Работа силы вектора на пути

Работа силы вдоль вектора
Содержание
  1. как найти работу силы вектора F(1,-2,3)на пути из точки А (0,0,1) в точку В (-1,-1,-1)
  2. Работа силы вдоль вектора
  3. Решение
  4. Построим рисунок.
  5. 4.1. Работа силы
  6. Мощность и работа силы в теоретической механике
  7. Понятие работы
  8. Работа постоянной силы при прямолинейном движении
  9. Элементарная работа силы
  10. Выражение элементарной работы через проекции силы на оси координат
  11. Графическое определение работы
  12. Работа силы тяжести
  13. Работа силы, приложенной к вращающемуся телу
  14. Мощность силы
  15. Теоремы об изменении кинетической энергии точки и системы
  16. Теорема об изменении кинетической энергии материальной системы
  17. Коэффициент полезного действия
  18. Работа и мощность при поступательном движении
  19. Работа и мощность при вращательном движении
  20. Техническая механика
  21. Работа, мощность, энергия
  22. Работа постоянной силы на прямолинейном участке
  23. Работа силы на криволинейном участке пути
  24. Теорема о работе равнодействующей
  25. Теорема о работе силы тяжести
  26. Пример решения задачи по определению работы силы тяжести
  27. Работа постоянной силы, приложенной к вращающемуся телу
  28. Пример решения задачи
  29. Мощность
  30. Понятие об энергии и КПД
  31. 📺 Видео

Видео:Построение проекции вектора на осьСкачать

Построение проекции вектора на ось

как найти работу силы вектора F(1,-2,3)на пути из точки А (0,0,1) в точку В (-1,-1,-1)

Работа силы по перемещению на пути из точки А в точку B определяется как скалярное произведение вектора силы на вектор перемещения. Вектор перемещения равен АВ = (-1-0; -1-0 -1-1) = (-1; -1: -2). Скалярное произведение векторов, заданных своими координатами (x1, y1, z1) и (x2, y2, z2), вычисляется по формуле (x1x2 + y1y2 + z1z2). Подставляя сюда координаты векторов силы и перемещеня, получаем ответ A = -5. Обратите внимание на знак минус перед числом.

Видео:Работа силы на пути от точки до точки составляетСкачать

Работа силы на пути от точки до точки составляет

Работа силы вдоль вектора

Прежде, чем Вы начнёте скачивать свои варианты, попробуйте решить задачу по образцу, приведённому ниже для варианта 1.

&nbsp &nbsp &nbsp &nbsp Вариант 1 &nbsp &nbsp Вариант 2 &nbsp &nbsp Вариант 3 &nbsp &nbsp Вариант 4 &nbsp &nbsp Вариант 5 &nbsp &nbsp Вариант 6

&nbsp &nbsp &nbsp &nbsp Вариант 7 &nbsp &nbsp Вариант 8 &nbsp &nbsp Вариант 9 &nbsp &nbsp Вариант 10 &nbsp &nbsp Вариант 11 &nbsp &nbsp Вариант 12

&nbsp &nbsp Вариант 13 &nbsp &nbsp Вариант 14 &nbsp &nbsp Вариант 15 &nbsp &nbsp Вариант 16 &nbsp &nbsp Вариант 17 &nbsp &nbsp Вариант 18

&nbsp &nbsp Вариант 19 &nbsp &nbsp Вариант 20 &nbsp &nbsp Вариант 21 &nbsp &nbsp Вариант 22 &nbsp &nbsp Вариант 23 &nbsp &nbsp Вариант 24

&nbsp &nbsp Вариант 25 &nbsp &nbsp Вариант 26 &nbsp &nbsp Вариант 27 &nbsp &nbsp Вариант 28 &nbsp &nbsp Вариант 29 &nbsp &nbsp Вариант 30

10.1. Найти работу силы F при перемещении вдоль линии L от точки M к точке N.
Работа силы вектора на путиL – отрезок MN, M(-4, 0), N(0, 2).

Решение

Построим рисунок.
Работа силы вектора на пути

Уравнение прямой MN:

Работа силы вектора на пути

или
Работа силы вектора на пути

Дифференциал
Работа силы вектора на пути

При этом на отрезке MN x изменяется от -4 до 0.

Видео:Физика | Ликбез по векторамСкачать

Физика | Ликбез по векторам

4.1. Работа силы

Рассмотрим абсолютно неупругий удар двух шаров одинаковой массы, сделанных из пластилина. Если эти шары летят друг на друга с одной и той же скоростью, то при соударении они прилипнут друг к другу и остановятся. В этом случае суммарный импульс обоих шаров остался равным нулю, хотя состояние системы изменилось. Шары при этом нагрелись. Этот пример показывает, что импульс не всегда может служить мерой движения. Такой мерой является энергия. В данном случае механическая энергия при ударе перешла в другой вид энергии (тепловую).

Сначала рассмотрим важную характеристику — работу. Пусть материальная точка движется по траектории AB (рис. 1). На точку во время движения действует в общем случае переменная сила F. На участке ds (настолько малом, что модуль перемещения равен пройденному пути) силу F можно считать постоянной.

Работа силы вектора на пути

Рис 4.1. Элементарная работа

Элементарная работа силы Работа силы вектора на пути равна скалярному произведению вектора силы на вектор перемещения её точки приложения Работа силы вектора на пути

Работа силы вектора на пути

Работа — скалярная величина, ее знак зависит от знака Работа силы вектора на пути. Положительная работа совершается силой, если ее направление составляет острый угол Работа силы вектора на путис направлением движения тела. Отрицательная работа совершается силой, направление которой составляет тупой угол Работа силы вектора на путис направлением движения, при этом сила тормозит это движение. Величина

Работа силы вектора на пути

— это проекция силы F на направление перемещения. Следовательно,

Работа силы вектора на пути

Полная работа силы находится как сумма (интеграл) элементарных работ по всей траектории L точки:

Работа силы вектора на пути

При перемещении вдоль оси x работу графически можно представить как площадь под кривой Fx(x) (рис. 4.2), причем площади под осью абсцисс следует приписывать отрицательное значение.

Рис. 2. Графическая интерпретация работы силы. Здесь для краткости положено F = Fx(x)

Если перемещение ортогонально силе, то Работа силы вектора на пути= 0 и работа равна нулю:

Работа силы вектора на пути

Последнее показывает, что понятие работы в механике отлично от обыденного представления о работе. Так, при перемещении груза с постоянной скоростью в горизонтальном направлении сила тяжести не совершает работы. Работа не совершается также и тогда, когда тело покоится, так как точка приложения силы не перемещается и Работа силы вектора на пути= 0. Здесь и ниже Работа силы вектора на путии Работа силы вектора на путиозначают одно и то же — бесконечно малое перемещение, а |Работа силы вектора на пути|=|Работа силы вектора на пути|= Работа силы вектора на пути— соответствующий бесконечно малый путь.

Если на тело действует несколько сил, то

Работа силы вектора на пути

то есть работа результирующей нескольких сил равна алгебраической сумме работ, совершаемых каждой из сил в отдельности.

Рассмотрим для примера работу, совершаемую внешней силой по сжатию и растяжению пружины с жесткостью Работа силы вектора на пути. Направим ось 0x вдоль пружины, причем за начало координат 0 выберем положение свободного конца пружины, находящейся в ненагруженном состоянии. Процесс сжатия/растяжения представляем как последовательность равновесных состояний: в каждый момент времени прилагаем внешнюю силу, равную по величине силе упругости со стороны пружины. Тогда согласно закону Гука

Работа силы вектора на пути

где x — удлинение пружины. При положительных x (растяжение пружины) внешняя cила направлена направо, при отрицательных (сжатие) — налево (рис. 4.3).

Работа силы вектора на пути

Рис. 4.3. Работа, совершаемая при сжатии/растяжении пружины

Скалярное произведение для элементарной работы внешней силы имеет в этом случае вид

Работа силы вектора на пути

так что для полной работы упругой деформации пружины получаем

Работа силы вектора на пути

Заметим, что A не зависит от знака x: и при растяжении, и при сжатии пружины внешняя сила совершает одну и ту же положительную работу.

Видео:Физика - работаСкачать

Физика - работа

Мощность и работа силы в теоретической механике

Содержание:

Работа силы м мощность силы:

«Работа — это изменение формы движения, рассматриваемое с его количественной стороны» (Энгельс)

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Понятие работы

Энергия может переходить из одного вида в другие. Например, потенциальная энергия воды, поднятой плотиной на гидроэлектростанции, переходит в кинетическую энергию вращающихся турбин, которая в свою очередь превращается в электрическую энергию, по проводам передается на большие расстояния, чтобы опять перейти в кинетическую энергию станков, в тепловую энергию электропечей, в световую, в звуковую и в прочие виды энергии. При всех этих явлениях исчезает (или возникает) такое же количество каждого вида энергии, сколько возникает (или исчезает) энергии всех прочих видов. Это изменение энергии, изменение формы движения, рассматриваемое с количественной стороны, Энгельс называет работой.

Из множества различных видов движения в теоретической механике интересуются только механическим движением. Переход механического движения в немеханическое или же, наоборот, немеханического в механическое происходит на протяжении некоторого пути и зависит от действующих сил. Поэтому понятие работы в механике связано с понятиями перемещения и силы.

Работу постоянной силы при прямолинейном движении выражают произведением модуля силы на величину перемещения материальной частицы и на косинус угла между направлением силы и перемещением А = Fs cos α

Работа постоянной силы при прямолинейном движении

Знакомство с понятием работы силы в механике начнем с частного случая — работы постоянной силы при прямолинейном движении точки ее приложения.

Пусть к некоторой материальной частице приложена сила F, постоянная по величине и по направлению. Пусть точка приложения силы переместилась на прямолинейный отрезок s . В таком случае произведение

выражает работу постоянной силы F при прямолинейном движении и характеризует механическое воздействие на материальную частицу со стороны других материальных объектов на данном пути.

Работа является скалярной величиной, она не имеет направления и вполне характеризуется величиной и знаком. В формуле (218) модуль силы F и длина пути s всегда положительны. Знак « + » или «—» определяются знаком косинуса угла α между направлением силы и перемещения или, так как при прямолинейном движении точки перемещение совпадает с направлением скорости υ, косинусом угла между направлением силы и скорости. Работа положительна, если угол (Fυ) острый, и отрицательна, если он тупой. Если направление F совпадает с направлением перемещения, то угол (Работа силы вектора на пути

Если же сила направлена противоположно перемещению, то (Работа силы вектора на пути) = 180 o , cos(Работа силы вектора на пути) = — 1 и

Сила, перпендикулярная к перемещению, работы не совершает, так как cos 90° = 0.

Определим размерность работы. В физической системе единиц

Работа силы вектора на пути

Единицей работы в СИ является джоуль 2 — работа силы в 1 ньютон, действующей по направлению перемещения на пути в 1 метр (1 дж= 1 н ∙ 3t = l кг ∙ м 2 ∙ ceκ -2 ).

Размерность работы в технической системе единиц

Работа силы вектора на пути

Если сила выражена в кГ, а длина — в м, то единицей работы является 1 килограммометр.

Размерности работы и кинетической энергии одинаковы.

Элементарной работой силы называют работу силы на столь малом перемещении точки ее приложения, при котором изменением силы можно пренебречь:
Работа силы вектора на пути

Элементарная работа силы

В общем случае, если сила переменна или движение точки приложения силы криволинейное, определять работу силы по (218) нельзя. Но, разбив мысленно весь путь на такие маленькие участки, которые можно считать прямолинейными и на которых можно пренебречь изменением величины и направления силы, мы определим на каждом из этих участков работу, называемую элементарной работой силы:

Работа силы вектора на пути(219)

В этом равенстве ds выражает длину элементарного перемещения и является величиной всегда положительной.

Зная работу силы (219) на отдельных элементах пути, можно определить работу на конечном участке. Докажем некоторые теоремы о работе силы.

Элементарная работа равнодействующей равна сумме элементарных работ составляющих:
Работа силы вектора на пути

Теорема об элементарной работе равнодействующей. Пусть к точке О приложен пучок сил F1, F2. Fn. Обозначим равнодействующую этого пучка F. Спроецируем все силы пучка и равнодействующую на направление скорости точки О и приравняем проекцию равнодействующей сумме проекций составляющих:
Работа силы вектора на пути

Умножив теперь каждый член этого равенства на длину ds элементарного перемещения точки приложения сил, найдем, что элементарная работа равнодействующей равна сумме элементарных работ составляющих:

Работа силы вектора на пути

Работа силы вектора на пути(220)

Под суммой следует понимать, конечно, алгебраическую сумму, потому что работа не имеет направления, но имеет знак.

Элементарная работа силы связана с проекциями силы на оси координат соотношением: dA = Xdx+ Ydy + Zdz

Выражение элементарной работы через проекции силы на оси координат

Разложим силу F на составляющие по осям координат и определим элементарную работу силы по сумме работ ее составляющих. Пусть составляющие силы направлены в положительном направлении осей координат. Тогда углы между составляющими силы и скоростью являются углами между скоростью и положительными направлениями осей координат, а их косинусы определяются формулами (62) направляющих косинусов скорости. В таком случае имеем

Работа силы вектора на пути

или, подставляя значения направляющих косинусов,
Работа силы вектора на пути

сокращая на ds, получаем окончательно

Работа силы вектора на пути(221)

Формула (221) имеет очень большое значение в динамике. При. выводе этой формулы мы считали X, Y и Z направленными положительно по осям координат. Если какие-либо из составляющих силы направлены в противоположные стороны, то иным станет знак соответствующего косинуса. Поэтому в (221) X, Y и Z являются не модулями составляющих, а проекциями силы на оси координат, т.е. определяются не только величиной, но и знаком. Кроме того, в отличие от (219), где всегда ds>0, в (221) величины dx, dy и dz являются дифференциалами координат точки приложения силы и могут быть как положительными, так и отрицательными.

Заметим, что в общем случае дифференциальный трехчлен X dx + Y dy + Z dz не является полным дифференциалом и обозначение элементарной работы dA не следует понимать как полный дифференциал от А.

Работу силы на данном пути выражают пределом суммы всех элементарных работ силы на элементарных перемещениях, из абсолютных величин которых составляется данный путь:
Работа силы вектора на пути

Работа силы на данном пути. Возьмем какие-либо два положения M1 и M2 точки на ее криволинейной траектории. Работа А силы F на конечном перемещении M1M2 выразится суммой элементарных работ силы F на всех элементарных перемещениях, на которые разбит конечный участок пути M1M2.

Эта сумма состоит из бесчисленного множества бесконечно малых слагаемых. Такую сумму называют криволинейным интегралом, взятым по дуге M1M2, и обозначают так:

Работа силы вектора на пути(222)

или, если воспользоваться выражением элементарной работы через проекции силы на оси координат,

Работа силы вектора на пути(222′)

Если на точку действуют несколько сил, то, очевидно, работа равнодействующей на конечном участке пути равна сумме работ составляющих на том же участке пути.

Так как сила, вообще говоря, зависит от координат точки ее приложения, от проекций скоростей точки и от времени:

Работа силы вектора на пути

то мы можем вычислить интеграл (222′) только в случае, если известно движение точки. Подставив тогда вместо Работа силы вектора на путиих выражения в зависимости от времени, мы сможем представить работу силы в виде интеграла

Работа силы вектора на пути

где t1 и t2 — мгновения, соответствующие положению точки в M1 и M2.

Работа графически выражается площадью, ограниченной кривой, изображающей зависимость проекции силы на скорость от пути, осью абсцисс и крайними ординатами

Графическое определение работы

Ввиду сложности математического вычисления работы па практике часто пользуются для этой цели графическим методом. Будем откладывать по оси абсцисс длину пути, пройденного точкой, а по оси ординат — соответствующую проекцию силы на направление скорости, учитывая и знак проекции. Получим некоторую кривую, изображающую зависимость между проекцией силы на направление скорости и путем точки. Площадь, ограниченная этой кривой, осью абсцисс и двумя крайними ординатами, изображает работу силы на данном пути. Если кривая или часть ее расположена по отрицательную сторону, вниз от оси абсцисс, то соответствующая площадь изображает отрицательную работу.

Для построения графика зависимости силы от пути имеются различные приборы. В частности, специальный прибор — индикатор— служит для записи давления в цилиндре в зависимости отхода поршня. Работу, вычисленную при помощи индикаторной диаграммы, т.е. диаграммы, начерченной этим прибором, называют индикаторной работой.

Работа силы тяжести не зависит от вида траектории центра тяжести тела и равна произведению веса тела на изменение высоты центра тяжести тела: AG=Gh

Работа силы тяжести

Складывая веса всех частиц тела, заменим их одной силой G, равной весу тела и приложенной в центре тяжести С. Пусть при движении тела центр тяжести тела переместился из C1(x1, yl, z1) в C2 (x2, y2, Z2) (рис. 210). Определим проекции веса на оси координат, считая, что Oz направлена вертикально вверх:

и, подставив их в (222′), получим под знаком интеграла полный дифференциал, а потому

Работа силы вектора на пути

Работа силы вектора на пути
Рис. 210

Следовательно, работа силы тяжести не зависит от вида траектории точек тела и равна произведению веса тела на разность начальной и конечной высот центра тяжести. Если тело опускается, то сила тяжести тела совершает положительную работу, а если поднимается, то отрицательную. Так, например, если человек поднял гирю весом 10 кГ на высоту одного метра (безразлично—по вертикали или по иной траектории), то работа силы тяжести равна —10 кГ м, а работа человека на преодоление силы тяжести равна +10 кГ м.

Элементарная работа силы, приложенной к телу, закрепленному на неподвижной оси, равна произведению момента силы относительно оси вращения на бесконечно малый угол поворота: dА = Mdφ

Работа силы, приложенной к вращающемуся телу

Пусть тело вращается (или может вращаться) вокруг неподвижной оси и к какой-либо точке К этого тела приложена сила F. Примем ось вращения тела за ось Oz прямоугольной системы координат. Элементарная работа силы выразится равенством

Работа силы вектора на пути(221)

Припомним формулы Эйлера, связывающие проекции вращательной скорости точки К (х, у, z) с угловой скоростью и координатами этой точки:

Работа силы вектора на пути(89)

Умножая эти равенства на dt, найдем приращения координат точки приложения силы:

Работа силы вектора на пути

Подставим эти выражения dx, dy и dz в формулу (221)

Работа силы вектора на пути

Разность, стоящая в скобках, выражает момент данной силы относительно оси вращения Oz:

Работа силы вектора на пути(23)

а следовательно, элементарная работа силы, приложенной к вращающемуся телу, равна произведению момента силы относительно оси вращения на дифференциал угла поворота:

Работа силы вектора на пути(224)

Если на тело действует несколько сил, то, составив такие равенства для определения работы каждой из них и просуммировав, найдем, что элементарная работа всех сил равна произведению главного момента сил относительно оси вращения на dφ.

Чтобы определить работу силы, действующей на тело при его повороте от φ1 до φ2, надо проинтегрировать уравнение (224) в этих пределах, выразив момент силы в функции угла поворота:

Работа силы вектора на пути(225)

В частном случае постоянного момента силы

работа равна произведению момента силы на угол поворота тела.

Задача №1

Однородный массив ABED, размеры которого указаны на чертеже (рис. 211, а), весит 4 Т. Определить работу, которую необходимо произвести, чтобы опрокинуть его вращением вокруг ребра D.

Работа силы вектора на пути
Рис. 211

Решение. 1-й способ. Рассматриваем опрокидывание массива. Какие силы действуют на массив? Их две: вес массива G=4 Т, приложенный в его центре тяжести С, и реакция фундамента. Во время опрокидывания реакция приложена в ребре D, вокруг которого происходит опрокидывание (рис. 211,6), как известно из статики). Но во время опрокидывания ребро D неподвижно, поэтому работа реакции равна нулю. Работу веса (силы тяжести) определим по (223). Для опрокидывания массива достаточно повернуть его до положения неустойчивого равновесия, изображенного на рис. 211, в, при котором центр тяжести находится в вертикальной плоскости, проходящей через ребро D; далее массив опрокинется сам. Имеем
Работа силы вектора на пути

Работа силы вектора на пути
Такова работа силы тяжести при опрокидывании массива. Чтобы опрокинуть массив, надо произвести работу, такую же по величине и обратную по знаку.

2-й способ. Несколько сложнее получится решение задачи, если мы воспользуемся формулой (225) о работе сил, приложенных к вращающемуся телу.

На поворачиваемый вокруг ребра D массив действуют вес и реакция в ребре D. Момент реакции относительно оси вращения равен нулю, следовательно, равна нулю и работа реакции. Момент веса — величина переменная — равен произведению силы 4 T на плечо CD cos φ, где φ (см. рис. 211, б) —угол, составляемый CD с горизонтальной плоскостью:

Определим пределы интегрирования. При начале работы массив стоял вертикально, высота центра тяжести была 4 м и

Работа силы вектора на пути

Угол считаем отрицательным, так как отсчет производим по ходу часов:

В конечном положении (см. рис. 211, в)

Работа силы вектора на пути

Подставляя в (225), получаем

Работа силы вектора на пути

Мы определили работу восстанавливающего момента, вызванного силой тяжести и стремящегося восстановить устойчивое равновесие массива. Работа на опрокидывание массива вращением вокруг ребра D равна ей по величине и противоположна по знаку.

Задача №2

Определить работу на преодоление силы земного притяжения при запуске на высоту 30 000 м ракеты массой m = 2000 кг, считая силу притяжения изменяющейся по закону всемирного тяготения. Радиус земного шара принять R = 6 370 000 м.

Решение. На ракету действует сила, направленная к центру Земли и равная

Работа силы вектора на пути

где k — постоянный коэффициент пропорциональности, M — масса Земли, Работа силы вектора на пути— масса ракеты и x = h + R — расстояние ракеты от центра Земли.

Обозначая kM через μ, имеем

Работа силы вектора на пути

При x=R ракета находится на поверхности Земли и F = mg,

Работа силы вектора на пути

Работа силы вектора на пути

Зная μ и k, можно определить массу Земли, потому что k = μ : M.

Работу переменной силы F на перемещение ракеты с поверхности Земли на высоту h= 30 000 м определим по (222):

Работа силы вектора на пути

Отрицательный знак показывает, что при подъеме ракеты сила тяготения ракеты к Земле направлена против движения. Чтобы преодолеть эту силу на заданном расстоянии, надо совершить работу, такую же по величине, но положительную по знаку.

Ответ. A = + 5 621 262 369 дж.

Задача №3

Доказать, что сумма работ внутренних сил абсолютно твердого тела при всяком перемещении тела равна нулю.

Решение. Рассмотрим две точки А и В твердого тела (рис. 212). Силы взаимодействия этих точек всегда равны между собой и направлены по прямой AB в противоположные стороны.

Проекции скоростей точек А и В на прямую AB всегда равны между собой:

Работа силы вектора на пути

Работа силы вектора на пути
Рис. 212

Поэтому при любом перемещении работы сил взаимодействия точек A и В равны по величине, но обратны по знаку, и сумма работ равна нулю

Работа силы вектора на путиРабота силы вектора на пути

Доказательство проведено для двух точек абсолютно твердого тела, за которые мы можем принять любые точки тела, а потому оно относится ко всем точкам твердого тела. В случае упругого тела или изменяемой системы точек сумма работ внутренних сил не равна нулю. Так, например, при падении камня на Землю силы взаимодействия между камнем и Землей (внутренние силы системы Земля —камень) равны и противоположны, но сумма работ этих сил не равна нулю.

Ответ. Сумма работ всех внутренних сил в абсолютно твердом теле при всяком перемещении тела равна нулю.

Работа упругой силы равна половине произведения коэффициента жесткости на квадрат деформации:
Работа силы вектора на пути

Работа упругой силы. Определим работу упругой силы F пружины при растяжении ее на λ см, если для растяжения этой пружины на 1 см необходима сила с кГ (рис. 213). Сначала определим работу, которую необходимо совершить для растяжения этой пружины на λ см.

Работа силы вектора на пути
Рис. 213

Согласно одному из основных законов теории упругости и сопротивления материалов, называемому законом Гука, растяжение нагруженного тела прямо пропорционально нагрузке:

де F — нагрузка, х—растяжение и с — коэффициент жесткости.

Подставляя это значение F в (221) и интегрируя в пределах от О до λ, найдем работу, необходимую для искомой деформации пружины:

Работа силы вектора на пути(227)

Если к пружине приложить силу, например растягивать пружину рукой, то со стороны пружины возникнет реакция, называемая упругой реакцией, или упругой силой, пружины. По принципу равенства действия и противодействия упругая сила равна и противоположна растягивающей силе F, а поэтому работа упругой силы определяется найденным значением. Знак работы упругой силы отрицателен, если сила упругости направлена против деформации, т. е. если деформация увеличивается, и положителен, если деформация уменьшается.

Задача №4

Применить графический метод для вывода формулы (227).

Решение. Будем откладывать (рис. 214) по оси абсцисс растяжение пружины, а по оси ординат—силу F, потребную для этого растяжения, затем построим по точкам кривую зависимости между силой и перемещением точки приложения силы. В нашем случае это кривая первого порядка, т. е. прямая линия.

Работа силы вектора на пути
Рис. 214

Первую точку поставим в начале координат, так как при отсутствии растягивающей силы растяжение пружины равно нулю. Чтобы растянуть пружину на 1 см, нужна сила с кГ, поэтому вторая точка кривой имеет координаты х=1, у =с Если сила с кГ будет продолжать действовать на пружину, то пружина будет оставаться растянутой на один сантиметр, но чтобы растянуть пружину еще на один сантиметр, надо увеличить силу еще на с кГ. Следовательно, координаты третьей точки x=2, y=2c и т. д. Для растяжения пружины на λ си нужна сила в cλ кГ. Точка x = λ, y = cλ лежит на прямой, соединяющей все нанесенные точки. Проведя ординату крайней точки, получим треугольник с основанием λ и высотой cλ.

Ответ. Работа выражается площадью этого треугольника, т. е.
Работа силы вектора на пути
Заметим, что работа упругой силы выражается полученным равенством не только в рассмотренном нами частном случае. Эта формула относится в равной мере ко всем случаям упругой деформации, в которых упругая реакция подчиняется закону Гука F = сх, где х—перемещение точки приложения реакции, отсчитанное от положения этой точки при недеформированном состоянии тела, ас — постоянный коэффициент. Сюда относятся растяжение и сжатие прямолинейного бруса, изгиб балки и т. п.

Величину, характеризующую быстроту приращения работы Силы и выражающуюся отношением элементарной работы к дифференциалу времени, называют мощностью силы:
Работа силы вектора на пути

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Мощность силы

Одну и ту же работу можно произвести за различное время. Величину, характеризующую быстроту приращения работы, называют мощностью силы и обозначают буквой N. Разделив работу, произведенную силой, на время, в течение которого эта работа произведена, получим значение средней мощности силы:
Работа силы вектора на пути

B этом смысле говорят, хотя и несколько нечетко, что средняя мощность — это работа за единицу времени. При таком определении получается, что мощность является работой, или элементарной работой, чего не может быть, так как мощность имеет свою размерность. В физической системе единиц

Работа силы вектора на пути

Единицей мощности в СИ является мощность силы, производящей работу в один джоуль за одну секунду. Эту единицу называют ватт1 и обозначают вт. На практике часто употребляют единицу мощности киловатт (квт):

1 κвт= 1000вт =l02 кГ •м/сек.

В технической системе единиц

Работа силы вектора на пути

В технической системе в качестве единицы мощности силы обычно применяют кГм/сек. Употребляют также другую единицу мощности, называемую лошадиной силой:

1 л. с. = 75 кГ • м/сек = 736 вт.

Чем меньше промежуток времени, за который определена средняя мощность силы, тем ближе она соответствует мощности в данное мгновение, которую мы определим в пределе, если будем уменьшать промежуток времени, сохраняя начало этого промежутка:

Работа силы вектора на пути(228)

Таким образом, мощность силы выражают отношением элементарной работы к дифференциалу времени.
При некоторых частных выражениях работы мощность можно определить по другим формулам. Так, например, если сила направлена по скорости, то dA=Fds, и, подставляя в (228), найдем

т. е. мощность можно выразить произведением силы на скорость. При езде на автомобиле по ровной хорошей дороге, где нужно получить большую скорость, но не надо преодолевать большие сопротивления, включают высшие передачи, а при подъеме или на плохой дороге, где нужно развить при полной мощности возможно большую силу тяги, хотя бы и за счет потери скорости, включают низшие передачи.

Если сила выражена в килограммах, скорость —в км/ч, а мощность надо выразить в л. с., то формула (229) принимает следующий вид:

Работа силы вектора на пути

При вращательном движении тела подставим вместо dA его выражение (224):

Работа силы вектора на пути(230)

т. е. мощность выражается произведением вращающего момента и угловой скорости.

Задача №5

Тягач, развивая мощность 80 л. с., тянет по горизонтальной ледяной дороге со скоростью 15 км/ч сани с грузом 36 т. Определить коэффициент трения саней о дорогу.

Решение. За основные единицы примем: L — в км, F —в кГ, T — в ч.

На сани действуют следующие силы: 1) вес 36 000 кГ, направленный вертикально вниз, 2) реакция дороги, направленная вертикально вверх; 3) сила тяги тягача, направленная горизонтально вперед по ходу саней, и 4) сила трения полозьев о дорогу, направленная горизонтально назад.

Работа вертикальных сил при горизонтальном движении саней равна нулю, и эти силы нас не интересуют.

Сани движутся равномерно, откуда следует, что горизонтальные силы уравновешивают друг друга. Следовательно, сила тяги F уравновешена силой трения, равной, как известно, произведению коэффициента трения на нормальное давление (36 000 кГ). Подставляя эти данные, найдем

Работа силы вектора на пути,

Работа силы вектора на пути

Решим теперь эту же задачу в СИ, т. е. примем L в м, M—в кг, T — в сек. Мощность силы, развиваемую тягачом, выразим в ваттах:

N = 80∙736 = 58 880 вт,

скорость —в метрах в секунду:
Работа силы вектора на пути

силу трения выразим в ньютонах:
Работа силы вектора на пути

и, пользуясь формулой (229), получим ответ.

Ответ. Работа силы вектора на пути

Задача №6

Определение мощности машины можно произвести следующим образом. На вал машины надевают чугунный шкив, который центрируют и закрепляют наглухо зинтами (рис. 215). На шкив надевают две связанные болтами деревянные подушки, одна из которых имеет плечо l с чашкой для грузов Q. Противовес P подбирают так, чтобы свободно надетый на шкив нажим находился в равновесии без гирь Q в горизонтальном положении, т. е. так, чтобы плечо проходило между двумя неподвижными балками А и В. Испытание начинают с того, что затягивают болты подушек до тех пор, пока машина не даст наперед заданное число оборотов n. Коромысло прижимается при этом к неподвижной балке А. Затем начинают накладывать на чашку гири до тех пор, пока плечо не отстанет от А и не займет горизонтальное положение между А и В.

Работа силы вектора на пути
Рис. 215

Определить мощность, если вес гирь известен и равен Q, длина плеча равна l а число оборотов в минуту n. Подобрать длину плеча так, чтобы мощность выражалась формулой N = Qn вт.

Решение. Центр тяжести подушек с противовесом P по условию задачи лежит на одной вертикали с осью шкива На шкив действуют вращающий момент и момент сил трения, сумма которых равна нулю, так как шкив вращается равномерно.

Чтобы определить момент сил трения, рассмотрим равновесие подушки и составим сумму моментов действующих на нее сил относительно оси вала:

Работа силы вектора на пути

Работа силы вектора на пути

Пусть вес выражен в кГ, а длина —в м, тогда для выражения мощности в вт надо эту величину разделить на 0,102 или умножить на 9,81:

Работа силы вектора на пути

Если l = 0,98 м, то N = Qn вт.

Ответ. N = 1,026 Qln вт. Если l = 0,98 м, то N = Qn вт.

Задача №7

Посредством ремня (рис. 216) передается мощность 20 л. с. Радиус ременного шкива 50 см, число оборотов в минуту 150.

Предполагая, что натяжение T1 ведущей ветви вдвое больше натяжения T2 ведомой ветви, определить натяжение T1 и T2.
Работа силы вектора на пути

Решение. Условие задачи дано в технической системе единиц, будем решать в СИ и выражать L — в .и, F — в н, Т —в сек.

Момент натяжения ремня, взятый относительно оси вращения шкива

Работа силы вектора на пути

Работа силы вектора на пути

Мощность 20 л. с. выразим в ваттах.

Работа силы вектора на пути

Работа силы вектора на пути

Работа силы вектора на пути

Натяжение ведущей ветви в два раза больше.

Ответ. T1 = 3750 н; T2= 1875 н. В задачнике И. В. Мещерского ответ дан в кГ, умножая число ньютонов на 0,102, выразим натяжение ремней в килограммах: T2 = 382 κΓ, T1= 191 кГ.

Теоремы об изменении кинетической энергии точки и системы

Изменение кинетической энергии материальной точки равно работе, приложенной к точке силы:
T-T0=A

Работа силы вектора на пути(127)

Умножим первое из этих уравнений наРабота силы вектора на пути, второе—на Работа силы вектора на путии третье—на Работа силы вектора на пути. Сокращая dt в знаменателях правых и левых частей, получим:

Работа силы вектора на пути

Работа силы вектора на пути

Сложим все три уравнения и заменим в левой части сумму дифференциалов дифференциалом суммы:

Работа силы вектора на пути

В числителе левой части имеем квадрат полной скорости (64), а правая часть выражает элементарную работу силы (221). Следовательно,

Работа силы вектора на пути(231)

т. е. дифференциал кинетической энергии равен элементарной работе. Интегрируя равенство (231), получим

Работа силы вектора на пути

Постоянную интеграции определим из начальных данных. В начальное мгновение скорость точки υ = υ0, а работа равнялась нулю. Подставляя эти данные, получим

Работа силы вектора на пути

Работа силы вектора на пути(232)

Равенство (232) словами можно прочитать так: изменение кинетической энергии материальной точки при перемещении этой точки на каком-либо участке пути равно работе силы, приложенной к точке, на том же участке пути. Уравнение (232) называют уравнением кинетической энергии.

Если на материальную точку действует несколько сил, то А означает работу равнодействующей приложенных к точке сил.

Уравнение (232) можно записать более коротко:

Задача №8

Самолет делает посадку с выключенным мотором на болотистую местность. Какую максимальную горизонтальную скорость v может иметь самолет, не рискуя капотировать (опрокинуться), если расстояние ОС центра тяжести от оси шасси равно с и угол наклона прямой СО с вертикалью в мгновение посадки равняется а (рис. 217).

Работа силы вектора на пути
Рис. 217

Решение. Опрокидывание самолета происходит от того, что при соприкосновении с Землей скорость шасси уменьшается, а корпус продолжает двигаться с постоянной скоростью. Для капота достаточно (и необходимо), чтобы центр тяжести, поднявшись, оказался на вертикали, проходящей через ось шасси.
Так как работа силы тяжести не зависит от траектории центра тяжести, а зависит лишь от его вертикального перемещения, то работа силы тяжести при опрокидывании (рис. 218)

Работа силы вектора на пути

Работа силы вектора на пути
Рис. 218

Вертикальная скорость самолета теряется при ударе о Землю, но горизонтальная сохраняется. Если при спуске самолета шасси остановится, то оставшаяся кинетическая энергия Работа силы вектора на путиуйдет на опрокидывание самолета:

Работа силы вектора на пути

Решая это уравнение, находим ответ.

Ответ. Работа силы вектора на пути

Задача №9

Пренебрегая сопротивлением атмосферы, определить, с какой наименьшей скоростью надо бросить материальную точку вертикально вверх, чтобы она не вернулась на Землю.

Решение. Сила, действующая на брошенную с Земли точку, пропорциональна массе точки и обратно пропорциональна квадрату расстояния точки от центра Земли:

Работа силы вектора на пути

Коэффициент пропорциональности был определен при решении задачи № 155:

Работа силы вектора на пути

Материальная точка, получив начальную скорость υ0, будет удаляться от Земли, при этом под действием силы F скорость ее будет уменьшаться, уменьшаться будет и сила F. Материальная точка не вернется на Землю, если в мгновение, когда скорость ее станет равной нулю, перестанет действовать и сила. Сила притяжения обратится в нуль при r = ∞.

Работу силы А при изменении r от R до ∞ выразим интегралом

Работа силы вектора на пути

Знак минус перед интегралом взят потому, что сила направлена в сторону, противоположную движению. Подставляем в (232):

Работа силы вектора на пути

Работа силы вектора на пути

Подставляя числовые данные, получим ответ.
Ответ. Работа силы вектора на пути(2-я космическая скорость).

Задача №10

В автоматическом оружии отдача используется для выбрасывания пустой гильзы и вкладывания нового патрона. Это осуществляется посредством специального кожуха, сдерживаемого пружиной, который «принимает на себя» отдачу, отскакивает назад и под действием пружины возвращается обратно, производя упомянутые операции. Какова должна быть скорость пули, достаточная для того, чтобы работал автоматический пистолет, если вес пули 8 Г, вес кожуха 250 Г, расстояние, на которое отскакивает кожух, 3 см и сила, необходимая для сжатия пружины на 1 см, равна 4 кГ?

Решение. Путь кожуха 3 см. На этом пути начальная скорость кожуха υ0 уменьшается, достигая нуля. Механическое движение кожуха переходит в упругую энергию пружины. Следовательно, применима теорема об изменении кинетической энергии, пользуясь которой, определим начальную скорость кожуха, так как конечная скорость равна нулю:

Работа силы вектора на пути

Упругая сила пружины изменяется по закону Гука F = cx; подставляя вместо F и х их заданные значения, находим

Работа силы вектора на пути

Работа силы вектора на пути

Подставляя в (221) и интегрируя в пределах от 0 до 3, находим

Работа силы вектора на пути

Работа отрицательна, так как упругая сила пружины направлена против ее деформации и выражена в кГ . см. Выразив в тех же единицах кинетическую энергию кожуха, найдем его начальную скорость:

Работа силы вектора на пути

Работа силы вектора на пути

Итак, после выстрела кожух начал двигаться со скоростью 3,76 м/сек и, пройдя 3 см, остановился, затратив свое механическое движение на сжатие пружины.

После выстрела механическое движение получил не только кожух, но и пуля. Мы не будем больше рассматривать переход механического движения в упругую энергию пружины, а рассмотрим лишь механическое движение кожуха и пули.

Рассмотрим систему, состоящую из пистолета (с кожухом) и пули. Построим оси координат, проведя Ox вдоль дула пистолета. Проекция внешних сил на ось Ox равна нулю. Сила взрыва— внутренняя сила системы и, следовательно, центр масс системы не смещается по оси Ох, и сумма проекций количеств движения после выстрела, как и до выстрела, равна нулю:

Работа силы вектора на пути

откуда скорость пули

Работа силы вектора на пути

Знак минус показывает, что скорость пули направлена в сторону, противоположную скорости кожуха. Если скорость пули будет меньше, будет меньше и количество движения пули, а потому уменьшится и количество движения кожуха. Если же уменьшится количество движения кожуха, то уменьшится и его кинетическая энергия и ее будет недостаточно для совершения работы — сжатия пружины на 3 см, т. е. при меньшей начальной скорости пули пистолет не будет автоматически перезаряжаться. При большей скорости пули избыток кинетической энергии кожуха будет передаваться ударом на руку.

Ответ. υ=120 м/сек.

Изменение кинетической энергии материальной системы равно сумме работ внешних и внутренних сил системы: T-T0 = А

Теорема об изменении кинетической энергии материальной системы

Пусть механическая система состоит из п материальных точек. Разбив на две категории все силы, действующие на точки системы, напишем дифференциальные уравнения в форме (130):

Работа силы вектора на пути

где k = 1, 2, 3, . n.

Рассмотрим отдельно какую-либо из точек системы и напишем для нее уравнение кинетической энергии. На эту точку действуют как внешние, так и внутренние силы, и в правой части уравнения кинетической энергии мы напишем сумму работ внешних и внутренних сил:

Работа силы вектора на пути

Составим такие же уравнения для всех точек и возьмем сумму:

Работа силы вектора на пути(233)

Припомним, что внутренние силы системы не вошли в уравнения проекций количеств движения системы (169) и в уравнения моментов системы (192). Однако они имеются в уравнении (233) кинетической энергии системы. Происходит это потому, что сумма проекций на любую ось и сумма моментов всех внутренних сил относительно любой оси всегда равны нулю, так как внутренние силы системы попарно равны и действуют по одной прямой в противоположные стороны. Но сумма работ внутренних сил системы в общем случае не равна нулю, как это было показано в задаче № 156.

Пусть, например, две точки системы отталкивают друг друга внутренними равными и противоположно направленными силами и под действием этих сил расстояние между точками увеличивается. Перемещения обеих точек направлены по силам, работы обеих сил положительны, и сумма работ этих сил не равна нулю. Внутренние силы системы можно рассматривать как силы взаимодействия точек, взятых по две. Поэтому сказанное о двух точках распространяется на все точки системы.

Силы взаимодействия между каждыми двумя частицами направлены в противоположные стороны по прямой, соединяющей эти частицы. Если расстояние между частицами не изменяется, то относительное перемещение этих частиц может быть только в направлении, перпендикулярном к этой прямой. Но силы, перпендикулярные к перемещениям, работы не совершают, а потому работа внутренних сил неизменяемой системы (абсолютно твердого тела) равна нулю.

Если система состоит из нескольких твердых тел, то работа внутренних сил каждого твердого тела равна нулю, но работы внутренних сил, действующих между каждыми двумя твердыми телами, принадлежащими к этой системе, в общем случае не равны нулю.

Задача №11

Цилиндрический вал диаметром 10 см и весом 0,5 T, на который насажено маховое колесо диаметром 2 м и весом 3 Т, вращается в данное мгновение с угловой скоростью 60 об/мин, а затем он предоставлен самому себе. Сколько оборотов еще сделает вал до остановки, если коэффициент трения в подшипниках равен 0,05? При решении задачи массу маховика считать равномерно распределенной по его ободу.

Решение. Примем следующие единицы измерения: L-в см, F — в Т, T — в сек.
Требуется определить количество оборотов вала до остановки. Механическое движение (вращение) вала с маховиком исчезает, переходит в другие виды движения. Для решения задачи применим теорему об изменении кинетической энергии (233′).

На вал с насаженным на него маховым колесом действуют силы: 1) вес всей системы, состоящий из веса махового колеса и веса вала, G = 3,5; 2) реакции в опорах; 3) сила трения в подшипниках, равная произведению веса на коэффициент трения; Fτp≈ 0,05-3,5.

Точка приложения первой из этих сил неподвижна, а потому работа первой из этих сил равна нулю.

Реакции перпендикулярны перемещениям, а потому работа реакции равна нулю.

Работу сил трения определим по (226) как работу силы, приложенной к вращающемуся телу. Момент силы трения относительно оси вращения равен произведению силы трения на плечо (на радиус вала):

Работа силы вектора на пути

Работа отрицательна, так как сила направлена против скорости, т. е. если вращение вала происходит против хода часовой стрелки (φ > 0), то Mтp 0, а потому А / )

Если бы существовали абсолютно упругие тела (k = 1), то их соударение происходило бы без потери кинетической энергии, т. е. без нагревания, без звука и пр.

Задача №15

Определить потерю кинетической энергии при прямом центральном ударе двух тел, а также их скорости после удара, если ml = m2 = 2 кг, υ1 =4 м/сек, υ2 =0, k = 0,5.

Решение. Если бы удар был неупругим, то скорость тел после удара была бы по (176):

Работа силы вектора на пути

Учитывая коэффициент восстановления, скорости каждого из тел определим по (178):

Работа силы вектора на пути

Потерю кинетической энергии определим по (236′):

Работа силы вектора на пути

Напомним, что механическое движение имеет две меры: 1) количество движения, т. е. меру, характеризующую способность механического движения передаваться от одних материальных тел к другим в виде механического же движения, и 2) кинетическую энергию, характеризующую способность механического движения переходить в другие немеханические виды движения.

Поэтому кинетическая энергия системы теряется при ударе, переходит в теплоту, звук и пр. и Работа силы вектора на пути. В данном примере кинетическая энергия системы до удара была Работа силы вектора на пути, а после удара стала

Работа силы вектора на пути

Потерянная системой двух тел кинетическая энергия 6 кгм 2 /сек 2 перешла в другие немеханические виды движения.

Количество же движения системы лишь передалось от одного тела другому, но сохранилось в системе. В самом деле, K0 = 2∙4 = 8 κг∙м∕ceκ; K = 2∙1 + 2∙3 = 8 κг∙м∕ceκ, т. е. K-K0 = 0.

Ответ. T — T0 = 6 дж; Работа силы вектора на пути=l м/сек; Работа силы вектора на пути= 3м/сек.

Видео:Математика это не ИсламСкачать

Математика это не Ислам

Коэффициент полезного действия

В этой главе рассмотрены задачи на определение работы, совершаемой постоянной силой, и развиваемой мощности при поступательном и вращательном движении тел.

Работа и мощность при поступательном движении

Работа постоянной силы Р на прямолинейном участке пути s, пройденном точкой приложения силы, определяется по формуле

Работа силы вектора на путиРабота силы вектора на пути

где a — угол между направлением действия силы и направлением перемещения.

Работа силы вектора на пути

т. e. работа силы, действующей перпендикулярно к направлению перемещения, равна нулю.

Если направление действия силы совпадает с направлением перемещения, то а = 0, поэтому cosa = cos O = 1 и формула (1) упрощается;

Работа силы вектора на пути

На точку или на тело обычно действует не одна сила, а несколько, поэтому при решении задач целесообразно использовать теорему о работе равнодействующей системы сил (Е. М. Н и к ит и и, § 89):

Работа силы вектора на пути

т. е. работа равнодействующей какой-либо системы сил на некотором пути равна алгебраической сумме работ всех сил этой системы на том же пути.

В частном случае, когда система сил уравновешена (тело движется равномерно и прямолинейно), равнодействующая системы сил равна нулю и, следовательно, Работа силы вектора на путиПоэтому при равномерном и прямолинейном движении точки или тела уравнение (2) принимает вид

Работа силы вектора на пути

т. е. алгебраическая сумма работ уравновешенной системы сил на некотором пути равна нулю.

При этом силы, работа которых положительна, называются движущими, а силы, работа которых отрицательна, называются силами сопротивления. Например, при движении тела вниз—сила тяжести — движущая сила и ее работа положительны, а при движении тела вверх его сила тяжести является силой сопротивления и работа силы тяжести при этом отрицательна (§93, Е. М. Н и к и т и н).

При решении задач в случаях, когда неизвестна сила Р, работу которой нужно определить, можно рекомендовать два приема (метода).

1. При помощи сил, заданных в условии задачи, определить силу Р, а затем по формуле (1) или (1) вычислить ее работу.

2. Не определяя непосредственно силы Р, определить Работа силы вектора на пути— работу требуемой силы при помощи формул (2) и (2′), выражающих теорему о работе равнодействующей.

Мощность, развиваемая при работе постоянной силы, определяется по формуле

Работа силы вектора на пути

Если при определении работы силы Р скорость движения точки Работа силы вектора на путиостается постоянной, то

Работа силы вектора на пути

Если же скорость движения точки изменяется, Работа силы вектора на путиРабота силы вектора на путисредняя скорость и тогда формула (2′) выпажает среднюю мощность

Работа силы вектора на пути

Коэффициент полезного действия (к. п. д.) при совершении работы можно определить как отношение работ
Работа силы вектора на пути
где Работа силы вектора на пути— полезная работа; А — вся произведенная работа, или как отношение соответствующих мощностей:
Работа силы вектора на пути
Единицей работы в СИ служит 1 джоуль (дж) =Работа силы вектора на путиа в системе МКГСС —Работа силы вектора на пути

Так как единицей длины в обеих системах служит 1 м, а 1 кГ=9,81 н (или 1 н = 0,102 кГ), то

Работа силы вектора на пути

Единицей мощности в СИ служит 1 ваттРабота силы вектора на пути

а в системе МКГСС— Работа силы вектора на пути

При использовании системы МКГСС мощность обычно измеряют в лошадиных силах (л. с.), причем

Работа силы вектора на пути

При использовании СИ мощность измеряют в киловаттах (квт): 1 квт — 1,36 л. с.

Для перехода от одних единиц к другим следует пользоваться формулами

Работа силы вектора на пути

Задача №16

Какую работу производит человек, передвигая по горизонтальному полу на расстояние 4 м горизонтально направленным усилием ящик массой 50 кГ? Коэффициент трения f = 0,4.

Решение 1—методом определения движущей силы Р.

1. На ящик, поставленный на горизонтальный пол, действуют две силы: G и реакция пола N (рис. 252). Двигая ящик, че-
ловек прикладывает к нему силу Р, и тогда возникает сила трения F.

Работа силы вектора на пути

При равномерном передвижении ящика четыре силы образуют уравновешенную систему и поэтому, спроектировав их на горизонтальную и вертикальную оси, найдем, что

Работа силы вектора на пути
3. Работа, которую производит человек в данном случае, как видно, состоит в преодолении силы трения (P=F). Но так как

Работа силы вектора на путито
Работа силы вектора на пути

Работа силы вектора на пути
4. Если решить задачу в системе МКГСС, то

Работа силы вектора на пути
Легко убедиться, что оба ответа выражают одну и ту же работу:

Работа силы вектора на пути
Решение 2 —с применением теоремы о работе равнодействующей.

1. Как показано в первом решении, на ящик при его перемещении действуют четыре силы: сила тяжести G, реакция пола Работа силы вектора на путидвижущая сила Работа силы вектора на путии сила трения F. Ящик движется равномерно и прямолинейно, поэтому эти четыре силы образуют уравновешенную систему. Следовательно, применив формулу (2′). получим уравнение

Работа силы вектора на пути

2. В этом уравнении работа силы тяжести Аа=0, так как сила G действует перпендикулярно к направлению перемещения; по этой же причине работа реакции N Работа силы вектора на пути

Таким образом, искомая работа при перемещении ящика

Работа силы вектора на пути

3. Работу силы трения Работа силы вектора на путинайдем по формуле (1), учитывая, что в этом случае а=180°:

Работа силы вектора на пути

Подставим значение Работа силы вектора на путив уравнение (а):

Работа силы вектора на пути

Так как F — Nf и N — G, то

AP=Fs — Nfs = Gfs=mgfs

Работа силы вектора на пути

Задача №17

На тело М массой т—40 кг, могущее перемещаться вдоль вертикального направляющего бруска, действует некоторая сила Р, постоянно направленная под углом а =18° к вертикали. Под действием этой силы тело поднимается равномерно на высоту h = 4 м (рис. 253, а); коэффициент трения при скольжении тела вдоль направляющего бруса f=0,2. Определить произведенную работу и коэффициент полезного действия. Решение 1.

1. При равномерном перемещении вдоль бруска вверх на тело М действуют четыре силы: сила тяжести G, сила трения F, нормальная реакция N, равная давлению тела на брусок, и движущая сила Р (рис. 253. б).

2. Сила Р производит работу
Работа силы вектора на пути
Но чтобы определить ее, нужно сначала найти силу Р.

Работа силы вектора на пути

3. Расположив оси координат, как показано на рис. 253, б, выведем уравнения равновесия:

Работа силы вектора на пути

а также уравнение, выражающее основной закон трения:

Работа силы вектора на пути

Работа силы вектора на пути

поэтому уравнение (3) примет вид

Работа силы вектора на пути

Подставим полученное значение силы трения в уравнение (2): Работа силы вектора на пути

Работа силы вектора на пути
4. Подставим в последнее выражение числовое значение силы тяжести G в единицах СИ (G=mg):Работа силы вектора на пути

Тогда работа, произведенная силой,

Работа силы вектора на пути

5. Если подставить в уравнение (4) силу тяжести G, выраженную в технических единицах (G = 40 кГ), тоРабота силы вектора на пути

Работа этой силы в единицах МКГСС получит такое значение:Работа силы вектора на пути

6. Определим коэффициент полезного действия:

Работа силы вектора на пути

Вся произведенная работа А = 1680 дж, а полезная работа состоит в том, что тело весом G — mg поднято на высоту h, т. е.

Работа силы вектора на пути

Работа силы вектора на пути
Умножив найденное значение Работа силы вектора на пути= 0,934 на 100, выразим к. п. д. в процентах:

Работа силы вектора на пути
Примечание. Можно не определять отдельно числовое значение силы Р виде выражение работы для
(см. п. 4 и 5), а получить предварительно в общем данного случая:

Работа силы вектора на пути
и после деления числителя и знаменателя на cos а:
Работа силы вектора на пути
Но иногда в технических расчетах числовые значения девствующих сил необходимы для решения каких-либо других вопросов.

Если воспользоваться приведенным выше выражением работы, то выражение к. п. д. для данной задачи получит такой вид:
Работа силы вектора на пути
Таким образом, коэффициент полезного действия при передвижении тела М по вертикальному направляющему бруску зависит от коэффициента трения f и угла а, определяющего направление действия силы относительно вертикального бруска.

Если заменить Работа силы вектора на пути

1. В первом решении выяснено, что на тело М действует система четырех сил: G, F, N, Р (см. рис. 253, б).

2. Так как тело движется по бруску равномерно, система этих сил уравновешена и, следовательно, алгебраическая сумма их работ равна нулю:
Работа силы вектора на пути
3. Тело М движется вертикально вверх и поднимается на высоту h, поэтому работа силы N, направленной перпендикулярно к направлению перемещения:
Работа силы вектора на пути
работа силы тяжести G, направленной вертикально вниз,

Работа силы вектора на пути

работа силы трения F, также направленной вниз, Работа силы вектора на пути

Известно, что F=Nf. Спроектировав на ось х (см. рис. 253,6) силы, приложенные к телу М, найдем, чтоРабота силы вектора на путиПоэтомуРабота силы вектора на путии выражение работы силы трения примет вид
Работа силы вектора на пути
4. Подставим выражения работ Работа силы вектора на путив уравнение (а)Работа силы вектора на пути
5. Вычислим работу в единицах СИ. Тогда Работа силы вектора на пути
поэтому
Работа силы вектора на пути
Таким образом, вся работа, произведенная при подъеме тела М на высоту Работа силы вектора на путисоставляет 1670 дж. К. н. д. при выполнении этой работы определяем так же, как и в первом решении.

Задача №18

Какой мощности электродвигатель необходимо поставить на лебедку, чтобы она могла поднимать клеть со строительными материалами общей массой m=1200 кг на высоту 20 м за 30 сек. Коэффициент полезного действия лебедки Работа силы вектора на пути

Решение (в единицах СИ).

1. Полезная мощность, развиваемая лебедкой при подъеме,
Работа силы вектора на пути
2. Мощность двигателя N найдем из выражения Работа силы вектора на путиРабота силы вектора на пути
Работа силы вектора на пути

3 Таким образом, мощность двигателя, необходимая для лебедки,

Работа силы вектора на пути

Двигатель должен иметь мощность не менее 10,9 квот.

Рекомендуется решить самостоятельно эту задачу в единицах МКГСС и найти мощность двигателя, выраженную в л. с.

Задача №19

Какую работу необходимо произвести, чтобы равномерно передвинуть в горизонтальном направлении на расстояние ь клинчатый ползун 1 вдоль направляющих 2? Вес ползуна G, угол заострения ползуна и направляющих а (рис. 254, а), коэффициент трения между ползуном и направляющими f.

Работа силы вектора на пути

1. На клинчатый ползун, когда он находится в горизонтально расположенных направляющих, действуют три силы: вес ползуна Работа силы вектора на путии две реакции направляющих Работа силы вектора на пути(рис. 254, в), действующих на ползун перпендикулярно к боковым плоскостям (щекам) ползуна.

Для приведения ползуна в движение к нему нужно приложить параллельно направляющим силу Работа силы вектора на путии тогда возникнут еще две силы — силы трения, действующие вдоль обеих боковых плоскостей ползуна (см. рис. 254, б — здесь вектор Работа силы вектора на путиизображает направленную вертикально вверх геометрическую сумму нормальных реакций Работа силы вектора на пути

Таким образом, на ползун при его движении действуют всего шесть сил: Работа силы вектора на пути

В данном случае нормальные реакции Работа силы вектора на путиравны между собой, следовательно, равны и силы трения Работа силы вектора на путипоэтомуРабота силы вектора на пути

2. Работа при перемещении ползуна на расстояние s

Работа силы вектора на пути

но предварительно найдем числовое значение движущей силы Р.

3. Спроектировав приложенные к ползуну силы на ось х

(см. рис. 254, б), получим

Работа силы вектора на пути

Нормальную реакцию N найдем из уравнения проекций на ось у (см. рис. 254, в):

Работа силы вектора на пути

Подставляем найденное значение N в Работа силы вектора на пути

Работа силы вектора на пути
4. Следовательно, работа при передвижении клинчатого ползуна на расстояние s

Работа силы вектора на пути
Например, при Работа силы вектора на пути

Работа силы вектора на пути

Примечание. Входящая в формулу (б) величина Работа силы вектора на путиназывается коэффициентом трения клинчатого ползуна. При уменьшении угла а (при большем

заострении ползуна и направляющих) коэффициент трения клинчатого ползуна резко увеличивается.

Решение задачи вторым способом с применением теоремы о работе равнодействующей силы рекомендуется выполнить самостоятельно.

Работа силы вектора на пути

Задача №20

Тело М весом G = 50 кГ равномерно перемещается вверх по наклонной плоскости, длина которой Работа силы вектора на путим и угол подъема а = 20; (рис. 255, а). Определить работу, производимую силой, направленной параллельно наклонной плоскости, и коэффициент полезного действия наклонной плоскости. Коэффициент трения f=0,2. Решение 1.

1. При движении тела М (примем его за материальную точку) вверх по наклонной плоскости на него действуют четыре силы: вес Работа силы вектора на путинормальная реакция наклонной плоскости Работа силы вектора на путидвижущая сила Работа силы вектора на путии сила трения Работа силы вектора на пути(рис. 255, б).

2. Работа силы Р при перемещении тела по длине наклонной плоскости

Работа силы вектора на пути

3. Найдем необходимую для перемещения тела М силу Р. Расположив оси координат, как показано на рис. 255, 6, составим два уравнения равновесия:
Работа силы вектора на пути
Дополним эти уравнения третьим уравнением, выражающим основной закон трения:

Работа силы вектора на пути

Работа силы вектора на пути
Вместо силы трения F подставим ее значение из уравнения (3): Работа силы вектора на пути

а вместо нормальной реакции N подставим ее значение из уравнения (2):

Работа силы вектора на пути
4. Следовательно, работа силы P

Работа силы вектора на пути

После подстановки в это уравнение числовых значений Работа силы вектора на пути

5. Находим к. п. д. наклонной плоскости:
Работа силы вектора на пути
Полезная работа состоит в подъеме тела весом G на высоту Работа силы вектора на путипоэтому
Работа силы вектора на пути
Решение 2.

1. Можно считать, что на тело М действуют не четыре, а три силы: G—вес тела, движущая сила Работа силы вектора на путии полная реакция поверхности реальной связи R, равная геометрической сумме силРабота силы вектора на пути(рис. 255, в).

Реакция реальной связи R, как известно (§ 15-3), при движении отклоняется от нормали к поверхности связи на величину угла трения Работа силы вектора на путипричем Работа силы вектора на пути— коэффициент трения.

2. Так как на тело М действуют только три силы и они образуют уравновешенную систему (тело М, принятое за материальную точку, движется равномерно и прямолинейно), силовой треугольник АВС, построенный из этих сил, является замкнутым.

3. По рис. 255, в можно определить, что в силовом треугольнике AВС угол Работа силы вектора на путиСледовательно,Работа силы вектора на пути

4. Применим к АВС теорему синусов’

Работа силы вектора на пути

5. Работа силы Р

Работа силы вектора на пути

Из равенства Работа силы вектора на пути(см. п. 1) находим, чтоПодставим теперь в выражение работы числовые значения и определим, что

Работа силы вектора на пути

6. Находим к. п. д. наклонной плоскости:

Работа силы вектора на пути

Развернем знаменатель получившейся дроби:

Работа силы вектора на пути

Числитель и знаменатель разделим на произведение Работа силы вектора на путии получим окончательный вид формулы к. п. д. наклонной плоскости при действии силы Р, параллельной этой плоскости

Работа силы вектора на пути

Подставив сюда значение углаРабота силы вектора на путии учтя, что Работа силы вектора на путиполучим

Работа силы вектора на пути

Примечания: I. Как видно, результаты обоих решений совпадают, хотя получившиеся формулы для силы Р внешне отличаются друг от друга.

Формулу для Р из первого решения легко преобразовать и привести к результату второго решения:

Работа силы вектора на пути

2. Выражение (I), полученное во втором решении, показывает, что к. п. д. наклонной плоскости зависит лишь от коэффициента тренияРабота силы вектора на путит. е. от материала и состояния трущихся поверхностей тела М и угла подъема наклонной плоскости.

1. Известно, что при действии на точку нескольких сил алгебраическая сумма работ всех сил на некотором пути равна работе равнодействующих этих сил.

2. В данном случае на тело М, которое примем за материальную точку, действуют четыре силы: вес Работа силы вектора на путинормальная реакция наклонной плоскости Работа силы вектора на путисила трения Работа силы вектора на путии движущая сила Р (см. рис 255, б).

3. Точка М движется равномерно и прямолинейно. Равнодействующая сил, действующих на точку, равна нулю, и, следовательно, алгебраическая сумма работ, производимых силами Работа силы вектора на путина длине Работа силы вектора на путинаклонной плоскости, также равна нулю:

Работа силы вектора на пути

4. Находим отсюда работу силы Р:

Работа силы вектора на пути

где работа силы Работа силы вектора на пути

Работа силы вектора на пути

работа силы Работа силы вектора на путинаправленной перпендикулярно к направлению движения точки, равна нулю:

Работа силы вектора на пути

Работа силы вектора на пути

так как сила трения

Работа силы вектора на пути
Подставим в выражение (а) полученные значения работ:

Работа силы вектора на пути

Работа силы вектора на пути

5. К п. д. наклонной плоскости найдем так же, как в п 5 первого решения.

Работа силы вектора на пути

Задача №21

Тело М весом G = 50 кГ равномерно перемещается вверх по наклонной плоскостиРабота силы вектора на путимне углом подъема

а=20 . Определить работу, произведенную силой, направленной параллельно основанию наклонной плоскости (рис. 256, а), также коэффициент полезного действия наклонной плоскости. Коэффициент трения f = 0,4.

Первое и третье решения задачи, аналогичные соответствующим решениям задачи 225-44, рекомендуется выполнить самостоятельно.

1. Приняв тело М за материальную точку, изобразим на рис. 256, б (слева) три действующие на нее силы: вес G, движущую силу Р и полную реакцию R наклонной плоскости, которая отклонена на угол Работа силы вектора на пути(угол трения) от нормали к поверхности наклонной плоскости.

2. При равномерном движении тела по наклонной плоскости эти три силы образуют уравновешенную систему, и поэтому треугольник АВС, построенный из этих сил, является замкнутым (см. рис. 256, б — справа).

3. Силовой треугольник АВС получается в данном случае прямоугольным, так как вектор G перпендикулярен к вектору Р; угол Работа силы вектора на путипоэтому числовое значение движущей силы

Работа силы вектора на пути

Работа силы вектора на пути

* Работа силы P в результате вычислений получается отрицательной, так как плоскость несамотормозящаяся (угол подъема Работа силы вектора на путиа угол трения Работа силы вектора на путиследовательно, Работа силы вектора на путисм. задачу 95-15) и поэтому сила Р направлена вверх, т. е. в сторону, противоположную движению. Без силы Р тело M скользит вниз равноускоренно.

5. Подставим сюда числовые значения:Работа силы вектора на путиРабота силы вектора на путиНайдем

Работа силы вектора на пути

Как видно, по сравнению с задачей 225-44 работа получается несколько больше (на 24 кГм), потому что сила Р, действующая параллельно основанию наклонной плоскости, прижимает тело к наклонной плоскости, при этом увеличивается нормальное давление тела N, а вместе с ним и сила трения.

G. Определим коэффициент полезного действия. На основании изложенного, к. п. д. в данном случае уменьшится:

Работа силы вектора на пути

Работа силы вектора на пути

окончательно получаем формулу к. п. д. горизонтальном действии силы Р:

Работа силы вектора на пути

Подставим сюда значения углов:
Работа силы вектора на пути
По сравнению с к. п. д., полученным в задаче 225-44, к. п. д. наклонной плоскости в этой задаче уменьшается.

Следующую задачу рекомендуется решить самостоятельно.

Задача №22

Определить работу, которую необходимо произвести, чтобы перекатить каток массой 50 кГ на расстояние 4 м по горизонтальной негладкой поверхности. Считать, что сила, двигающая каток, приложена к оси катка и горизонтальна (рис. 258, а).

Диаметр катка 20 см; коэффициент трения Работа силы вектора на пути= 0,5 см.

Работа силы вектора на пути

1. Как известно из кинематики, движение катящегося катка называется плоскопараллельным и составляется из двух движений — поступательного и вращательного.

Ось катка передвигается поступательно, поэтому работу силы Р, приложенной к оси, можно определить по формуле

Работа силы вектора на пути

но предварительно нужно найти числовое значение силы Р.

2. На каток в неподвижном состоянии действуют две силы: вес катка G и реакция N горизонтальной поверхности, приложенная к катку в точке К (геометрическая точка касания катка с поверхностью). При качении на Каток действуют уже четыре силы (рис. 258, б): G — вес катка, Р -движущая сила и две составляющие N и F полной реакции поверхности, место приложения которой перемещается из точки К в точку А — вперед по ходу катка.

3. Если спроектировать все силы на вертикальную и горизонтальную оси, то N — G и Р = Р, т. е. на катящийся каток действуют две пары сил: катящая пара (Р; F) с плечом ОКРабота силы вектора на путиРабота силы вектора на путии пара сопротивления (G; N) с плечом КА =

Работа силы вектора на путиПри равномерном перекатывании катка моменты этих пар численно равны между собой, т. е.

Работа силы вектора на пути
Отсюда находим силу Р, выразив силу тяжести в кГ (G — = 50 кГ)

Работа силы вектора на пути
4. Таким образом, работа, произведенная при перемещении катка,

Работа силы вектора на пути
Рекомендуется сопоставить этот результат с результатом, полученным в задаче 221-44. Следующую задачу решить самостоятельно.

Работа и мощность при вращательном движении

При вращательном движении тела движущим фактором является пара сил. Рассмотрим диск 1, могущий свободно вращаться вокруг оси 2 (рис. 259). Если к точке А на ободе диска приложить силу Р (направим ее вдоль касательной к боковой поверхности диска; направленная таким образом сила называется окружным усилием), то диск станет вращаться. Вращение диска обусловлено появлением пары сил. Сила Р, действуя на диск, прижимает его в точке О к оси (сила Работа силы вектора на путина рис. 259, приложенная к оси 2) и возникает реакция оси (сила Работа силы вектора на путина рис. 259), приложенная так же, как и сила Р, к диску. Так как все эти силы численно равны между собой и_ линии их действия параллельны, то силы Р и Работа силы вектора на путиобразуют пару сил, которая и приводит диск во вращение.

Как известно, вращающее действие пары сил измеряется ее моментом, но момент пары сил равен произведению модуля любой из сил на плечо пары, поэтому вращающий момент

Работа силы вектора на пути

Работа силы вектора на пути

Единицей момента пары сил, а также момента силы относительно точки или относительно оси является Работа силы вектора на пути(ньютон-метр) в СИ и 1 кГм (килограмм-сила-метр) в системе МКГСС. Но при этом не следует смешивать эти единицы с единицами работы имеющими ту же размерность.

Работу при вращательном движении производят пары сил. Величина работы пары сил измеряется произведением момента пары (вращающего момента) на угол поворота, выраженный в радианах:

Работа силы вектора на пути
Таким образом, чтобы получить единицу работы, например, Работа силы вектора на путинеобходимо единицу моментаРабота силы вектора на путиумножить на 1 рад. Но так как радиан — безразмерная величинаРабота силы вектора на пути

Мощность при вращательном движении

Работа силы вектора на путиРабота силы вектора на пути
Если тело вращается с постоянной угловой скоростью, то, заменив в формуле (2) Работа силы вектора на путиполучим

Работа силы вектора на пути
Мощность того или иного двигателя величина постоянная, поэтому

Работа силы вектора на пути
т. е. вращающий момент двигателя обратно пропорционален угловой скорости его вала.

Это означает, что использование мощности двигателя при различных угловых скоростях позволяет изменять создаваемый им вращающий момент. Используя мощность двигателя при малой угловой скорости, можно получить большой вращающий момент.

Так как угловая скорость вращающейся части двигателя (ротора электродвигателя, коленчатого вала двигателя внутреннего сгорания и т. п.) при его работе практически нс изменяется, то между двигателем и рабочей машиной устанавливается какой-либо механизм (редуктор, коробка скоростей и т. н.), могущий передавать мощность двигателя при различных угловых скоростях.

Поэтому формула (3), выражающая зависимость вращающего момента от передаваемой мощности и угловой скорости (Е. М. Н и-китнн, § 93), имеет очень важное значение.

Используя при решении задач эту зависимость, необходимо иметь в виду следующее. Формула (3) принимается для решения задач, если мощность N задана в ваттах, а угловая скорость—Работа силы вектора на путив рад/сек [размерность (1/сек)], тогда вращающий момент Работа силы вектора на путиполучится в н м.

Соответственно, если мощность N подставлена в кет (киловаттах), то вращающий момент получится в к-нм (килоньютон-метрах).

Если передаваемая мощность выражена в л. с. (1 л. с. =

= 75Работа силы вектора на путиугловая скорость — в об;мин Работа силы вектора на пути

а вращающий момент нужно получить в кГм, то необходимо воспользоваться формулой

Работа силы вектора на пути

Если передаваемая мощность выражена в кет, угловая скорость — в об/мин, а вращающий момент нужно получить в кГ м, то необходимо воспользоваться формулой

Работа силы вектора на пути

Задача №23

Для определения мощности электродвигателя через его шкив перекинута тормозная лента (рис. 260, а). Один конец ленты удерживается динамометром, а к другому концу прикрепленадвухкилограммовая гиря.

После запуска двигателя при установившейся угловой скорости n = 1850 об/мин динамометр показывает усилие 5 кГ. Определить мощность двигателя.

Работа силы вектора на пути

Решение 1—в единицах СИ.

1. Рассмотрим, какие силы действуют на шкив при установившемся равномерном вращении.

Шкив приводится во вращательное движение вращающим моментом Работа силы вектора на путисоздаваемым двигателем. Кроме того, на шкив действуют сила натяжения правой ветви ленты, создаваемая динамометром Работа силы вектора на путии сила Работа силы вектора на путинатяжения левой ветви ленты, создаваемая двухкилограммовой гирей Работа силы вектора на пути(рис. 260,6).

2. Определим вращающий момент двигателя.

Так как шкив вращается равномерно, то алгебраическая сумма моментов всех сил относительно оси вращения шкива равна нулю:

Работа силы вектора на пути

3. Переведя угловую скорость n =1850 об/мин в рид/сек:

Работа силы вектора на пути

из формулы (3) можно найти мощность двигателя!

Работа силы вектора на пути

Таким образом, мощность двигателя составляет 685 вт. Решение 2 —при помощи формулы (4).

1. На шкив действуют Работа силы вектора на пути— искомый вращающий момент двигателя и две силы натяжения ветвей тормозной ленты: Работа силы вектора на путии Работа силы вектора на пути

2. Определяем вращающий момент двигателя:

Работа силы вектора на пути
3. Теперь из формулы (4) определяем мощность двигателя:
Работа силы вектора на пути
Переведя получившуюся мощность из л. с. в вт, легко убедиться, что она такая же, как и в первом решении (0,930 л. сРабота силы вектора на пути

Задачу можно решить еще при помощи формулы (5). Рекомендуется это решение выполнить самостоятельно.

Задача №24

Токарный станок приводится в движение электродвигателем, мощность которого N = 2,21 кет. Считая, что к резцу станка подводится лишь 0,8 мощности двигателя, определить вертикальную составляющую усилия резания, если диаметр обрабатываемой детали d = 200 мм, а шпиндель вращается со скоростью n=92 об/мин.

Решение — при помощи формулы (5).

1. Шпиндель станка с закрепленной в нем деталью вращается под действием вращающего момента, который уравновешивается моментом искомого вертикального усилия резания Р, т. е.

Работа силы вектора на пути
где d—200 лш = 0,2 м — диаметр обрабатываемой детали. Следовательно,

Работа силы вектора на пути
2. Мощность, подведенная к резцу, составляет 0,8 от всей мощности двигателя. Таким образом, к. п. д. передачи Работа силы вектора на путии подведенная к резцу мощность

Работа силы вектора на пути
3. Подставим найденные значения Работа силы вектора на путии данное в условии задачи значение n в формулу (5):

Работа силы вектора на пути

Работа силы вектора на пути

Работа силы вектора на пути

Решение задачи в единицах СИ рекомендуется выполнить самостоятельно.

Рекомендую подробно изучить предмет:
  • Теоретическая механика
Ещё лекции с примерами решения и объяснением:
  • Потенциальная энергия
  • Обобщенные координаты системы
  • Сложение двух сил
  • Разложение силы на две составляющие
  • Основные законы динамики
  • Колебания материальной точки
  • Количество движения
  • Момент количества движения

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Векторы и действия над ними, проекция вектора на координатные оси. 9 класс.Скачать

Векторы и действия над ними, проекция вектора на координатные оси.  9 класс.

Техническая механика

Видео:Давос. Как поделить Украину? / Владимир Боглаев / Дмитрий ДаниловСкачать

Давос. Как поделить Украину? / Владимир Боглаев / Дмитрий Данилов

Работа, мощность, энергия

Работа постоянной силы на прямолинейном участке

Рассмотрим материальную точку М , к которой приложена сила F . Пусть точка переместилась из положения М0 в положение М1 , пройдя путь s (рис. 1) .

Работа силы вектора на пути

Чтобы установить количественную меру воздействия силы F на пути s , разложим эту силу на составляющие N и R , направленные соответственно перпендикулярно направлению перемещения и вдоль него. Так как составляющая N (перпендикулярная перемещению) не может двигать точку или сопротивляться ее перемещению в направлении s , то действие силы F на пути s можно определить произведением Rs .
Эта величина называется работой и обозначается W .
Следовательно,

W = Rs = Fs cos α ,

т. е. работа силы равна произведению ее модуля на путь и на косинус угла между направлением вектора силы и направлением перемещения материальной точки.

Таким образом, работа является мерой действия силы, приложенной к материальной точке при некотором ее перемещении .
Работа является скалярной величиной.

Рассматривая работу силы, можно выделить три частных случая: сила направлена вдоль перемещения (α = 0˚) , сила направлена в противоположном перемещению направлении (α = 180˚) , и сила перпендикулярна перемещению (α = 90˚) .
Исходя из величины косинуса угла α , можно сделать вывод, что в первом случае работа будет положительной, во втором – отрицательной, а в третьем случае (cos 90˚ = 0) работа силы равна нулю.
Так, например, при движении тела вниз работа силы тяжести будет положительной (вектор силы совпадает с перемещением), при подъеме тела вверх работа силы тяжести будет отрицательной, а при горизонтальном перемещении тела относительно поверхности Земли работа силы тяжести будет равна нулю.

Силы, совершающие положительную работу, называются движущимися силами , силы, а совершающие отрицательную работу – силами сопротивления .

Единицей работы принят джоуль (Дж):
1 Дж = сила×длина = ньютон×метр = 1 Нм.

Джоуль – это работа силы в один ньютон на пути в один метр.

Работа силы на криволинейном участке пути

На бесконечно малом участке ds криволинейный путь можно условно считать прямолинейным, а силу – постоянной.
Тогда элементарная работа dW силы на пути ds равна

dW = F ds cos (F , v) .

Работа на конечном перемещении равна сумме элементарных работ:

W = ∫ F cos (F , v) ds .

Работа силы вектора на пути

На рисунке 2а изображен график зависимости между пройденным расстоянием и F cos (F , v) . Площадь заштрихованной полоски, которую при бесконечно малом перемещении ds можно принять за прямоугольник, равна элементарной работе на пути ds :

dW = F cos (F , v) ds ,

а работа силы F на конечном пути s графически выражается площадью фигуры ОАВС , ограниченной осью абсцисс, двумя ординатами и кривой АВ , которая называется кривой сил .

Если работа совпадает с направлением перемещения и возрастает от нуля пропорционально пути, то работа графически выражается площадью треугольника ОАВ (рис. 2 б) , которая, как известно, может быть определена половиной произведения основания на высоту, т. е. половиной произведения силы на путь:

Теорема о работе равнодействующей

Теорема: работа равнодействующей системы сил на каком-то участке пути равна алгебраической сумме работ составляющих сил на том же участке пути .

Пусть к материальной точке М приложена система сил (F1 , F2 , F3 . Fn) , равнодействующая которых равна FΣ (рис. 3) .

Система сил, приложенных к материальной точке, есть система сходящихся сил, следовательно,

Работа силы вектора на пути

Спроецируем это векторное равенство на касательную к траектории, по которой движется материальная точка, тогда:

Умножим обе части равенства на бесконечно малое перемещение ds и проинтегрируем полученное равенство в пределах какого-то конечного перемещения s :

что соответствует равенству:

Теорема о работе силы тяжести

Теорема: работа силы тяжести не зависит от вида траектории и равна произведению модуля силы на вертикальное перемещение точки ее приложения .

Пусть материальная точка М движется под действием силы тяжести G и за какой-то промежуток времени перемещается из положения М1 в положение М2 , пройдя путь s (рис. 4) .
Работа силы вектора на путиНа траектории точки М выделим бесконечно малый участок ds , который можно считать прямолинейным, и из его концов проведем прямые, параллельные осям координат, одна из которых вертикальна, а другая горизонтальна.
Из заштрихованного треугольника получим, что

Элементарная работа силы G на пути ds равна:

Полная работа силы тяжести G на пути s равна

W = ∫ Gds cos α = ∫ Gdy = G ∫ dy = Gh .

Итак, работа силы тяжести равна произведению силы на вертикальное перемещение точки ее приложения:

Пример решения задачи по определению работы силы тяжести

Задача: Однородный прямоугольный массив АВСD массой m = 4080 кг имеет размеры, указанные на рис. 5 .
Работа силы вектора на путиОпределить работу, которую необходимо выполнить для опрокидывания массива вокруг ребра D .

Решение.
Очевидно, что искомая работа будет равна работе сопротивления, совершаемой силой тяжести массива, при этом вертикальное перемещение центра тяжести массива при опрокидывании через ребро D является путем, который определяет величину работы силы тяжести.

Для начала определим силу тяжести массива: G = mg = 4080×9,81 = 40 000 Н = 40 кН .

Для определения вертикального перемещения h центра тяжести прямоугольного однородного массива (он находится в точке пересечения диагоналей прямоугольника), используем теорему Пифагора, исходя из которой:

КО1 = ОD – КD = √(ОК 2 + КD 2 ) – КD = √(3 2 +4 2 ) — 4 = 1 м .

На основании теоремы о работе силы тяжести определим искомую работу, необходимую для опрокидывания массива:

W = G×КО1 = 40 000×1 = 40 000 Дж = 40 кДж.

Работа постоянной силы, приложенной к вращающемуся телу

Представим себе диск, вращающийся вокруг неподвижной оси под действием постоянной силы F (рис. 6) , точка приложения которой перемещается вместе с диском. Разложим силу F на три взаимно-перпендикулярные составляющие: F1 – окружная сила, F2 – осевая сила, F3 – радиальная сила.

Работа силы вектора на пути

При повороте диска на бесконечно малый угол dφ сила F совершит элементарную работу, которая на основании теоремы о работе равнодействующей будет равна сумме работ составляющих.

Очевидно, что работа составляющих F2 и F3 будет равна нулю, так как векторы этих сил перпендикулярны бесконечно малому перемещению ds точки приложения М , поэтому элементарная работа силы F равна работе ее составляющей F1 :

При повороте диска на конечный угол φ работа силы F равна

где угол φ выражается в радианах.

Так как моменты составляющих F2 и F3 относительно оси z равны нулю, то на основании теоремы Вариньона момент силы F относительно оси z равен:

Момент силы, приложенной к диску, относительно оси вращения называется вращающим моментом, и, согласно стандарту ИСО, обозначается буквой Т :

Т = Мz(F) , следовательно, W = Tφ .

Работа постоянной силы, приложенной к вращающемуся телу, равна произведению вращающего момента на угловое перемещение .

Пример решения задачи

Задача: рабочий вращает рукоятку лебедки силой F = 200 Н , перпендикулярной радиусу вращения.
Найти работу, затраченную в течение времени t = 25 секунд , если длина рукоятки r = 0,4 м , а ее угловая скорость ω = π/3 рад/с .

Решение.
Прежде всего определим угловое перемещение φ рукоятки лебедки за 25 секунд :

φ = ωt = (π/3)×25 = 26,18 рад.

Далее воспользуемся формулой для определения работы силы при вращательном движении:

W = Tφ = Frφ = 200×0,4×26,18 ≈ 2100 Дж ≈ 2,1 кДж .

Мощность

Работа, совершаемая какой-либо силой, может быть за различные промежутки времени, т. е. с разной скоростью. Чтобы охарактеризовать, насколько быстро совершается работа, в механике существует понятие мощности , которую обычно обозначают буквой P .

Мощностью называется работа, совершаемая в единицу времени.

Если работа совершается равномерно, то мощность определяют по формуле

Работа силы вектора на пути

Если направление силы и направление перемещения совпадают, что эту формулу можно записать в иной форме:

P = W/t = Fs/t или P = Fv .

Мощность силы равна произведению модуля силы на скорость точки ее приложения .

Если работа совершается силой, приложенной к равномерно вращающемуся телу, то мощность в этом случае может быть определена по формуле:

P = W/t = Tφ/t или P = Tω .

Мощность силы, приложенной к равномерно вращающемуся телу, равна произведению вращающего момента на угловую скорость .

Единицей измерения мощности является ватт (Вт):

Ватт = работа/время = джоуль в секунду.

Понятие об энергии и КПД

Способность тела при переходе из одного состояния в другое совершать работу называется энергией . Энергия есть общая мера различных форм движения материи.

В механике для передачи и преобразования энергии применяются различные механизмы и машины, назначение которых – выполнение заданных человеком полезных функций. При этом энергия, передаваемая механизмами, называется механической энергией , которая принципиально отличается от тепловой, электрической, электромагнитной, ядерной и других известных видов энергии. Виды механической энергии тела мы рассмотрим на следующей странице, а здесь лишь определимся с основными понятиями и определениями.

При передаче или преобразовании энергии, а также при совершении работы, имеют место потери энергии, поскольку механизмы и машины, служащие для передачи или преобразования энергии преодолевают различные силы сопротивления (трения, сопротивления окружающей среды и т. п.). По этой причине часть энергии при передаче безвозвратно теряется и не может быть использована для выполнения полезной работы.

Коэффициент полезного действия

Часть энергии, потерянная при ее передаче на преодоление сил сопротивления, учитывается при помощи коэффициента полезного действия механизма (машины), передающего эту энергию.
Коэффициент полезного действия (КПД) обозначается буквой η и определяется, как отношение полезной работы (или мощности) к затраченной:

Если коэффициент полезного действия учитывает только механические потери, то его называют механическим КПД.

Очевидно, что КПД – всегда правильная дробь (иногда его выражают в процентах) и его значение не может быть больше единицы. Чем ближе значение КПД к единице (100 %) , тем экономичнее работает машина.

Если энергия или мощность передаются рядом последовательных механизмов, то суммарный КПД может быть определен, как произведение КПД всех механизмов:

где: η1 , η2 , η3 , . ηnКПД каждого механизма в отдельности.

📺 Видео

Урок 9. Проекции вектора на координатные осиСкачать

Урок 9. Проекции вектора на координатные оси

Работа векторного поляСкачать

Работа векторного поля

Кожный вектор. Системно-векторная психология Юрия БурланаСкачать

Кожный вектор. Системно-векторная психология Юрия Бурлана

Урок 120. Работа силы упругости.Скачать

Урок 120. Работа силы упругости.

Урок 115. Работа переменной силы. Решение задачСкачать

Урок 115. Работа переменной силы. Решение задач

ЭГОИЗМ - КАК ОПРЕДЕЛИТЬ СВОЮ ЗОЛОТУЮ СЕРЕДИНУ / @vrata_mirovСкачать

ЭГОИЗМ - КАК ОПРЕДЕЛИТЬ СВОЮ ЗОЛОТУЮ СЕРЕДИНУ / @vrata_mirov

Момент силы относительно точки и осиСкачать

Момент силы относительно точки и оси

Физика 10 класс (Урок№13 - Работа. Мощность. Энергия. Закон сохранения механической энергии.)Скачать

Физика 10 класс (Урок№13 - Работа. Мощность. Энергия. Закон сохранения механической энергии.)

МЕХАНИЧЕСКАЯ РАБОТА физика 10 классСкачать

МЕХАНИЧЕСКАЯ РАБОТА физика 10 класс

Урок 39 (осн). Сила трения. Коэффициент тренияСкачать

Урок 39 (осн). Сила трения. Коэффициент трения
Поделиться или сохранить к себе: