Медиана прямоугольного треугольника делит

Свойства медианы в прямоугольном треугольнике с доказательствами

В этой статье мы рассмотрим свойства медианы в прямоугольном треугольнике, а также их доказательства.

Медиана — это отрезок, соединяющий вершину треугольника с серединой противолежащей стороны. Для прямоугольного треугольника это будут медианы, проведённые с острого угла к серединам катетов или с прямого к центру гипотенузы (рис. 1).

Медиана прямоугольного треугольника делит

Видео:Доказать, что медиана, проведенная к гипотенузе, равна половине гипотенузыСкачать

Доказать, что медиана, проведенная к гипотенузе, равна половине гипотенузы

Свойства медианы в прямоугольном треугольнике

  1. Медианы в прямоугольном треугольнике пересекаются в одной точке, а точка пересечения делит их в соотношении два к одному считая от вершины, из которой проведена медиана.
  2. Медиана, проведённая из вершины прямого угла к гипотенузе, равна половине гипотенузы.
  3. Медиана, проведённая к гипотенузе прямоугольного треугольника, является радиусом описанной окружности.

Видео:ГЕОМЕТРИЯ 7 класс. Медиана прямоугольного треугольника. Свойство. Доказательство для 7 класса.Скачать

ГЕОМЕТРИЯ 7 класс. Медиана прямоугольного треугольника. Свойство. Доказательство для 7 класса.

Доказательства свойств

Первое свойство

Доказать, что медианы в прямоугольном треугольнике пересекаются в одной точке и делятся в пропорции 2:1, считая от вершины.

Доказательство:

  1. Рассмотрим прямоугольный треугольник ABC. Проведем две медианы AE и BD, которые пересекаются в точке X (рис. 2).

Медиана прямоугольного треугольника делит

Середины отрезков AX и BX обозначим, соответственно, буквами F и G (рисунок 3).

Медиана прямоугольного треугольника делит

Соединим между собой точки (D, F, G и E) и получим четырёхугольник DFGE (рис. 4).

Медиана прямоугольного треугольника делит

  • Сторона DE этого четырёхугольника будет средней линией треугольника ABC. Согласно определению: отрезок, соединяющий середины двух сторон треугольника, является его средней линией. При этом по свойству средняя линия параллельна не пересекающейся с ней стороне и равна половине этой стороны, то есть.
    DE || AB и DE = AB / 2.
  • Аналогично сторона FG треугольника AXB будет его средней линией.
    FG || AB и FG = AB / 2
  • Отсюда следует, что отрезки DE и FG являются параллельными и равными. Следовательно, четырехугольник DFGE – параллелограмм (по признаку параллелограмма).
  • Так как диагонали параллелограмма в точке пересечения делятся пополам, то
    FX=XE, GX=XD

    Медиана прямоугольного треугольника делит

  • Так как AF = FX (по построению), то и AF = FX = XE, аналогично DX = XG = GB.
  • Получается, что точка X делит обе медианы AE и BD в соотношении 2 к 1 считая от вершины треугольника.
  • Аналогично, мы сможем доказать, что точка пересечения 3-ей медианы, проведенной из прямого угла к гипотенузе, с медианой AE (или BD) будет делить ее в соотношении 2 к 1, считая от вершины. То есть наша 3-я медиана также пройдет через точку X. Отсюда следует, что все 3 наши медианы пересекаются в одной точке.
  • Что и требовалось доказать.

    Второе свойство

    Доказать, что медиана, проведённая с вершины прямого угла к гипотенузе, равна половине гипотенузы.

    Доказательство:

    1. Чтобы доказать это свойство рассмотрим прямоугольный треугольник ABC и проведём медиану к гипотенузе. Точку ее пересечения с гипотенузой обозначим буквой D (рис. 6).

    Медиана прямоугольного треугольника делит

    Отразим симметрично наш треугольник ABC относительно отрезка AB (рисунок 7). В результате получим четырёхугольник AEBC, в котором AD=DB (поскольку CD медиана к стороне AB) и CD=DE (по построению). То есть диагонали четырехугольника AEBC пересекаются и точкой пересечения делятся пополам. Отсюда следует, что AEBC является параллелограммом (по признаку параллелограмма).

    Медиана прямоугольного треугольника делит

  • Один из признаков прямоугольника говорит о том, что параллелограмм является прямоугольником, если хотя бы один из его углов прямой. Поскольку ∠ACB прямой (по построению), то AEBC — прямоугольник.
  • Поскольку диагонали прямоугольника равны и в точке пересечения делятся пополам (свойство прямоугольника), то AB = CE и AD = DB = CD = DE.

    Медиана прямоугольного треугольника делит

  • Так как AB = AD + DB, AD = BD и СD = AD = BD, то получается, что медиана AD, проведенная к гипотенузе AB равна половине ее длины.
  • Что и требовалось доказать.

    Третье свойство

    Доказать, что медиана, проведённая к гипотенузе прямоугольного треугольника, является радиусом описанной окружности.

    Доказательство:

    1. Опишем вокруг прямоугольного треугольника ABC окружность.

    Медиана прямоугольного треугольника делит

  • Поскольку точка C уже лежит на окружности, то для того, чтобы доказать, что медиана CM является радиусом, нам надо доказать, что точка M – центр описанной окружности (т.е. равноудалена от нее).
  • Так как медиана делит отрезок пополам, а медиана проведенная к гипотенузе равна ее половине (согласно доказанному выше свойству), то точка M будет равноудалена от всех вершин треугольника, которые в свою очередь касаются окружности (рисунок 8).
  • Отсюда следует, что окружность, описанная вокруг прямоугольного треугольника ABC будет иметь центр на середине гипотенузы (в точке M), а медиана CM будет радиусом описанной окружности.
  • Что и требовалось доказать.

    Медиана прямоугольного треугольника делит

    Понравилась статья, расскажите о ней друзьям:

    Видео:🔥 Свойства МЕДИАНЫ #shortsСкачать

    🔥 Свойства МЕДИАНЫ #shorts

    Элементы треугольника. Медиана

    Видео:Свойство медианы в прямоугольном треугольнике. 8 класс.Скачать

    Свойство медианы в прямоугольном треугольнике. 8 класс.

    Определение

    Медианой треугольника называют отрезок, соединяющий вершину треугольника с серединой противоположной стороны

    Медиана прямоугольного треугольника делит

    Видео:Высота, биссектриса, медиана. 7 класс.Скачать

    Высота, биссектриса, медиана. 7 класс.

    Свойства

    1. Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины . Эта точка называется центром тяжести треугольника.

    Медиана прямоугольного треугольника делит

    2. Медиана треугольника делит его на два треугольника равной площади (равновеликих треугольника)

    Медиана прямоугольного треугольника делит

    3. Медианы треугольника делят треугольник на 6 равновеликих треугольников

    Медиана прямоугольного треугольника делит

    4. Медиана, проведенная к гипотенузе прямоугольного треугольника, равна половине гипотенузы

    Медиана прямоугольного треугольника делит

    5. Длина медианы треугольника вычисляется по формуле:

    Медиана прямоугольного треугольника делит, где где Медиана прямоугольного треугольника делит— медиана к стороне Медиана прямоугольного треугольника делит; Медиана прямоугольного треугольника делит— стороны треугольника

    6. Длина стороны треугольника через медианы вычисляется по формуле:

    Медиана прямоугольного треугольника делит, где Медиана прямоугольного треугольника делит– медианы к соответствующим сторонам треугольника, Медиана прямоугольного треугольника делит— стороны треугольника.

    Чтобы не потерять страничку, вы можете сохранить ее у себя:

    Видео:Геометрия Медиана, проведенная к гипотенузе прямоугольного треугольника, равна m и делит прямой уголСкачать

    Геометрия Медиана, проведенная к гипотенузе прямоугольного треугольника, равна m и делит прямой угол

    Медиана в прямоугольном треугольнике

    Медиана в прямоугольном треугольнике — это отрезок, который соединяет вершину треугольника и середину противоположной стороны, то есть вершину острого угла с серединой противолежащего катета или вершину прямого угла с серединой гипотенузы.

    Медиана прямоугольного треугольника делит

    Медиана прямоугольного треугольника делитВсе медианы прямоугольного треугольника пересекаются в одной точке и делятся этой точкой в отношении два к одному, считая от вершины:

    Медиана прямоугольного треугольника делит

    Из всех медиан прямоугольного треугольника в задачах чаще всего речь идет о медиане, проведенной к гипотенузе. Это связано с ее свойствами.

    Свойства медианы, проведенной к гипотенузе:

    Медиана прямоугольного треугольника делит1) Медиана, проведенная к гипотенузе, равна половине гипотенузы.

    Медиана прямоугольного треугольника делит

    (в следующий раз рассмотрим доказательство этого свойства)

    Медиана прямоугольного треугольника делит2) Медиана, проведенная к гипотенузе, равна радиусу описанной около прямоугольного треугольника окружности.

    Медиана прямоугольного треугольника делит

    Пользуясь свойствами прямоугольного треугольника, длины медиан прямоугольного треугольника можно выразить через катеты и острые углы.

    Медиана прямоугольного треугольника делитНапример:

    Медиана прямоугольного треугольника делит

    Медиана прямоугольного треугольника делит

    Медиана прямоугольного треугольника делит

    Медиана прямоугольного треугольника делит

    Медиана прямоугольного треугольника делит

    Видео:8. Медиана треугольника и её свойства.Скачать

    8. Медиана треугольника и её свойства.

    12 Comments

    Информация очень хорошая. Правда не помогла мне решить задачу, которую мой сын не решил на контрольной. приведу условие:
    Из прямого угла треугольника проведена медиана на гипотенузу. Длина медианы 6см. Определить катеты.

    Петр, данных для определения катетов недостаточно. Длина гипотенузы в 2 раза больше длины медианы — 12 см. Это всё, что можно сказать по данным условия.

    не правда надо провести высоту из прямого угла дальше все получится. один катет равен 6 а второй 2 корня из 22

    Сумма квадратов катетов равна квадрату гипотенузы. Проверим 6^2+(2*корень из 22)^2
    =36+4*22=36+88=124. Квадрат гипотенузы 12^2=144

    попробуйте составить уравнение,обозначив 1 из катетов через х а 2-ой катет обозначьте буквами…x^2+BC^2=12^2…да числа не очень,но это 1 способ..решаю дальше:BC^2=12^2-x^2
    BC^2=11x
    X^2+11X=144
    X^2=12
    x(1 катет)=корню из 12,а «-ой катет=11 корней из 12….решал на основе теоремы пифагора

    задача имеет бесконечное кол-во решений. решение возможно только в виде формулы или графика, где описана зависимость между катетами и гипотенузой

    Да просто треугольник медианой делится на два треугольника с одинаковыми катетами, а дальше как уже предлагалось выше Пифагор во спасение))

    А кто вам сказал, что медиана в прямоугольном треугольнике является еще и высотой? Откуда у вас два треугольника с одинаковыми катетами?

    Спасибо за понятное объяснение, но у нас задача немного другая.
    В прямоугольном треугольнике АВС угол С= 90 градусов,медиана ВВ1 равна 10 см.Найдите медианы АА1 СС1, если известно, что АС=12 см.( используя т.Пифагора.

    1) Рассмотрим треугольник BB1C. В нём угол С равен 90 градусов, BB1=10 см, B1C=6 см (так как BB1 — медиана). По теореме Пифагора находим BC: BC=8 см. 2) Рассмотрим треугольник AA1C. В нём угол С равен 90 градусов, AC=12 см, AA1=4 см (так как BB1 — медиана). По теореме Пифагора находим AA1: AA1=4√10 см.3) Из треугольника ABC по теореме Пифагора найдём AB: AB=4√13 см. 4) CC1=1/2 AB (как медиана, проведённая к гипотенузе), CC1=2√13 см.
    Где-то так.

    💥 Видео

    7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать

    7 класс, 17 урок, Медианы, биссектрисы и высоты треугольника

    Медиана прямоугольного треугольника— Геометрия ОГЭСкачать

    Медиана прямоугольного треугольника— Геометрия ОГЭ

    Медиана в прямоугольном треугольникеСкачать

    Медиана в прямоугольном треугольнике

    №404. Докажите, что медиана прямоугольного треугольника, проведенная к гипотенузеСкачать

    №404. Докажите, что медиана прямоугольного треугольника, проведенная к гипотенузе

    Медиана в прямоугольном треугольникеСкачать

    Медиана в прямоугольном треугольнике

    Свойство медианы в прямоугольном треугольнике. Практическая часть. 8 класс.Скачать

    Свойство медианы в прямоугольном треугольнике. Практическая часть. 8 класс.

    Свойство медианы прямоугольного треугольникаСкачать

    Свойство медианы прямоугольного треугольника

    7 класс, 35 урок, Некоторые свойства прямоугольных треугольниковСкачать

    7 класс, 35 урок, Некоторые свойства прямоугольных треугольников

    Свойство биссектрисы треугольника с доказательствомСкачать

    Свойство биссектрисы треугольника с доказательством

    Задача за секунду. ОГЭ геметрия. Медиана прямоугольного треугольникаСкачать

    Задача за секунду. ОГЭ геметрия. Медиана прямоугольного треугольника

    Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.Скачать

    Математика | Соотношения между сторонами и углами в прямоугольном треугольнике.

    Теорема "Свойство медианы прямоугольного треугольника"Скачать

    Теорема "Свойство медианы  прямоугольного треугольника"

    Медиана в прямоугольном треугольникеСкачать

    Медиана в прямоугольном треугольнике
    Поделиться или сохранить к себе: