Доказательство подобия треугольников с окружностью

Доказательство подобия треугольников с окружностью

Признака подобия треугольников

Две фигуры `F` и `F’` называются подобными, если они переводятся друг в друга преобразованием подобия, т. е. таким преобразованием, при котором расстояния между точками изменяются (увеличиваются или уменьшаются) в одно и то же число раз. Если фигуры `F` и `F’` подобны, то пишется `F

F’`. Напомним, что запись подобия треугольников `Delta ABC

Delta A_1 B_1 C_1` означает, что вершины, совмещаемые преобразованием подобия, стоят на соответствующих местах, т. е. `A` переходит в `A_1`, `B` — в `B_1`, `C` — в `C_1`.

Из свойств преобразования подобия следует, что у подобных фигур соответствующие углы равны, а соответствующие отрезки пропорциональны. В частности, если `Delta ABC

Delta A_1B_1C_1`, то `/_ A = /_ A_1`, `/_ B = /_ B_1`, `/_ C = /_ C_1`,

`A_1B_1 : AB = B_1C_1 : BC = C_1A_1 : CA`.

Два треугольника подобны, если:

1. два угла одного соответственно равны двум углам другого;

2. две стороны одного пропорциональны двум сторонам другого и углы, образованные этими сторонами, равны;

3. три стороны одного треугольника пропорциональны трём сторонам другого.

В решении задач и доказательстве теорем часто используется утверждение, которое, чтобы не повторять каждый раз, докажем сейчас отдельно.

Если две стороны треугольника пересекает прямая, параллельная третьей стороне (рис. 9), то она отсекает треугольник, подобный данному.

Доказательство подобия треугольников с окружностью

Действительно, из параллельности `MN` и `AC` следует, что углы `1` и `2` равны. Треугольники `ABC` и `MBN` имеют два равных угла: общий угол при вершине `B` и равные углы `1` и `2`. По первому признаку эти треугольники подобны.

И сразу применим это утверждение в следующем примере, в котором устанавливается важное свойство трапеции.

Прямая, проходящая через точку пересечения диагоналей трапеции параллельно её основаниям, пересекает боковые стороны трапеции в точках `M` и `N`. Найти длину отрезка `MN`, если основания трапеции равны `a` и `b`.

1. Пусть `O` — точка пересечения диагоналей, `AD = a`, `BC = b`. Прямая `MN` параллельна основанию `AD` (рис. 10а), следовательно, $$ MOparallel AD$$, треугольники `BMO` и `BAD` подобны, поэтому

Доказательство подобия треугольников с окружностью

2. $$ ADparallel BC$$, `Delta AOD

Delta COB` по двум углам (рис. 10б):

`(OD)/(OB) = (AD)/(BC)`, то есть `(OD)/(OB) = a/b`.

Доказательство подобия треугольников с окружностью

3. Учитывая, что `BD = BO + OD` находим отношение

`(BO)/(BD) = (BO)/(BO + OD) = 1/(1 + OD//BO) = b/(a + b)`.

Подставляя это в (1), получаем `MO = (ab)/(a + b)`; аналогично устанавливаем, что `ON = (ab)/(a + b)`, таким образом `MN = (2ab)/(a + b)`.

Точки `M` и `N` лежат на боковых сторонах `AB` и `CD` трапеции `ABCD` и $$ MNparallel AD$$ (рис. 11а). Найти длину `MN`, если `BC = a`, `AD = 5a`, `AM : MB = 1:3`.

Доказательство подобия треугольников с окружностью

1. Пусть $$ BFVert CD$$ и $$ MEVert CD$$ (рис. 11б), тогда `/_ 1 = /_ 2`, `/_ 3 = /_ 4` (как соответствующие углы при пересечении двух параллельных прямых третьей) и `Delta AME

Delta MBF`. Из подобия следует `(AE)/(MF) = (AM)/(MB) = 1/3`.

Доказательство подобия треугольников с окружностью

2. Обозначим `MN = x`. По построению `BCNF` и `MNDE` — параллелограммы, `FN = a`, `ED = x` и, значит, `MF = x — a`; `AE = 5a — x`. Итак, имеем `(5a — x)/(x — a) = 1/3`, откуда находим `x = 4a`.

Напомним, что отношение периметров подобных треугольников равно отношению их сходственных сторон. Верно также следующее утверждение: отношение медиан, биссектрис и высот, проведённых к сходственным сторонам в подобных треугольниках, равно отношению сходственных сторон.

Отношение радиусов вписанных окружностей, как и отношение радиусов описанных окружностей, в подобных треугольниках также равно отношению сходственных сторон.

Попытайтесь доказать это самостоятельно.

Прямоугольные треугольники подобны, если:

1. они имеют по равному острому углу;

2. катеты одного треугольника пропорциональны катетам другого;

3. гипотенуза и катет одного треугольника пропорциональны гипотенузе и катету другого.

Два первых признака следуют из первого и второго признаков подобия треугольников, поскольку прямые углы равны. Третий признак следует, например, из второго признака подобия и теоремы Пифагора.

Заметим, что высота прямоугольного треугольника, опущенная на гипотенузу, разбивает его на два прямоугольных треугольника, подобных между собой и подобных данному. Доказанные в § 1 метрические соотношения Свойств 1, 2, 3 можно доказать, используя подобие указанных треугольников.

СВОЙСТВА ВЫСОТ И БИССЕКТРИС

Если в треугольнике `ABC` нет прямого угла, `A A_1` и `BB_1` — его высоты, то `Delta A_1B_1C

Delta ABC` (этот факт можно сформулировать так: если соединить основания двух высот, то образуется треугольник, подобный данному).

Как всегда, полагаем `AB = c`, `BC = a`, `AC = b`.
а) Треугольник `ABC` остроугольный (рис. 12а).

Доказательство подобия треугольников с окружностью

В треугольнике `A A_1C` угол `A_1` — прямой, `A_1C = AC cos C = ul (b cos C)`.

В треугольнике `B B_1C` угол `B_1` — прямой, `B_1C = BC cos C = ul (a cos C)`.

В треугольниках `A_1 B_1C` и `ABC` угол `C` общий, прилежащие стороны пропорциональны: `(A_1C)/(AC) = (B_1C)/(BC) = cos C`.

Таким образом, `Delta A_1 B_1 C

Delta ABC` с коэффициентом подобия `ul (cos C)`. (Заметим, что `/_ A_1 B_1 C = /_B`).
б) Треугольник `ABC` — тупоугольный (рис. 12б), угол `C` — острый, высота `A A_1` проведена из вершины тупого угла.

Доказательство подобия треугольников с окружностью

$$left.begin
Delta AA_1C, angle A_1 =90^circ Rightarrow A_1C=ACcdot cos C =b cos C;\
Delta BB_1C, angle B_1 =90^circ Rightarrow B_1C=BCcdot cos C =a cos C,
end
right>Rightarrow Delta A_1B_1Csim Delta ABC,$$

коэффициент подобия `ul (cos C)`, `/_ A_1 B_1 C = /_B`.

Случай, когда угол `B` тупой, рассматривается аналогично.
в) Треугольник `ABC` — тупоугольный (рис. 12в), угол `C` — тупой, высоты `A A_1` и `B B_1` проведены из вершин острых углов.

Доказательство подобия треугольников с окружностью

`varphi = /_ BCB_1 = /_ ACA_1 = 180^@ — /_ C`, `cos varphi = — cos C = |cos C|`.

$$left.begin
Delta AA_1C, angle A_1 =90^circ Rightarrow A_1C=ACcdot cosvarphi =b |cos C|;\
Delta BB_1C, angle B_1 =90^circ Rightarrow B_1C=BCcdot cosvarphi =b |cos C|,
end
right>Rightarrow Delta A_1B_1Csim Delta ABC$$

с коэффициентом подобия `ul (k = |cos C|`, `(/_A_1B_1C=/_B)`.

В остроугольном треугольнике `ABC` проведены высоты `A A_1`, `B B_1`, `C C_1` (рис. 13).

Доказательство подобия треугольников с окружностью

Треугольник, вершинами которого служат основания высот, называется «высотным» треугольником (или ортотреугольником).

Доказать, что лучи `A_1 A`, `B_1 B` и `C_1 C` являются биссектрисами углов высотного треугольника `A_1 B_1 C_1` (т. е. высоты остроугольного треугольника являются биссектрисами ортотреугольника).

По первой лемме о высотах `Delta A_1 B_1 C

Delta ABC`, `/_ A_1 B_1 C = /_ B`.

Аналогично `Delta AB_1C_1

Delta ABC`, `/_ AB_1 C_1 = /_ B`, т. е. `/_A_1 B_1C = /_ AB_1 C_1`.

Так как `BB_1` — высота, то `/_AB_1B = /_CB_1B = 90^@`.

Поэтому `/_C_1B_1B = /_A_1B_1B = 90^@ — /_B`, т. е. луч `B_1B` — биссектриса угла `A_1B_1C_1`.

Аналогично доказывается, что `A A_1` — биссектриса угла `B_1 A_1 C_1` и `C_1C` — биссектриса угла `B_1 C_1 A_1`.

Высоты `A A_1`, `B B_1` треугольника `ABC` пересекаются в точке `H` (рис. 14). Доказать, что имеет место равенство `AH * H A_1 = BH * HB_1`, т. е. произведение отрезков одной высоты равно произведению отрезков другой высоты.

Доказательство подобия треугольников с окружностью

Delta BHA_1`, имеют по равному острому углу при вершине `H` (заметим, что этот угол равен углу `C`). Из подобия следует `(AH)/(BH) = (HB_1)/(HA_1)`, откуда `AH * HA_1 = BH * HB_1`. Для тупоугольного треугольника утверждение также верно. Попробуйте доказать самостоятельно.

Высоты `A A_1` и `B B_1` треугольника `ABC` пересекаются в точке `H`, при этом `BH = HB_1` и `AH = 2 HA_1` (рис. 15). Найти величину угла `C`.

Доказательство подобия треугольников с окружностью

1. По условию пересекаются высоты, поэтому треугольник остроугольный. Положим `BH = HB_1 = x` и `HA_1 = y`, тогда `AH = 2y`. По второй лемме о высотах `AH * HA_1 = BH * HB_1`, т. е. `x^2 = 2y^2`, `x = y sqrt 2`.
2. В треугольнике `AHB_1` угол `AHB_1` равен углу `C` (т. к. угол `A_1 AC` равен `90^@ — C`), поэтому `cos C = cos (/_ AHB_1) = x/(2y) = sqrt 2/ 2`. Угол `C` — острый, `/_ C = 45^@`.

Установим ещё одно свойство биссектрисы угла треугольника.

Биссектриса внутреннего угла треугольника делит противолежащую этому углу сторону на отрезки, пропорциональные прилежащим сторонам, т. е. если `AD` — биссектриса треугольника `ABC`, то `(BD)/(DC) = (AB)/(AC)`.

Проведём через точку `B` прямую параллельно биссектрисе `DA`, пусть `K` — её точка пересечения с прямой `AC` (рис. 16).

Доказательство подобия треугольников с окружностью

Параллельные прямые `AD` и `KB` пересечены прямой `KC`, образуются равные углы `1` и `3`. Те же прямые пересечены и прямой `AB`, здесь равные накрест лежащие углы `2` и `4`. Но `AD` — биссектриса, `/_1 = /_2`, следовательно `/_3 = /_4`. Отсюда следует, что треугольник `KAB` равнобедренный, `KA = AB`.
По теореме о пересечении сторон угла параллельными прямыми из $$ ADVert KB$$ следует `(BD)/(DC) = (KA)/(AC)`. Подставляя сюда вместо `KA` равный ему отрезок `AB`, получим `(BD)/(DC) = (AB)/(AC)`. Теорема доказана.

Биссектриса треугольника делит одну из сторон треугольника на отрезки длиной `3` и `5`. Найти в каких пределах может изменяться периметр треугольника.

Пусть `AD` — биссектриса и `BD = 3`, `DC = 5` (рис. 17).

Доказательство подобия треугольников с окружностью

По свойству биссектрисы `AB : AC = 3:5`. Положим `AB = 3x`, тогда `AC = 5x`. Каждая сторона треугольника должна быть меньше суммы двух других сторон, т. е. `ul (5x 1`.

Периметр треугольника `P = 8 + 8x = 8(1 + x)`, поэтому `ul (16

Видео:Подобие треугольников. Вся тема за 9 минут | ОГЭ по математике | Молодой РепетиторСкачать

Подобие треугольников. Вся тема за 9 минут | ОГЭ по математике | Молодой Репетитор

Планиметрия. Страница 9

1 2 3 4 5 6 7 8 9 10 11 12Доказательство подобия треугольников с окружностью

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

1.Преобразование подобия и его свойства

Преобразованием подобия называется преобразование фигуры G в фигуру G’, у которой расстояние между точками изменяется в одно и тоже число раз. Т.е. ОA’ = k OA. Это означает, что для любых двух точек геометрической фигуры выполняется равенство A’B’ = k AB. (Рис.1) Число k называется коэффициентом подобия.

Если взять произвольную точку, например точку О. И отложить отрезок OB’ = k OB, то такое преобразование фигуры G в фигуру G’ называется гомотетией. А число k называется коэффициентом гомотетии. Таким образом, гомотетия есть преобразование подобия.

Видео:Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие ТреугольниковСкачать

Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие Треугольников

Свойства преобразования подобия

Преобразование подобия переводит прямые в прямые, полупрямые в полупрямые, отрезки в отрезки и при этом углы между прямыми сохраняются.

Доказательство подобия треугольников с окружностью

Рис.1 Преобразование подобия и его свойства.

Видео:8 класс, 23 урок, Второй признак подобия треугольниковСкачать

8 класс, 23 урок, Второй признак подобия треугольников

2.Подобие фигур. Подобие треугольников по двум углам

Две фигуры называются подобными, если преобразованием подобия они переходят друг в друга. (Рис.2)

Доказательство подобия треугольников с окружностью

Если две фигуры подобны третьей, то они подобны друг другу.

Из свойств преобразования подобия следует, что у подобных фигур, соответсвующие стороны пропорциональны и соответствующие углы равны.

Доказательство подобия треугольников с окружностью

Доказательство подобия треугольников с окружностью

Рис.2 Подобие фигур.

Видео:Задача на подобие треугольников. А ты сможешь решить? | TutorOnline | МатематикаСкачать

Задача на подобие треугольников. А ты сможешь решить? | TutorOnline | Математика

Подобие треугольников по двум углам

Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны. (Рис.3)

Докажем это утверждение. Пусть даны два треугольника ABC и A’B’C’.

Доказательство подобия треугольников с окружностью

Преобразованием подобия преобразуем треугольник A’B’C’ в треугольник A»B»C» с коэффициентом k, т.е. подвергнем гомотетии. Полученный треугольник A»B»C» равен треугольнику ABC по стороне и прилегающим к ней углам. Т.к. преобразование подобия сохраняет углы, а расстояние между двумя точками изменяется в k раз. Следовательно треугольники A’B’C’ и A»B»C» подобны. А т.к. треугольники ABC и A»B»C» равны, то треугольник ABC подобен треугольнику A’B’C’.

Доказательство подобия треугольников с окружностью

Рис.3 Подобие треугольников по двум углам.

Видео:Второй и третий признаки подобия треугольников (доказательство) - 8 класс геометрияСкачать

Второй и третий признаки подобия треугольников (доказательство) - 8 класс геометрия

3.Подобие треугольников по двум сторонам и углу между ними

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы между этими сторонами равны, то такие треугольники подобны.

Докажем это утверждение. (Доказательство аналогично доказательству подобия по двум углам) Пусть даны два треугольника ABC и A’B’C’.

Доказательство подобия треугольников с окружностью

Преобразованием подобия преобразуем треугольник A’B’C’ в треугольник A»B»C» с коэффициентом k, т.е. подвергнем гомотетии. Полученный треугольник A»B»C» равен треугольнику ABC по двум сторонам и углу между ними со сторонами kA’B’=A»B» и kA’C’=A»C». Т.к. преобразование подобия сохраняет углы, а расстояние между двумя точками изменяется в k раз. Следовательно треугольники A’B’C’ и A»B»C» подобны. А т.к. треугольники ABC и A»B»C» равны, то треугольник ABC подобен треугольнику A’B’C’, т.е. kA’B’=AB, kB’C’=BC и kA’C’=AC.

Доказательство подобия треугольников с окружностью

Рис.3 Подобие треугольников.

Видео:Первый признак подобия треугольников. Доказательство. 8 класс.Скачать

Первый признак подобия треугольников. Доказательство. 8 класс.

4.Подобие треугольников по трем сторонам

Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны.

Доказательство. (Доказательство аналогично доказательству подобия по двум углам) Пусть даны два треугольника ABC и A’B’C’.

Доказательство подобия треугольников с окружностью

Преобразованием подобия преобразуем треугольник A’B’C’ в треугольник A»B»C» с коэффициентом k, т.е. подвергнем гомотетии. В результате получим треугольник A»B»C», который равен треугольнику ABC по трем сторонам kA’B’=A»B», kВ’C’=В»C» и kA’C’=A»C». Т.к. преобразование подобия сохраняет углы, а расстояние между двумя точками изменяется в k раз. Следовательно треугольники A’B’C’ и A»B»C» подобны. И т.к. треугольники ABC и A»B»C» равны, то треугольник ABC подобен треугольнику A’B’C’.

Доказательство подобия треугольников с окружностью

Рис.4 Подобие треугольников по трем сторонам.

Видео:Подобие треугольников (ч.2) | Математика | TutorOnlineСкачать

Подобие треугольников (ч.2) | Математика | TutorOnline

5.Подобие прямоугольных треугольников

Если два прямоугольных треугольника имеют по одному равному острому углу, то такие треугольники подобны.

Пусть дан прямоугольный треугольник ABC. Проведем высоту CD. Треугольники ABC и ADC подобны, т.к. угол А у них общий. Так же как и треугольники ADC и BDC. Следовательно:

Доказательство подобия треугольников с окружностью

Т.е. катет прямоугольного треугольника равен средней геометрической гипотенузы и проекции этого катета на гипотенузу. А высота в прямоугольном треугольнике равна средней геометрической между проекциями катетов на гипотенузу.

Отсюда можно сделать вывод, что в любом треугольнике биссектриса делит противолежащую сторону на отрезки, пропорциональные двум другим сторонам. (Свойство биссектрисы треугольника).

Доказательство подобия треугольников с окружностью

Рис.5 Подобие прямоугольных треугольников.

Докажем это утверждение. Пусть дан треугольник ABC. (Рис.6) BE — биссектриса. Треугольники ABE и BCD подобны. Углы В у них равны. Треугольники ADE и DCF также подобны. Углы D у них равны, как вертикальные. Отсюда можно записать следующие соотношения для двух пар треугольников.

Доказательство подобия треугольников с окружностью

Т.е. отрезки AD и DC пропорциональны сторонам AB и BC.

Доказательство подобия треугольников с окружностью

Рис.6 Подобие прямоугольных треугольников.

Репетитор: Васильев Алексей Александрович

Предметы: математика, физика, информатика, экономика, программирование.

Доказательство подобия треугольников с окружностью2000 руб / 120 мин — подготовка к ЕГЭ и ГИА для школьников. 3000 руб / 120 мин — индивидуально (базовый уровень). 2000 руб / 120 мин — студенты.

Тел. 8 916 461-50-69, email: alexey-it@ya.ru

Доказательство подобия треугольников с окружностью

6.Пример 1

Докажите, что фигура подобная окружности, есть окружность.

Доказательство:

Пусть даны две окружности F и F’ с радиусами R1 и R2 . Подберем коэффициент k так, чтобы kR1 = R2. Необходимо доказать, что окружности подобны.

Зададим на плоскости систему координат с осями Оx и Oy таким образом, чтобы центр первой окружности F совпал с началом координат. Параллельным переносом переместим вторую окружность F’ так, чтобы ее центр также совпал с началом координат. На окружности F возьмем две произвольные точки А и В. И проведем между ними хорду. Также проведем к этим точкам радиусы ОА и ОВ, которые продлим до окружности F’, т.е. ОA’ и OB’. Оси Оx и Оy повернем так, чтобы ось Oy пересекала хорду под прямым углом (Рис.7). Тогда k OA = OA’.

Теперь рассмотрим треугольник ОАС.

Доказательство подобия треугольников с окружностью

Доказательство подобия треугольников с окружностью

Рис.7 Задача. Докажите, что фигура подобная окружности, есть окружность.

Таким образом, мы пришли к выводу, что A’B’ = k AB. А это означает, что расстояние между любыми двумя точками окружности F’ в k раз больше, чем расстояние между подобными точками в окружности F, т.е фигуру F’ можно получить преобразованием подобия или гомотетией относительно точки О. А это значит, что окружности F и F’ подобны.

Пример 2

У треугольников АВС и А1В1С1 ∠A = ∠A1, ∠B = ∠B1. AB = 6, AC = 9, A1B1 = 10, B1C1 = 10. Найдите остальные стороны треугольников.

Решение:

Пусть даны два треугольника АВС и А1В1С1 ∠A = ∠A1, ∠B = ∠B1 (Рис.8). Данные треугольники подобны по двум углам: ∠A = ∠A1 и ∠В = ∠B1. Отсюда следует, что все стороны второго треугольника отличаются от сторон первого треугольника в k число раз, т.е. коэффициент подобия. Найдем число k:

k = AB / А1В1 = 6 / 10 = 3 / 5

Отсюда следует, что

ВС = k * В1С1 = (3 / 5) * 10 = 6 см

А1С1 = АС / k = 9 / (3 / 5) = 15 см

Доказательство подобия треугольников с окружностью

Рис.8 Задача. У треугольников АВС и А1В1С1.

Пример 3

В трапеции ABCD основание АD = 32 см, а основание ВС = 8 см. Угол между диагональю АС и стороной СD равен углу ∠АВС, т.е. ∠АВС = ∠АСD. Найдите диагональ АС.

Решение:

В трапеции два основания лежат на параллельных прямых (Рис.9). Отсюда следует, что угол ∠CAD = ∠BCA, как внутренние накрест лежащие углы. Следовательно, треугольники АВС и АСD подобны по двум углам: ∠AВС = ∠АCD по условию задачи, ∠CAD = ∠BCA, как внутренние накрест лежащие углы.

Тогда можно составить следующие соотношение:

k = АС / ВС = AD / AC . Следовательно,

AC 2 = 8 * 32 = 256

Отсюда, АС = 16 см.

Доказательство подобия треугольников с окружностью

Рис.9 Задача. В трапеции ABCD основание АD = 32 см.

Пример 4

В остроугольном треугольнике АВС проведены высоты AD, BE, CF. Найдите углы треугольника DEF, если в треугольнике АВС ∠А = α, ∠В = β, ∠С = γ.

Решение:

Рассмотрим два прямоугольных треугольника AFC и ABE. Они подобны по одному острому углу, так как угол при вершине А у них общий. Следовательно, угол ∠FCE = ∠ABE. Обозначим его как ϕ3. Аналогичным образом обозначим:

Рассмотрим два прямоугольных треугольника AFO и DOC. Они подобны по одному острому углу: углы при вершине О равны как вертикальные (Рис.10). Отсюда следует, что треугольники FOD и AOC также подобны по двум пропорциональным сторонам и углу между ними.

Так как OD / OF = OC / AO

Следовательно, OD / OС = OF / AO

Отсюда следует равенство углов:

Треугольники BFO и EOC подобны. У них углы при вершине О равны как вертикальные, а углы при вершинах F и E прямые. Отсюда следует подобие треугольников FOE и BOC. Следовательно,

Доказательство подобия треугольников с окружностью

Рис.10 Задача. В остроугольном треугольнике АВС.

Так как ϕ1 + ϕ2 + ϕ3 = 90° (из прямоугольного треугольника BFC), то в треугольнике FDE угол при вершине F равен:

Аналогичным образом выводится, что:

Пример 5

В треугольник ABC вписан ромб ADEF, таким образом, что угол А у них общий, а вершина Е находится на стороне ВС. АВ = 12 см, АС = 4 см. Найдите сторону ромба.

Решение:

Так как у ромба противоположные стороны параллельны, то треугольники АВС и DBE подобны по двум углам: ∠А = ∠D, ∠C = ∠E как соответственные (Рис.11).

Тогда можно составить следующие соотношение:

AC / DE = AB / (AB — AD)

так как AD = DE, то

AC / DE = AB / (AB — DE)

4 / DE = 12 / (12 — DE)

48 — 4 DE = 12 DE

Отсюда, DE = 3 см.

Доказательство подобия треугольников с окружностью

Рис.11 Задача. В треугольник ABC вписан ромб ADEF.

Видео:Первый признак подобия треугольников - геометрия 8 классСкачать

Первый признак подобия треугольников - геометрия 8 класс

Подобные треугольники

Видео:Геометрия 8 класс. Третий признак подобия треугольниковСкачать

Геометрия 8 класс. Третий признак подобия треугольников

Определение

Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.

Доказательство подобия треугольников с окружностью

Коэффициентом подобия называют число k , равное отношению сходственных сторон подобных треугольников.

Сходственные (или соответственные) стороны подобных треугольников — стороны, лежащие напротив равных углов.

Доказательство подобия треугольников с окружностью

Видео:Второй признак подобия треугольников. Доказательство. 8 класс.Скачать

Второй признак подобия треугольников. Доказательство. 8 класс.

Признаки подобия треугольников

I признак подобия треугольников

Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

Доказательство подобия треугольников с окружностью II признак подобия треугольников

Доказательство подобия треугольников с окружностью

Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

Доказательство подобия треугольников с окружностью

Видео:Геометрия 8 класс. Первый признак подобия треугольниковСкачать

Геометрия 8 класс. Первый признак подобия треугольников

Свойства подобных треугольников

  • Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
  • Отношение периметров подобных треугольников равно коэффициенту подобия. Доказательство подобия треугольников с окружностью
  • Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.

Видео:8 класс, 24 урок, Третий признак подобия треугольниковСкачать

8 класс, 24 урок, Третий признак подобия треугольников

Примеры наиболее часто встречающихся подобных треугольников

1. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.

Доказательство подобия треугольников с окружностью

2. Треугольники Доказательство подобия треугольников с окружностьюи Доказательство подобия треугольников с окружностью, образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия – Доказательство подобия треугольников с окружностью

Доказательство подобия треугольников с окружностью

3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.

Доказательство подобия треугольников с окружностью

Доказательство подобия треугольников с окружностью

Здесь вы найдете подборку задач по теме «Подобные треугольники» .

🎦 Видео

Третий признак подобия треугольников. Доказательство. 8 класс.Скачать

Третий признак подобия треугольников. Доказательство. 8 класс.

8 класс, 22 урок, Первый признак подобия треугольниковСкачать

8 класс, 22 урок, Первый признак подобия треугольников

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Геометрия 8 класс (Урок№15 - Признаки подобия треугольников.)Скачать

Геометрия 8 класс (Урок№15 - Признаки подобия треугольников.)

Геометрия 8 класс. Второй признак подобия треугольниковСкачать

Геометрия 8 класс. Второй признак подобия треугольников

Подобные треугольникиСкачать

Подобные треугольники

ВТОРОЙ И ТРЕТИЙ ПРИЗНАКИ ПОДОБИЯ треугольников . §14 геометрия 8 классСкачать

ВТОРОЙ И ТРЕТИЙ ПРИЗНАКИ ПОДОБИЯ треугольников . §14 геометрия 8 класс
Поделиться или сохранить к себе: