью к шару называется касательная плоскость к сфере, которая является границей этого шара.
Теорема или свойство касательной плоскости к сфере : радиус сферы, проведённый в точку касания сферы и плоскости, перпендикулярен к касательной плоскости .
О братная теорема или признак касательной плоскости к сферы : если радиус сферы перпендикулярен к плоскости, проходящей через его конец, лежащий на сфере, то эта плоскость является касательной к сфере .
Задача: диаметр шара равен см. На каком расстоянии от центра шара находится плоскость, касающаяся его?
Решение: напомним, что касательной плоскостью к шару называется касательная плоскость к сфере, которая является границей этого шара. Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, а их общая точка называется точкой касания плоскости и сферы.
По свойству касательной плоскости к сфере: радиус сферы, проведённый в точку касания сферы и плоскости, перпендикулярен к касательной плоскости .
Радиус нашего шара и будет расстоянием от центра шара до точки касания с плоскостью .
Так как по условию задачи диаметр шара равен 18 см, то радиус равен (см). Запишем ответ.
Задача: сфера касается плоскости равностороннего треугольника с высотой см в его центре. Расстояние от центра сферы до стороны треугольника равно см. Найдите радиус сферы.
Решение: так как по условию задачи треугольник равносторонний, то его центр будет находиться в центре вписанной и описанной окружностей.
Напомним, что в равностороннем треугольнике высота является и биссектрисой, и медианой. А по свойству медиан треугольника: три медианы треугольника пересекаются в одной точке, являющейся центром тяжести треугольника. Эта точка делит каждую медиану в отношении , считая от вершины.
Так как по условию задачи высота треугольника равна 12 см, а она же является и медианой, значит, расстояние (см).
Рассмотрим . Он прямоугольный, так как . А по свойству касательной плоскости к сфере: радиус сферы, проведённый в точку касания сферы и плоскости, перпендикулярен к касательной плоскости.
Применим теорему Пифагора и найдем чему равен катет . Получаем, что (см).
Прямая, лежащая в касательной плоскости сферы и проходящая через точку касания, называется касательной прямой к сфере.
Отрезки и – отрезки касательных , проведёнными из точки .
Они обладают следующим свойством : отрезки касательных к сфере, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр сферы .
Это легко увидеть из равенства прямоугольных треугольников . У этих треугольников гипотенуза общая, а катеты .
Задача: расстояние от точки до центра сферы с радиусом см равно . Найдите расстояние от данной точки до точки касания прямой и сферы.
Решение: соединим точку А, точку касания, с центром сферы.
Отрезок . Напомним, что радиус, проведённый в точку касания прямой и сферы, перпендикулярен к касательной прямой.
Рассмотрим . Он прямоугольный. Применяя теорему Пифагора найдём чему равен катет , который и является расстоянием от точки до точки А . Имеем, (см).
Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
Геометрия. 11 класс
Сфера и шар
Сфера и шар
Необходимо запомнить
Сферой называется множество точек пространства, равноудаленных от заданной точки, называемой центром. Множество точек пространства, ограниченное сферой, называется шаром.
Возможны три разных случая взаимного расположения сферы и плоскости:
– они могут не иметь общих точек (если расстояние от центра до прямой больше радиуса);
– могут иметь одну общую точку – случай касания (если расстояние от центра до прямой равно радиусу;
– могут иметь бесконечно много общих точек – случай пересечения (если расстояние от центра до прямой меньше радиуса).
Теорема (свойство касательной плоскости): радиус сферы, проведённый в точку касания сферы и плоскости, перпендикулярен к касательной плоскости.
Обратная теорема (признак касательной плоскости): если радиус сферы перпендикулярен к плоскости, проходящей через его конец, лежащей на сфере, то эта плоскость является касательной к сфере.
Площадь сферы можно найти по формуле:
S = 4πR 2 – площадь сферы.
Сфера и шар
Некоторые дополнительные понятия и теоремы
Касательная прямая к сфере (шару) – это прямая, которая имеет со сферой (шаром) только одну общую точку точке.
Касательная прямая перпендикулярна радиусу сферы проведенному к точке касания.
Расстояние от центра сферы до касательной прямой равно радиусу сферы.
Касательными сферами (шарами) называются любые две сферы (шара), которые имеют одну общую точку. Касание может быть внутренним и внешним.
Концентрическими сферами (шарами) называются любые две сферы (шара), которые имеют общий центр и радиусы различной длины.
Сфера и шар
Площади шарового сегмента и сектора
Сегмент шара – это часть шара, которая отсекается от шара секущей плоскостью.
Основанием сегмента называют круг, который образовался в месте сечения.
Высотой сегментаh называют длину перпендикуляра проведенного с середины основания сегмента к поверхности сегмента.
S = 2πRh – площадь поверхности сегмента сферы радиуса R с высотой h. Сектором называется часть шара, ограниченная совокупностью всех лучей, исходящих из центра шара О и образующих круг на его поверхности с радиусом r.
$S=pi R(2h+sqrt)$ площадь поверхности сектора с высотой h.
Параметрическое уравнение сферы с центром в точке $(x_0,y_0,z_0)$
begin x=x_0+R*sin theta * cos varphi \ y=y_0+R*sin theta*sin varphi \ z=z_0+R*cos theta end
$theta in$ [0;$pi$ ] $varphi in$ [0;$2pi$]
🎬 Видео
11 класс, 24 урок, Взаимное расположение сферы и прямойСкачать