Окружность, описанная около правильного треугольника, обладает всеми свойствами описанной около произвольного треугольника окружности и, кроме того, имеет свои собственные свойства.
1) Центр описанной около треугольника окружности — точка пересечения серединных перпендикуляров к его сторонам.
Поскольку в равностороннем треугольнике медианы, высоты и биссектрисы совпадают, центр описанной около правильного треугольника окружности лежит в точке пересечения его медиан, высот и биссектрис.
Например, в правильном треугольнике ABC AB=BC=AC=a
точка O — центр описанной окружности.
AK, BF и CD — медианы, высоты и биссектрисы треугольника ABC.
2) Расстояние от центра описанной окружности до вершин треугольника равно радиусу. Так как центр описанной около равностороннего треугольника окружности лежит на пересечении его медиан, а медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины, то радиус описанной окружности составляет две трети от длины медианы:
Таким образом, формула радиуса описанной около правильного треугольника окружности —
И обратно, сторона равностороннего треугольника через радиус описанной окружности —
3) Формула для нахождения площади правильного треугольника по его стороне —
Отсюда можем найти площадь через радиус описанной окружности:
Таким образом, формула площади площади правильного треугольника через радиус описанной окружности —
4) Центр описанной около правильного треугольника окружности совпадает с центром вписанной в него окружности.
5) Радиус описанной около равностороннего треугольника окружности в два раза больше радиуса вписанной окружности:
- Свойства равностороннего треугольника: теория и пример задачи
- Определение равностороннего треугольника
- Свойства равностороннего треугольника
- Свойство 1
- Свойство 2
- Свойство 3
- Свойство 4
- Свойство 5
- Свойство 6
- Пример задачи
- Радиус описанной окружности около равностороннего треугольника онлайн
- 1. Радиус окружности описанной около равностороннего треугольника, если известна сторона a
- 2. Радиус окружности описанной около равностороннего треугольника, если известна высота треугольника
- 3. Радиус окружности описанной около равностороннего треугольника, если известна площадь треугольника
- 📹 Видео
Видео:№706. Найдите сторону равностороннего треугольника, если радиус описанной около него окружностиСкачать
Свойства равностороннего треугольника: теория и пример задачи
В данной статье мы рассмотрим определение и свойства равностороннего (правильного) треугольника. Также разберем пример решения задачи для закрепления теоретического материала.
Видео:НАЙДИТЕ ВЫСОТУ РАВНОСТОРОННЕГО ТРЕУГОЛЬНИКАСкачать
Определение равностороннего треугольника
Равносторонним (или правильным) называется треугольник, в котором все стороны имеют одинаковую длину. Т.е. AB = BC = AC.
Примечание: правильный многоугольник – это выпуклый многоугольник, имеющий равные стороны и углы между ними.
Видео:Радиус окружности, описанной около правильного треугольника, равен 3. Найдите высоту треугольникаСкачать
Свойства равностороннего треугольника
Свойство 1
В равностороннем треугольнике все углы равны 60°. Т.е. α = β = γ = 60°.
Свойство 2
В равностороннем треугольнике высота, проведенная к любой из сторон, одновременно является биссектрисой угла, из которого она проведена, а также медианой и серединным перпендикуляром.
CD – медиана, высота и серединный перпендикуляр к стороне AB, а также биссектриса угла ACB.
Свойство 3
В равностороннем треугольнике биссектрисы, медианы, высоты и серединные перпендикуляры, проведенные ко всем сторонам, пересекаются в одной точке.
Свойство 4
Центры вписанной и описанной вокруг равностороннего треугольника окружностей совпадают и находятся на пересечении медиан, высот, биссектрис и серединных перпендикуляров.
Свойство 5
Радиус описанной вокруг равностороннего треугольника окружности в 2 раза больше радиуса вписанной окружности.
- R – радиус описанной окружности;
- r – радиус вписанной окружности;
- R = 2r.
Свойство 6
В равностороннем треугольнике, зная длину стороны (условно примем ее за “a”), можно вычислить:
1. Высоту/медиану/биссектрису:
2. Радиус вписанной окружности:
3. Радиус описанной окружности:
4. Периметр:
5. Площадь:
Видео:Задача 6 №27909 ЕГЭ по математике. Урок 129Скачать
Пример задачи
Дан равносторонний треугольник, сторона которого равна 7 см. Найдите радиус описанной вокруг и вписанной окружности, а также, высоту фигуры.
Решение
Применим формулы, приведеные выше, для нахождения неизвестных величин:
Видео:Радиус описанной окружностиСкачать
Радиус описанной окружности около равностороннего треугольника онлайн
С помощю этого онлайн калькулятора можно найти радиус описанной окружности около любого треугольника, в том числе радиус окружности около равностороннего треугольника. Для нахождения радиуса окружности описанной около треугольника введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.
Открыть онлайн калькулятор |
Видео:найти радиус окружности, описанной вокруг треугольникаСкачать
1. Радиус окружности описанной около равностороннего треугольника, если известна сторона a
Пусть известна сторона a равностороннего треугольника. Найдем радиус описанной окружности около треугольника. На странице Радиус окружности описанной около треугольника вычисляется из формулы:
(1) |
где p вычисляется из формулы:
(2) |
Учитывая, что у нас треугольник равносторонний, т.е. a=b=c, имеем:
( small p= frac, ) | (3) |
( small p-a=p-b=p-c= frac. ) | (4) |
Подставляя (3),(4) в (1) и учитывая, что a=b=c, получим:
( small R=frac<large 4 cdot sqrt<fraca left( frac right)^3>> ) ( small =frac<large 4 cdot sqrt< frac>> ) ( small =frac< large sqrt> ) |
( small R=frac< large sqrt>=frac<large a sqrt>. ) | (5) |
Пример 1. Известна сторона ( small a=frac ) равностороннего треугольника. Найти радиус окружности описанной около треугольника.
Решение. Для нахождения радиуса окружности описанной около треугольника воспользуемся формулой (5).
Подставим значение ( small a=frac ) в (5):
Ответ:
Видео:ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать
2. Радиус окружности описанной около равностороннего треугольника, если известна высота треугольника
Пусть известна высота h равностороннего треугольник (Рис.1):
Найдем радиус описанной окружности около равностороннего треугольника. Из теоремы синусов имеем:
( small frac=frac. ) | (6) |
Уситывая, что сумма углов треугольника равна 180° и что у равностороннего треугольника все углы равны, имеем: ( small angle A= angle B=angle C=60°. ) Тогда из (6) получим:
(7) |
Подставляя (7) в (5), получим:
(8) |
Пример 2. Высота равностороннего треугольника равна:( small h=15 .) Найти радиус окружности описанной около равностороннего треугольника.
Решение. Для нахождения радиуса окружности описанной около равностороннего треугольника воспользуемся формулой (8). Подставим значения ( small h=15 ) в (8):
Ответ:
Видео:Геометрия Найдите радиус окружности описанной около равнобедренного треугольника с основанием 16 смСкачать
3. Радиус окружности описанной около равностороннего треугольника, если известна площадь треугольника
Пусть известна площадьS равностороннего треугольника. Найдем радиус окружности, описанной около треугольника. На странице Площадь равностороннего треугольника онлайн была выведена формула площади равностороннего треугольника по радиусу описанной окружности:
(9) |
В формуле (9) найдем R:
(10) |
Пример 3. Площадь равностороннего треугольника равна:( small S=14.5 .) Найти радиус окружности описанной около равностороннего треугольника.
Решение. Для нахождения радиуса окружности описанной около равностороннего треугольника воспользуемся формулой (10). Подставим значения ( small S=14.5 ) в (10):
Ответ:
📹 Видео
Свойство окружности, описанной около равнобедренного треугольникаСкачать
Задача 6 №27910 ЕГЭ по математике. Урок 130Скачать
Задача 6 №27934 ЕГЭ по математике. Урок 148Скачать
ОГЭ 2020 задание 17Скачать
Задача 6 №27900 ЕГЭ по математике. Урок 128Скачать
7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать
Треугольник и окружность #shortsСкачать
Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать
9 класс. Геометрия. Соотношения в равностороннем треугольнике.Скачать
ОГЭ Задание 25 Окружность вписанная в прямоугольный треугольникСкачать
Окружность вписанная в треугольник и описанная около треугольника.Скачать