Геометрия периметр вписанного в круг прямоугольника.
Мы продолжаем находить свойства геометрических фигур с помощью перпендикулярных друг другу прямых. Мы уже нашли новое прочтение теоремы Пифагора,формулу площади треугольника
и площади круга.
Сегодня будем говорить о свойствах четырехугольника вписанного в круг.
Простейший вариант (Рис. 1) перпендикулярные прямые проходят через центр круга и прямоугольник это вписанный квадрат.
По теореме Пифагора нетрудно вычислить, что
СУММА СТОРОН КВАДРАТА РАВНА УДВОЕННОМУ КВАДРАТУ ДИАМЕТРА.
Далее ( Рис 2 ) . сумма квадратов сторон стремится к квадрату диаметра.
- Прямоугольник. Онлайн калькулятор
- Свойства прямоугольника
- Диагональ прямоугольника
- Окружность, описанная около прямоугольника
- Формула радиуса окружности описанной около прямоугольника
- Периметр прямоугольника
- Формулы сторон прямоугольника через его диагональ и периметр
- Признаки прямоугольника
- Периметр прямоугольника
- Формулы периметра прямоугольника
- Полупериметр
- Основные определения и величины
- 💡 Видео
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Прямоугольник. Онлайн калькулятор
С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ прямоугольника, радиус описанной вокруг прямоугольника окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.
Определение 1. Прямоугольник − это параллелограмм, у которого все углы прямые (Рис.1).
Можно дать и другое определение прямоугольника.
Определение 2. Прямоугольник − это четырехугольник, у которого все углы прямые.
Видео:Периметр прямоугольника. Как найти периметр прямоугольника?Скачать
Свойства прямоугольника
Так как прямоугольник является параллелограммом, то все свойства параллелограмма верны и для прямоугольника.
- 1. Стороны прямоугольника являются его высотами.
- 2. Все углы прямоугольника прямые.
- 3. Квадрат диагонали прямоугольника равен сумме квадратов его соседних двух сторон.
- 4. Диагонали прямоугольника равны.
- 5. Около любого прямоугольника можно описать окружность, при этом диаметр описанной окружности равна диагонали прямоугольника.
Длиной прямоугольника называется более длинная пара его сторон.
Шириной прямоугольника называется более короткая пара его сторон.
Видео:Вписанный в окружность прямоугольный треугольник.Скачать
Диагональ прямоугольника
Определение 3. Диагональ прямоугольника − это отрезок, соединяющий две несмежные вершины прямоугольника.
На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. Прямоугольник имеет две диагонали.
Для вычисления длины диагонали воспользуемся теоремой Пифагора:
. | (1) |
Из равенства (1) найдем d:
. | (2) |
Пример 1. Стороны прямоугольника равны . Найти диагональ прямоугольника.
Решение. Для нахождения диаметра прямоугольника воспользуемся формулой (2). Подставляя в (2), получим:
Ответ:
Видео:Как найти периметр данной фигуры? Решение за одну минуту!Скачать
Окружность, описанная около прямоугольника
Определение 4. Окружность называется описанной около прямоугольника, если все вершины прямоугольника находятся на этой окружности (Рис.3):
Видео:Нахождение периметра прямоугольника 3 классСкачать
Формула радиуса окружности описанной около прямоугольника
Выведем формулу вычисления радиуса окружности, описанной около прямоугольника через стороны прямоугольника.
Нетрудно заметить, что радиус описанной около прямоугольника окружности равна половине диагонали (Рис.3). То есть
( small R=frac ) | (3) |
Подставляя (3) в (2), получим:
( small R=frac<large sqrt> ) | (4) |
Пример 2. Стороны прямоугольника равны . Найти радиус окружности, описанной вокруг прямоугольника.
Решение. Для нахождения радиуса окружности описанной вокруг прямоугольника воспользуемся формулой (4). Подставляя в (4), получим:
Ответ:
Видео:Математика 2 класс (Урок№49 - Периметр прямоугольника.)Скачать
Периметр прямоугольника
Определение 5. Периметр прямоугольника − это сумма всех его сторон. Обозначается периметр латинской буквой P.
Периметр прямоугольника вычисляется формулой:
(5) |
где ( small a ) и ( small b ) − стороны прямоугольника.
Пример 3. Стороны прямоугольника равны . Найти периметр прямоугольника.
Решение. Для нахождения периметра прямоугольника воспользуемся формулой (5). Подставляя в (5), получим:
Ответ:
Видео:Вписанная и описанная окружность - от bezbotvyСкачать
Формулы сторон прямоугольника через его диагональ и периметр
Выведем формулу вычисления сторон прямоугольника, если известны диагональ ( small d ) и периметр ( small P ) прямоугольника. Заметим: чтобы прямоугольник существовал, должно удовлетворяться условие ( small frac P2>d ) (это следует из неравенства треугольника).
Чтобы найти стороны прямоугольника запишем формулу Пифагора и формулу периметра прямоугольника:
(6) |
(7) |
Из формулы (7) найдем ( small b ) и подставим в (6):
(8) |
(9) |
Упростив (4), получим квадратное уравнение относительно неизвестной ( small a ):
(10) |
Вычислим дискриминант квадратного уравнения (10):
(11) |
Сторона прямоугольника вычисляется из следующих формул:
(12) |
После вычисления ( small a ), сторона ( small b ) вычисляется или из формулы (12), или из (8).
Примечание. Легко можно доказать, что
( frac >d ; ⇒ ; P>2cdot d ; ⇒ ) ( small P^2>4 cdot d^2 ; ⇒ ; 4d^2-P^2 2d .) Следовательно выполняется неравенство (*). |
Пример 4. Диагональ прямоугольника равна , а периметр равен . Найти стороны прямоугольника.
Решение. Для нахождения сторон прямоугольника воспользуемся формулами (11), (12) и (8). Найдем сначала дискриминант ( small D ) из формулы (11). Для этого подставим , в (11):
Подставляя значения и в первую формулу (12), получим:
Найдем другую сторону ( small b ) из формулы (8). Подставляя значения и в формулу, получим:
Ответ: ,
Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать
Признаки прямоугольника
Признак 1. Если в параллелограмме диагонали равны, то этот параллелограмм является прямоугольником.
Признак 2. Если квадрат диагонали параллелограмма равен сумме квадратов его смежных сторон, то этот параллелограмм является прямоугольником.
Признак 3. Если углы параллелограмма равны, то этот параллелограмм является прямоугольником.
Видео:Как найти периметрСкачать
Периметр прямоугольника
Периметр прямоугольника — это сумма
всех сторон прямоугольника.
Периметр прямоугольника можно рассчитать
через четыре стороны, через смежные стороны,
через диагональ, через площадь,
через радиус описанной окружности.
Самый простой способ найти периметр
прямоугольника, это сложить все стороны.
Также, исходя из свойства прямоугольника, — «противоположные
стороны равны и параллельны», можно сказать, что периметр
численно равен удвоенной сумме ширины и высоты — двух
смежных сторон прямоугольника.
Кроме этих двух способов периметр прямоугольника
можно найти через другие величины. Например, через
площадь прямоугольника, диагональ прямоугольника, и так далее.
В прямоугольник невозможно вписать окружность,
поэтому выразить периметр через вписанную
окружность не получится.
Единицы измерения периметра прямоугольника:
км, м, дм, см, мм.
Формулы периметра прямоугольника
- Периметр прямоугольника через четыре стороны
a, b, c, d — стороны прямоугольника;
a || c, b || d;
a = c, b = d;
Периметр прямоугольника через смежные стороны
a, b — смежные стороны;
a ≠ b;
Периметр прямоугольника через любую сторону и диагональ
b — любая сторона;
c — диагональ;
Периметр прямоугольника через любую сторону и площадь
b — любая сторона;
S — площадь;
Периметр прямоугольника через любую сторону и радиус описанной окружности
b — любая сторона;
R — радиус описанной окружности;
Полупериметр
Полупериметр — это половина периметра.
Обозначается латинской буквой p.
Чтобы найти полупериметр нужно разделить
периметр на два, или домножить периметр на 0.5.
[ p = frac
= P cdot 0.5 ]
Полупериметр применяется в некоторых формулах
нахождения разных величин прямоугольника. Вместо того,
чтобы вычислять периметр, в таких формулах
удобней вычислять полупериметр.
Основные определения и величины
Длина прямоугольника — это длинная сторона
/ наибольшая сторона прямоугольника.
Обозначается латинской буквой a.
Ширина прямоугольника — это широкая сторона
/ наименьшая сторона прямоугольника.
Обозначается латинской буквой b.
Сторона прямоугольника — это ширина или длина прямоугольника,
в зависимости от численного значения длины стороны.
Обозначается латинской буквой a или b.
Диагональ прямоугольника — это отрезок, соединяющий
противоположные стороны прямоугольника.
Обозначается латинской буквой c или d.
Средняя линия прямоугольника — это отрезок, соединяющий
наименьшие параллельные стороны прямоугольника друг с
другом, причем делящий их пополам на равные отрезки.
Обозначается латинской буквой l.
Радиус описанной окружности прямоугольника — это отрезок,
соединяющий центр описанной около треугольника
окружности и произвольную точку на окружности.
Обозначается латинской буквой R.
Высота прямоугольника — это любая сторона прямоугольника,
а также любой отрезок в прямоугольнике, образующий угол в 90 градусов.
Обозначается латинской буквой h.
💡 Видео
Как найти периметр прямоугольника и квадратаСкачать
Четырехугольники, вписанные в окружность. 9 класс.Скачать
Окружность вписанная в треугольник и описанная около треугольника.Скачать
Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Вписанные и описанные окружности. Вебинар | МатематикаСкачать
Что такое периметр. Как найти периметр многоугольника?Скачать
Сможешь найти радиус окружности? Окружность, вписанная в прямоугольный треугольникСкачать
Как найти площадь и периметр прямоугольника?Скачать
Как найти периметр?Скачать
Длина окружности. Математика 6 класс.Скачать
Урок. Как найти периметр прямоугольника. Математика 2 класс. #учусьсамСкачать