Если подынтегральная функция f(x, y, z) ≡ 1, то из определения криволинейного интеграла 1-го рода получаем, что в этом случае он равен длине кривой, по которой ведется интегрирование:
(39)
Считая, что подынтегральная функция γ (x, y, z) определяет плотность каждой точки кривой, найдем массу кривой по формуле
(40)
Пример 6.
Найти массу кривой с линейной плотностью заданной в полярных координатах уравнением ρ =4φ, где
Используем формулу (40) с учетом того, что кривая задана в полярных координатах:
3) Моменты кривой l:
— (41)
— статические моменты плоской кривой l относительно осей Ох и Оу;
— (42)
— момент инерции пространственной кривой относительно начала координат;
— (43)
— моменты инерции кривой относительно координатных осей.
4) Координаты центра масс кривой вычисляются по формулам
. (44)
5) Работа силы , действующей на точку, движущуюся по кривой (АВ):
, (45)
Пример 7.
Вычислить работу векторного поля вдоль отрезка прямой от точки А(-2;-3;1) до точки В(1;4;2).
Найдем канонические и параметрические уравнения прямой АВ:
6) Площадь криволинейной поверхности, уравнение которой
z = f(x, y), можно найти в виде:
(46)
(Ω – проекция S на плоскость Оху).
7) Масса поверхности
(47)
Пример 8.
Найти массу поверхности с поверхностной плотностью γ = 2z 2 + 3.
На рассматриваемой поверхности
Тогда
Проекцией D этой поверхности на координатную плоскость Оху является полукольцо с границами в виде дуг концентрических окружностей радиусов 3 и 4.
Применяя формулу (47) и переходя к полярным координатам, получим:
8) Моменты поверхности:
(48) статические моменты поверхности относительно координатных плоскостей Oxy, Oxz, Oyz;
— моменты инерции поверхности относительно координатных осей;
— (50)
— моменты инерции поверхности относительно координатных плоскостей;
— (51)
— момент инерции поверхности относительно начала координат.
9) Координаты центра масс поверхности:
. (52)
III. Теория поля
Если в каждой точке М определенной пространственной области задано значение некоторой скалярной или векторной величины, то говорят, что задано поле этой величины (соответственно скалярноеили векторное).
Если в некоторой области задано скалярное поле U(x,y,z), то вектор
(53)
называется градиентомвеличины U в соответствующей точке.
Пусть дано векторное поле . Интеграл
(54)
называется линейным интегралом от векторавдоль кривой L. Если кривая L замкнута, то этот интеграл называют циркуляцией векторавдоль кривой L.
Пример 9.
Вычислить циркуляцию векторного поля по контуру Г, состоящему из частей линий (направление обхода положительно).
Воспользуемся формулой Грина:
Ротором или вектором вихрявекторного поля A= <Ax, Ay, Az>, где Ax, Ay, Az – функции от x, y, z, называется вектор, определяемый следующим образом:
(55)
Рассмотрим векторное поле А(М), определенное в пространственной области G, ориентированную гладкую поверхность S G и поле единичных нормалей п(М) на выбранной стороне поверхности S.
Поверхностный интеграл 1-го рода
(56)
где An – скалярное произведение соответствующих векторов, а Ап – проекция вектора А на направление нормали, называется потоком векторного поля А(М) через выбранную сторону поверхности S.
Пример 10.
Найти поток векторного поля через часть плоскости ограниченную координатными плоскостями (нормаль к плоскости образует острый угол с осью Oz).
Проекцией данной поверхности на координатную плоскость Оху является треугольник с вершинами в точках А(0;0), В(0;1), С(½; 0). Найдем координаты единичной нормали к плоскости:
Видео:Математический анализ, 48 урок, Криволинейные интегралы второго родаСкачать
Циркуляция векторного поля
с помощью формулы Стокса и непосредственно (положительным направлением обхода контура считать то, при котором точка перемещается по часовой стрелке, если смотреть из начала координат).
Задача 12. Найти циркуляцию вектора $F$ вдоль ориентированного контура $L$. $$ overline = (3x-1) overline+ (y-x+z)overline+4z overline, $$ $L$ — контур треугольника $ABCA$, где $A,B,C$ точки пересечения плоскости $2x-y-2z+2=0$ соответственно с осями координат $Ox, Oy, Oz$.
Видео:Работа силы на пути от точки до точки составляетСкачать
Работа векторного поля
Задача 13. Найдите работу векторного поля $A=(2xy-y; x^2+x)$ по перемещению материальной точки вдоль окружности $x^2+y^2=4$ из $M (2; 0)$ в $К(-2; 0)$.
Задача 14. Вычислить работу векторного поля силы $overline = xz overline -overline+y overline$ при движении материальной точки по пути $L: x^2+y^2+z^2=4$, $z=1 (y ge 0)$ от точки $M(sqrt(3);0;1)$ до точки $N(-sqrt(3);0;1)$.
Видео:Криволинейный интеграл II рода вдоль плоской кривойСкачать
Типовой расчет по теории поля
Задание 15. А) Найти поток векторного поля $F$ через внешнюю поверхность пирамиды, отсекаемой плоскостью $(p)$ двумя способами: непосредственно и по формуле Гаусса-Остроградского. Б) Найти циркуляцию вектора $F$ по контуру треугольника двумя способами: по определению и по формуле Стокса.
Видео:Криволинейный интеграл 2-го рода.Работа.ВидеоСкачать
Помощь с решением заданий
Если вам нужна помощь с решением задач и контрольных по этой и другим темам математического анализа, обращайтесь в МатБюро. Стоимость подробной консультации от 150 рублей , оформление производится в Word, срок от 1 дня.
📺 Видео
Работа силы. Криволинейные интегралы 2 рода. (5)Скачать