Тетраэдр — это частный случай правильной треугольной пирамиды.
Тетраэдр — правильный многогранник (четырёхгранный), имеющий 4 грани, они, в свою очередь, оказываются правильными треугольниками. У тетраэдра 4 вершины, к каждой из них сходится 3 ребра. Общее количество ребер у тетраэдра 6.
Медиана тетраэдра — это отрезок, который соединяет вершину тетраэдра и точку пересечения медиан противоположной грани (медиан равностороннего треугольника, который противолежит вершине).
Бимедиана тетраэдра — это отрезок, который соединяет середины рёбер, что скрещиваются (соединяет середины сторон треугольника, который есть одной из граней тетраэдра).
Высота тетраэдра — это отрезок, который соединяет вершину и точку противоположной грани и перпендикулярен этой грани (т.е. это высота, проведенная от всякой грани, кроме того, совпадает с центром описанной окружности).
- Свойства тетраэдра.
- Типы тетраэдров.
- Формулы для определения элементов тетраэдра.
- Презентация по геометрии на тему «Тетраэдр и его свойства»
- «Управление общеобразовательной организацией: новые тенденции и современные технологии»
- Дистанционное обучение как современный формат преподавания
- Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Математика: теория и методика преподавания в образовательной организации
- Оставьте свой комментарий
- Подарочные сертификаты
- Геометрия. 10 класс
- 📹 Видео
Видео:10 класс, 14 урок, Задачи на построение сеченийСкачать
Свойства тетраэдра.
Параллельные плоскости, которые проходят через пары рёбер тетраэдра, что скрещиваются, и определяют описанный параллелепипед около тетраэдра.
Плоскость, которая проходит сквозь середины 2-х рёбер тетраэдра, что скрещиваются, и делит его на 2 части, одинаковые по объему.
Все медианы и бимедианы тетраэдра пересекаются в одной точке. Эта точка делит медианы в отношении 3:1, если считать от вершины. Она же делит бимедианы на две равные части.
Видео:№69. Через середины ребер АВ и ВС тетраэдра SABC проведена плоскость параллельно ребру SBСкачать
Типы тетраэдров.
Правильный тетраэдр — это такая правильная треугольная пирамида, каждая из граней которой оказывается равносторонним треугольником.
У правильного тетраэдра каждый двугранный угол при рёбрах и каждый трёхгранный угол при вершинах имеют одинаковую величину.
Тетраэдр состоит из 4 граней, 4 вершин и 6 ребер.
Правильный тетраэдр — это один из 5-ти правильных многогранников.
Кроме правильного тетраэдра, заслуживают внимания такие типы тетраэдров:
— Равногранный тетраэдр, у него каждая грань представляет собой треугольник. Все грани-треугольники такого тетраэдра равны.
— Ортоцентрический тетраэдр, у него каждая высота, опущенная из вершин на противоположную грань, пересекается с остальными в одной точке.
— Прямоугольный тетраэдр, у него каждое ребро, прилежащее к одной из вершин, перпендикулярно другим ребрам, прилежащим к этой же вершине.
— Каркасный тетраэдр — тетраэдр, который таким условиям:
- есть сфера, которая касается каждого ребра,
- суммы длин ребер, что скрещиваются равны,
- суммы двугранных углов при противоположных ребрах равны,
- окружности, которые вписаны в грани, попарно касаются,
- каждый четырехугольник, образующийся на развертке тетраэдра, — описанный,
- перпендикуляры, поставленные к граням из центров окружностей, в них вписанных, пересекаются в одной точке.
— Соразмерный тетраэдр, бивысоты у него одинаковы.
— Инцентрический тетраэдр, у него отрезки, которые соединяют вершины тетраэдра с центрами окружностей, которые вписаны в противоположные грани, пересекаются в одной точке.
Видео:СЕЧЕНИЯ. СТРАШНЫЙ УРОК | Математика | TutorOnlineСкачать
Формулы для определения элементов тетраэдра.
Высота тетраэдра:
где h — высота тетраэдра, a — ребро тетраэдра.
Объем тетраэдра рассчитывается по классической формуле объема пирамиды. В нее нужно подставить высоту тетраэдра и площадь правильного (равностороннего) треугольника.
где V — объем тетраэдра, a — ребро тетраэдра.
Основные формулы для правильного тетраэдра:
Где S — Площадь поверхности правильного тетраэдра;
h — высота, опущенная на основание;
r — радиус вписанной в тетраэдр окружности;
Видео:10 класс, 12 урок, ТетраэдрСкачать
Презентация по геометрии на тему «Тетраэдр и его свойства»
Видео:Стереометрия 10 класс. Часть 1 | МатематикаСкачать
«Управление общеобразовательной организацией:
новые тенденции и современные технологии»
Свидетельство и скидка на обучение каждому участнику
Описание презентации по отдельным слайдам:
муниципальное автономное общеобразовательное учреждение средняя общеобразовательная школа № 45 Методическое пособие для учащихся 10 классов Составил учитель математики первой категории Гавинская Елена Вячеславовна. г.Калининград 2015-2016 учебный год
Определение. Многогранник, составленный из n-угольника А1А2A3…Аn и n треугольников с общей вершиной, называется пирамидой.
Многоугольник А1А2А3…Аn называется основанием, а треугольники- боковыми гранями пирамиды. Точка Р называется вершиной пирамиды, а отрезки РА1,РА2,…,РАn – ее боковыми ребрами. Пирамиду с основанием А1А2…Аn и вершиной Р обозначают : РА1А2…Аn и называют n-угольной пирамидой. Определение.
Перпендикуляр, проведенный из вершины пирамиды к плоскости основания, называется высотой пирамиды. Определение.
Пирамида называется правильной, если ее основание — правильный многоугольник, а отрезок, соединяющий вершину пирамиды с центром ее основания, является высотой данной пирамиды. SАВСD – правильная пирамида. АВСD – квадрат (правильный четырехугольник). SО – высота. Определение.
Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой. Определение.
Свойства правильной пирамиды. Все боковые ребра правильной пирамиды равны. Боковые грани правильной пирамиды являются равными равнобедренными треугольниками. Все апофемы правильной пирамиды равны друг другу. Двугранные углы при основании равны. Двугранные углы при боковых ребрах равны. Каждая точка высоты равноудалена от всех вершин основания. Каждая точка высоты равноудалена от всех боковых граней.
8. Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему : 9. В правильной треугольной пирамиде скрещивающиеся ребра взаимно перпендикулярны. 10. Плоскость, проходящая через высоту правильной пирамиды и высоту боковой грани, перпендикулярна к плоскости боковой грани. Sбок = ½ ∙ Росн ∙d
Поверхность, составленная из четырех треугольников АВС, АВD, ВСD и АСD, называется тетраэдром и обозначается так: DАВС. . Тетраэдр – простейшая пирамида. Определение.
Слово «тетраэдр» образовано из двух греческих слов: tetra – «четыре» и hedra – «основание, грань». Тетраэдр ABCD задается четырьмя своими вершинами – точками A, B, C, D, не лежащими в одной плоскости: грани тетраэдра – четыре треугольника; ребер у тетраэдра шесть. В отличие от произвольной пирамиды (n – угольной пирамиды, n≥4) , в качестве основания тетраэдра может быть выбрана любая его грань. ∆АВС,∆АВD,∆АСD, ∆ВСD – грани тетраэдра АВСD; АВ,АС,АD,ВС,СD,ВD – ребра тетраэдра.
«плоскость, проходящая через середины двух ребер основания тетраэдра и вершину, не принадлежащую этому основанию, параллельна третьему ребру основания». Свойство тетраэдра:
Дано: РАВС – тетраэдр; М – середина АС: МА=МС; К – середина ВС: ВК=КС Доказать: (РМК)║ВС
Для любого тетраэдра справедлив аналог теоремы о пересечении медиан треугольника в одной точке, в которой они делятся в отношении 2:1, считая от вершины. Так, 6 плоскостей, проведенных через ребра тетраэдра и середины противолежащих ребер, пересекаются в одной точке – в центроиде тетраэдра. Медианами в тетраэдре называются отрезки, соединяющие его вершины с центроидами противоположных граней. Эти четыре отрезка всегда пересекаются в одной точке О и делятся в ней в отношении 3:1, считая от вершин. Медианы тетраэдра.
PABC– тетраэдр; РМ и АК – медианы тетраэдра; т.О – точка пересечения медиан тетраэдра РАВС.
Через точку О проходят и бимедианы – отрезки, соединяющие середины противоположных ребер тетраэдра, причем они делятся точкой О пополам. Бимедианы тетраэдра.
РАВС – тетраэдр; МН и КЕ – бимедианы тетраэдра, причем МО=ОН и КО=ОЕ.
Проведем через каждое ребро тетраэдра плоскость, параллельную противоположному ребру. Получим три пары параллельных плоскостей, ограничивающих параллелепипед, называемый описанным параллелепипедом тетраэдра. Ребра тетраэдра являются диагоналями граней параллелепипеда, середины ребер – их центроидами. Отсюда следует, что все бимедианы проходят через центр O параллелепипеда и делятся им пополам. Нетрудно увидеть, что медианы тетраэдра лежат на диагоналях граней параллелепипеда и также проходят через точку O. Центроид тетраэдра, как и центроид треугольника, является центром равных масс, помещенных в его вершины, – обстоятельство, которое можно использовать для доказательства приведенных выше свойств. Чисто геометрически их можно доказать с помощью следующей полезной конструкции.
Медианы тетраэдра «ведут себя примерно» – как и в треугольнике, они всегда проходят через одну и ту же точку. Иначе обстоит дело с высотами – перпендикулярами, опущенными из вершин тетраэдра на противоположные грани. Высоты треугольника пересекаются в одной точке – ортоцентре. То же верно и для правильных тетраэдров, в частности для правильных треугольных пирамид. Ортоцентрический и прямоугольный тетраэдры.
И все же ортоцентр существует у достаточно широкого класса тетраэдров. Они так и называются – ортоцентрические тетраэдры. Любой из них можно получить, взяв в качестве основания произвольный треугольник и соединив его вершины с любой точкой на перпендикуляре к его плоскости, восстановленном из его ортоцентра. И обратно, основания всех высот ортоцентрического тетраэдра – ортоцентры его граней.
Приведем еще несколько критериев (т.е. необходимых и достаточных условий) ортоцентричности: тетраэдр является ортоцентрическим тогда и только тогда, когда его противоположные ребра перпендикулярны; или середины всех шести ребер лежат на одной сфере; или все ребра описанного параллелепипеда равны. Некоторые свойства треугольника, связанные с ортоцентром, например, теорема о прямой Эйлера и об окружности девяти точек в соответственно измененном виде, можно найти и у ортоцентрического тетраэдра.
Центроид ортоцентрического тетраэдра лежит на отрезке между ортоцентром H и центром описанной сферы O и делит этот отрезок пополам, а точка, которая разбивает отрезок OH в отношении 1:2 является центром «сферы 12 точек» – на ней лежат ортоцентры и центроиды всех граней, а также точки, делящие отрезки от H до вершин в отношении 1:2. Об одном виде ортоцентрических тетраэдров стоит сказать отдельно – о тетраэдре, в вершине М которого сходятся три взаимно перпендикулярных ребра. Очевидно, эта вершина M и будет его ортоцентром. Такой тетраэдр называется прямоугольным. Для него выполняется своего рода «теорема Пифагора»: «Если S1, S2, S3 – площади его прямоугольных граней («катетов»), а S – площадь четвертой грани («гипотенузы»), то: S2= S12+ S22+ S32».
Правильный тетраэдр. Правильный тетраэдр – это тетраэдр, все грани которого – равносторонние треугольники.
Теоремы, отражающие особые свойства правильного тетраэдра. В правильном тетраэдре отрезки, соединяющие центры граней, равны друг другу. Центры граней правильного тетраэдра являются вершинами другого правильного тетраэдра.
Доказательство первого свойства. Дано: МРКН – правильный тетраэдр; т.А, т.В, т.С, т.Е – соответственно центры граней правильного тетраэдра: МРН, МРК, КРН, МКН. Доказать: АВ=ВС=АС=АЕ=ВЕ=СЕ
Доказательство второго свойства. Дано: МРКН – правильный тетраэдр; т.А, т.В, т.С, т.Е – соответственно центры граней правильного тетраэдра: МРН, МРК, КРН, МКН. Доказать: АВСЕ – правильный тетраэдр.
Самый симметричный тетраэдр — правильный, ограниченный 4 правильными треугольниками. Он имеет 6 плоскостей симметрии – они проходят через каждое ребро перпендикулярно противолежащему ребру и 3 оси симметрии, проходящие через середины противолежащих ребер (рис.1). Симметрия в тетраэдре.
Менее симметричны правильные треугольные пирамиды (т.е. тетраэдры с равными гранями – 3 оси симметрии). Правильная пирамида переходит сама в себя при поворотах вокруг высоты на 120˚и 240˚ (Рис.2).
Сечения тетраэдра. Т.к. тетраэдр имеет четыре грани, то в сечении могут получаться либо треугольники, либо четырехугольники.
Особые пирамиды и тетраэдры.
Семиголовковая пирамида. Одна из вершин заметна сразу, остальные же немного труднее найти. Пирамида Шивы.
Энергетический звёздный тетраэдр. Вокруг женщины. Вокруг мужчины.
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 958 человек из 79 регионов
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Сейчас обучается 337 человек из 71 региона
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 686 человек из 74 регионов
Ищем педагогов в команду «Инфоурок»
- Гавинская Елена ВячеславовнаНаписать 7724 01.06.2016
Номер материала: ДБ-107432
- 01.06.2016 485
- 01.06.2016 340
- 01.06.2016 575
- 01.06.2016 257
- 01.06.2016 223
- 01.06.2016 289
- 01.06.2016 516
Не нашли то, что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
Минпросвещения создает цифровую психологическую службу для школьников
Время чтения: 1 минута
В Минпросвещения рассказали о формате обучения школьников после праздников
Время чтения: 1 минута
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
Число участников РДШ за 2021 год выросло в три раза
Время чтения: 2 минуты
В Госдуме предложили продлить каникулы для школьников до 16 января
Время чтения: 1 минута
В Липецкой области начинающие педагоги получат 120 тысяч рублей
Время чтения: 0 минут
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Видео:№102. Докажите, что плоскость α, проходящая через середины двух ребер основания тетраэдра и вершинуСкачать
Геометрия. 10 класс
Конспект урока
Геометрия, 10 класс
Урок №7. Тетраэдр и параллелепипед
Перечень вопросов, рассматриваемых в теме
- понятие тетраэдра;
- понятие параллелепипеда;
- свойства ребер, граней, диагоналей параллелепипеда;
- определение сечения в фигуре;
- метод следа.
Глоссарий по теме
Тетраэдр – это многогранник, состоящий из плоскости треугольника и точки не лежащий в этой плоскости, трех отрезков соединяющих эту точку с вершинами основания треугольника.
Четырёхугольник, у которого противоположные стороны попарно параллельны, называется параллелограммом.
Отрезок, соединяющий противоположные вершины, называется диагональю параллелепипеда.
Сечением поверхности геометрических тел называется – плоская фигура, полученная в результате пересечения тела плоскостью и содержащая точки, принадлежащие как поверхности тела, так и секущей плоскости.
Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Учебник Геометрия 10-11 кл.– М.: Просвещение, 2014.
Зив Б.Г. Дидактические материалы Геометрия 10 кл.– М.: Просвещение, 2014.
Глазков Ю.А., Юдина И.И., Бутузов В.Ф. Рабочая тетрадь Геометрия 10 кл.-М.: Просвещение, 2013.
Открытый электронный ресурс:
Решу ЕГЭ. Открытый образовательный портал. https://ege.sdamgia.ru
Теоретический материал для самостоятельного изучения
В дельнейшем несколько уроков нашего курса будет посвящены многогранникам- поверхностям геометрических тел, составленным из многоугольников. Но до более подробного изучения многогранников мы познакомимся с двумя из них- тетраэдром и параллелепипедом. Нам данные тела дадут возможность проиллюстрировать понятия, связанные со взаимным расположением прямых и плоскостей.
Давайте вспомним, что мы понимали под многоугольником в планиметрии. Многоугольник мы рассматривали либо как замкнутую линию без самопересечений, либо как часть плоскости, ограниченную этой линией, включая ее саму.
Мы будем использовать второе толкование многоугольника при рассмотрении поверхностей и тел в пространстве. При таком толковании любой многоугольник в пространстве представляет собой плоскую поверхность.
Давайте рассмотрим изображенную фигуру и ответим на несколько вопросов.
Итак, поверхность данной фигуры состоит из четырёх треугольников DАВ, DВС, DАС и АВС.
- из вершин- их у него 4- А, B, C, D;
- из ребер- их у него 6- AB, BC, AC, AD, BD, CD;
- из граней- их у него 4- треугольники ∆АВС, ∆DАС, ∆DВС, ∆DАВ.
Мы с вами выяснили из элементов состоит наша фигура тетраэдр. Теперь сформулируем определение.
Определение. Тетраэдр – это многогранник, состоящий из плоскости треугольника и точки не лежащий в этой плоскости, трех отрезков соединяющих эту точку с вершинами основания треугольника.
Говорят, что рёбра АD и ВС, АВ и CD, и т.д.- противоположные.
Считается АВС — основание, остальные грани — боковые.
Изображается тетраэдр обычно так (рис. 1).
Рисунок 1 – изображение тетраэдра.
Математика, в частности геометрия, является мощнейшим инструментом в познании мира. Различные геометрические формы находят свое практическое приспособление в различных областях знания: архитектуре, скульптуре, живописи. И тетраэдр тому доказательство. Так же мы можем наблюдать тетраэдр в повседневной жизни (рис. 2).
Форма пакета молока
Рисунок 2 — тетраэдр в повседневной жизни
Прежде чем начать изучать параллелепипед вспомним определение параллелограмма и его свойства.
Определение. Четырёхугольник, у которого противоположные стороны попарно параллельны, называется параллелограммом (рис. 3).
Рисунок 3 – параллелограмм
1. Противоположные стороны параллелограмма равны:
2. Противоположные углы параллелограмма равны:
3. Диагонали параллелограмма точкой пересечения делятся пополам:
- Диагональ делит параллелограмм на два равных треугольника:
треугольники ABC и CDA равны.
- Сумма углов, прилежащих к одной стороне параллелограмма, равна 180⁰: ∟A+∟D=180°
6. Накрест лежащие углы при диагонали равны:
А теперь перейдем к параллелепипеду.
Рассмотрим два равных параллелограмма ABCD и A1B1C1D1, расположенных в параллельных плоскостях так, что отрезки AA1, BB1, CC1 и DD1 параллельны.
Давайте рассмотрим изображенную фигуру (рис. 4).
Рисунок 4 – параллелепипед и его диагонали
АВСDA1B1C1D1: поверхность, составленная из двух равных параллелограммов АВСD и A1B1C1D1, лежащих в параллельных плоскостях и четырёх параллелограммов.
Все параллелограммы — грани, их стороны — рёбра, их вершины — вершины параллелепипеда.
Считается: АВСD и A1B1C1D1 — основания, остальные грани — боковые.
Определение. Отрезок, соединяющий противоположные вершины, называется диагональю параллелепипеда:
A1C, D1B, AC1, DB1.
Параллелепипед – слово греческого происхождения, параллел – идущий рядом, епипед – плоскость.
Определение.Параллелепипед- этошестигранник с параллельными и равными противоположными гранями.
Следует отметить, что многоугольник в пространстве представляет собой плоскую поверхность, а тетраэдр и параллелепипед – поверхности, составленные из плоских поверхностей (соответственно треугольников и параллелограммов).
Способы изображения параллелепипеда
Параллелепипед, в основании которого лежит ромб
Параллелепипед, в основании которого лежит квадрат
Параллелепипед,в основании которого лежит прямоугольник или параллелограмм
Параллелепипед, у которого все грани — равные квадраты
Можно сделать вывод, что параллелепипеды делятся на (рис. 5)
Рисунок 5 – виды параллелепипедов
- Противоположные грани параллелепипеда параллельны и равны.
- Все четыре диагонали пересекаются в одной точке и делятся в ней пополам.
В параллелепипеде ABCDA1B1C1D1грани ВВ1С1С и AA1D1D параллельны (рис. 6), потому что две пересекающиеся прямые ВВ1 и В1С1 одной грани параллельны двум пересекающимся прямым АА1 и A1D1 другой; эти грани и равны, так как В1С1 = A1D1, В1В= А1А (как противоположные стороны параллелограммов) и ∟ ВВ1С1= ∟АA1D1.
Рисунок 6 – чертеж к доказательству свойства 1
Возьмём какие-нибудь две диагонали, например АС1 и ВD1, и проведём вспомогательные прямые АD1 и ВС1 (рис. 7).
Так как рёбра АВ и D1С1 соответственно равны и параллельны ребру DС, то они равны и параллельны между собой; вследствие этого фигура АD1С1В есть параллелограмм, в котором прямые С1А и ВD1 —диагонали, а в параллелограмме диагонали делятся в точке пересечения пополам.
Возьмём теперь одну из этих диагоналей, например АС1, с третьей диагональю, положим, с В1D. Совершенно так же мы можем доказать, что они делятся в точке пересечения пополам. Следовательно, диагонали B1D и АС1 и диагонали АС1 и BD1(которые мы раньше брали) пересекаются в одной и той же точке, именно в середине диагонали
АС1. Наконец, взяв эту же диагональ АС1 с четвёртой диагональю А1С, мы также докажем, что они делятся пополам. Значит, точка пересечения и этой пары диагоналей лежит в середине диагонали АС1. Таким образом, все четыре диагонали параллелепипеда пересекаются в одной и той же точке и делятся этой точкой пополам.
Рисунок 7 – чертеж к доказательству свойства 2
Задачи на построение сечений.
Определение. Сечением поверхности геометрических тел называется — плоская фигура, полученная в результате пересечения тела плоскостью и содержащая точки, принадлежащие как поверхности тела, так и секущей плоскости.
Взаимное расположение многогранника и секущей плоскости:
- Многогранник и плоскость не имеют общих точек.
- Многогранник и плоскость имеют одну общую точку-вершину многогранника.
- Многогранник и плоскость имеют общую грань.
- Многогранник и плоскость имеют общий отрезок-ребро многогранника.
- сечение параллельное плоскости основания,
- диагональное сечение,
- сечение, параллельное плоскости грани,
- произвольное сечение.
Фигуры, которые получаются в результате сечения:
Один из методов построения сечений, который мы рассмотрим- метод следа.
Рассмотрим метод следов, применяемый при построении сечений многогранников, а именно при построении сечения куба плоскостью.
Что такое метод следов? При построении сечений многогранников в качестве вспомогательной прямой часто используется след секущей плоскости (в плоскости грани, удобной для рассмотрения). Такой метод построения сечений называется методом следа.
Построить сечение параллелепипеда ABCDA1B1C1D1 плоскостью, проходящей через точки P, Q, R (рис. 8).
Рисунок 8 –чертеж к задаче №1
- Построим след секущей плоскости на плоскость нижнего основания параллелепипеда. Рассмотрим грань АА1В1В. В этой грани лежат точки сечения P и Q. Проведем прямую PQ.
- Продолжим прямую PQ, которая принадлежит сечению, до пересечения с прямой АВ. Получим точку S1, принадлежащую следу.
- Аналогично получаем точку S2 пересечением прямых QR и BC.
- Прямая S1S2 — след секущей плоскости на плоскость нижнего основания параллелепипеда.
- Прямая S1S2 пересекает сторону AD в точке U, сторону CD в точке Т. Соединим точки P и U, так как они лежат в одной плоскости грани АА1D1D. Аналогично получаем TU и RT.
- PQRTU – искомое сечение.
Основные правила построения сечений методом следа:
- Если даны (или уже построены) две точки плоскости сечения на одной грани многогранника, то след сечения этой плоскости – прямая, проходящая через эти три точки.
- Если дана (или уже построена) прямая пересечения плоскости сечения с основанием многогранника (след на основании) и есть точка, принадлежащая определенной боковой грани, то нужно определить точку пересечения данного следа с этой боковой гранью ( точка пересечения данного следа с общей прямой основания и данной боковой грани)
- Точку пересечения плоскости сечения с основанием можно определить как точку пересечения какой-либо прямой в плоскости сечения с ее проекцией на плоскость основания.
То есть, суть метода заключается в построении вспомогательной прямой, являющейся изображением линии пересечения секущей плоскости с плоскостью какой-либо грани фигуры. Удобнее всего строить изображение линии пересечения секущей плоскости с плоскостью нижнего основания. Используя след, легко построить изображения точек секущей плоскости, находящихся на боковых ребрах или гранях фигуры.
Дан тетраэдр АВСD. Точка М – точка внутренняя, точка грани тетраэдра АВD. N – внутренняя точка отрезка DС. Построить точку пересечения прямой NM и плоскости АВС.
Рисунок 9 – чертеж к задаче №2
Решение:
Для решения построим вспомогательную плоскость DМN (рис. 10). Пусть прямая DМ пересекает прямую АВ в точке К. Тогда, СКD – это сечение плоскости DМN и тетраэдра. В плоскости DМN лежит и прямая NM, и полученная прямая СК. Значит, если NM не параллельна СК, то они пересекутся в некоторой точке Р. Точка Р и будет искомая точка пересечения прямой NM и плоскости АВС.
Примеры и разбор решения заданий тренировочного модуля
Дан тетраэдр АВСD. М – внутренняя точка грани АВD. Р – внутренняя точка грани АВС. N – внутренняя точка ребра DС. Построить сечение тетраэдра плоскостью, проходящей через точки М, N и Р.
Решение:
Рассмотрим первый случай, когда прямая MN не параллельна плоскости АВС (рис. 11). В прошлой задаче мы нашли точку пересечения прямой MN и плоскости АВС. Это точка К, она получена с помощью вспомогательной плоскости DМN, т.е. мы проводим DМ и получаем точку F. Проводим СF и на пересечении MN получаем точку К.
Проведем прямую КР. Прямая КР лежит и в плоскости сечения, и в плоскости АВС. Получаем точки Р1 и Р2. Соединяем Р1 и М и на продолжении получаем точку М1. Соединяем точку Р2 и N. В результате получаем искомое сечение Р1Р2NМ1. Задача в первом случае решена.
Рисунок 10 – чертеж к примеру 1 (первый случай)
Рассмотрим второй случай, когда прямая MN параллельна плоскости АВС (рис. 12). Плоскость МNР проходит через прямую МN параллельную плоскости АВС и пересекает плоскость АВС по некоторой прямой Р1Р2, тогда прямая Р1Р2 параллельна данной прямой MN.
Рисунок 11 – чертеж к примеру 1 (второй случай)
Через середины ребер АВ и ВС тетраэдра SABC проведена плоскость параллельно ребру SB. Докажите, что эта плоскость пересекает грани SAB и SBC по параллельным прямым.
Плоскость SBC и плоскость, проходящая через прямую MN параллельно ребру SB, пересекаются по прямой, проходящей через точку N (рис. 13).
По теореме (о параллельных прямых) линия пересечения параллельна SB.
В плоскость SBC через т. N проходит NQ||SB.
Плоскость SAB и плоскость MNQ пересекаются по прямой, проходящей через т. M (прямая MP). По теореме (о параллельных прямых) линия пересечения параллельна SB.
следовательно, PM||NQ.Утверждение доказано.
📹 Видео
Как строить сечения тетраэдра и пирамидыСкачать
№167. В тетраэдре DABС все ребра равны, точка М— середина ребра АС. Докажите, что ∠DMBСкачать
Я собрал САМЫЙ СЛОЖНЫЙ вариант из реальных задач ЕГЭ. Снова.Скачать
Как строить сечения параллелепипедаСкачать
10 класс, 4 урок, Параллельные прямые в пространствеСкачать
Геометрия 10 класс (Урок№7 - Тетраэдр и параллелепипед.)Скачать
Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.Скачать
ЕГЭ Задание 14 Сечение тетраэдра Отношение отрезковСкачать
№14 из профильного ЕГЭ по математике. Как строить сечения на изи. Серия-1Скачать
ВСЕ О СЕЧЕНИЯХ В СТЕРЕОМЕТРИИСкачать
Статины Вызывают Рак, Болят Ноги и Другие Опасные Последствия Снижения Холестерина .Скачать
Пищеварение в ротовой полости Глотка и пищевод | Биология 8 класс #29 | ИнфоурокСкачать
ПОСТРОЕНИЕ СЕЧЕНИЙ ТЕТРАЭДРА ПЛОСКОСТЬЮСкачать
Как строить сеченияСкачать