По известному координатному вектору найти матрицу

Координаты вектора в базисе

Пример №1 . Даны векторы ε1(2;1;3), ε2(3;-2;1), ε3(1;-3;-4), X(7;0;7). Показать, что векторы образуют базис трехмерного пространства и найти координаты вектора X в этом базисе.
Решение. Данная задача состоит из двух частей. Сначала необходимо проверить, образуют ли векторы базис. Векторы образуют базис, если определитель, составленный из координат этих векторов, отличен от нуля, в противном случае вектора не являются базисными и вектор X нельзя разложить по данному базису.
Вычислим определитель матрицы:

E =
213
3-21
1-3-4

∆ = 2*((-2)*(-4) — (-3)*1) — 3*(1*(-4) — (-3)*3) + 1*(1*1 — (-2)*3) = 14
Определитель матрицы равен ∆ =14
Так как определитель отличен от нуля, то векторы образуют базис, следовательно, вектор X можно разложить по данному базису. Т.е. существуют такие числа α1α2α3, что имеет место равенство:
X = &#9451ε1 + &#9452ε2 + &#9453ε3
Запишем данное равенство в координатной форме:
(7;0;7) = α(2;1;3) + α(3;-2;1) + α(1;-3;-4)
Используя свойства векторов, получим следующее равенство:
(7;0;7) = (2α1;1α1;3α1😉 + (3α2;-2α2;1α2😉 + (1α3;-3α3;-4α3😉
(7;0;7) = (2α1 + 3α2 + 1α3;1α1 -2α2 -3α3;3α1 + 1α2 -4α3)
По свойству равенства векторов имеем:
1 + 3α2 + 1α3 = 7
1 -2α2 -3α3 = 0
1 + 1α2 -4α3 = 7
Решаем полученную систему уравнений методом Гаусса или методом Крамера.
Ответ:

X =
2
1
0

X = 2ε1 + ε2

В системе векторов a1, a2, a3, a4 найти любую подсистему векторов, которые образуют базис, разложить векторы по базису, перейти к другому базису, найти коэффициенты разложения векторов во втором базисе; в обоих случаях определить обратные матрицы, соответствующие векторам базиса. Правильность вычисления в каждом случае проверить с помощью умножения вектора слева на матрицу, обратную матрице вектора базиса.

Пример №2 . В системе векторов a1, a2, a3, a4 найти любую подсистему векторов, которые образуют базис, разложить векторы по базису, перейти к другому базису, найти коэффициенты разложения векторов во втором базисе; в обоих случаях определить обратные матрицы, соответствующие векторам базиса. Правильность вычисления в каждом случае проверить с помощью умножения вектора слева на матрицу, обратную матрице вектора базиса.
a1=(1;5;3), a2=(2;1;-1), a3=(4;2;1), a4=(17;13;4).

Видео:Матрица переходаСкачать

Матрица перехода

Онлайн калькулятор. Разложение вектора по базису.

Этот онлайн калькулятор позволит вам очень просто разложить вектор по базисным векторам.

Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач и закрепить пройденый материал.

Видео:Собственные векторы и собственные значения матрицыСкачать

Собственные векторы и собственные значения матрицы

Калькулятор для разложения вектора по базисным векторам

Выберите размерность пространства

Количество координат в векторе:

Введите значение базисных векторов:

Введите значение вектора, который необходимо разложить по базису:

Инструкция использования калькулятора для разложение вектора по базисным векторам

  • Для того чтобы разложить вектор по базисным векторам онлайн:
  • выберите необходимую вам размерность пространства (количество координат в векторе);
  • введите значения базисных векторов;
  • введите значения вектора который нужно разложить по базису;
  • Нажмите кнопку «Разложить вектор по базису» и вы получите детальное решение задачи.

Ввод данных в калькулятор для разложение вектора по базисным векторам

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора разложение вектора по базисным векторам

  • Между полями для ввода можно перемещаться нажимая клавиши «влево» и «вправо» на клавиатуре.

Видео:Координаты в новом базисеСкачать

Координаты в новом базисе

Теория. Разложение вектора по базису

Чтобы разложить, вектор b по базисным векторам a1 , . an , необходимо найти коэффициенты x 1, . xn , при которых линейная комбинация векторов a1 , . an равна вектору b .

Коэффициенты x 1, . xn будут координатами вектора b в базисе a1 , . an .

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Найдите разложение вектора по векторам (базису)Скачать

Найдите разложение вектора по векторам (базису)

Математический портал

Видео:А.7.35 Собственные вектора и собственные значения матрицыСкачать

А.7.35 Собственные вектора и собственные значения матрицы
  • Вы здесь:
  • HomeПо известному координатному вектору найти матрицу
  • Векторная алгебра.По известному координатному вектору найти матрицу
  • Преобразование координат. Матрица перехода.

По известному координатному вектору найти матрицуПо известному координатному вектору найти матрицуПо известному координатному вектору найти матрицуПо известному координатному вектору найти матрицуПо известному координатному вектору найти матрицу

Видео:Базис линейного пространства. Матрица переходаСкачать

Базис линейного пространства. Матрица перехода

Преобразование координат. Матрица перехода.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Пусть $L_n -$ произвольное мерное пространство, $B=(e_1, . e_n) -$ фиксированный базис в нем. Тогда всякому вектору $xin L_n$ взаимно однозначно соответствует столбец его координат в этом базисе.

$$x=x_1e_1+. +x_ne_nLeftrightarrow X=beginx_1\ vdots\x_nend$$

При этом линейные комбинации над векторами в координатной форме выглядят следующим образом:

$y=lambda xLeftrightarrow Y=lambda X.$

Пусть $B=(e_1, e_2, . e_n)$ и $B’=(e_1′, e_2′, . e_n’) -$ два различных базиса в $L_n.$ Каждый из векторов базиса $B’$ разложим по базису $B:$

Матрицей перехода $T_$ от базиса $B$ к базису $B’$ называется матрица

$T_=begint_&. &t_\. &. &. \t_&. &t_end$ $k$-й столбец которой есть столбец $E’_k$ координат вектора $e’_k$ в базисе $B.$ Если $x -$ произвольный вектор из $L_n,$ $X$ и $X’ -$ столбцы его координат в базисах $B$ и $B’$ соответственно то имеет место равенство $$X’=(T_)^X$$ (формула преобразования координат при преобразовании базиса).

Примеры.

4.15. В постранстве $V_3$ заданы векторы $e_1’=i+j, $ $e_2’=i-j, $ $e_3’=-i+2j-k.$ Доказать, что система $B’=(e_1′, e_2′, e_3′)$ базис в $R_3 $ и написать матрицу перехода $T_$ где $B=(e_1=i, e_2=j, e_3=k).$ Найти координаты вектора $x=i-2j+2k$ в базисе $B’.$

Решение.

Для того, чтобы показать, что система векторов $B’=(e_1′, e_2′, e_3′)$ базис в $R_3, $ достаточно показать, что эти вектора не компланарны.

Из условия мы имеем $e_1’=i+j=(1, 1, 0),$ $e_2’=i-j=(1, -1, 0),$ $e_3’=-i+2j-k=(-1, 2, -1).$ Вектора $e_1′, e_2′, e_3’$ не компланарны, если $begin1&1&0\1&-1&0\-1&2&-1endneq 0.$ Проверим это:

Далее запишем матрицу перехода $T_$

Подставляя этот результат в формулу $X’=(T_)^X,$ получаем:

4.17. Пусть $B=(i, j, k)$ и $B’=(i’, j’, k’) -$ прямоугольные базисы в $R_3.$ Написать матрицу перехода $T_,$ и выписать столбец координат вектора $x=i-2j+k$ в базисе $B’.$

Базис $B’$ получен перестановкой $i’=j,$ $j’=k,$ $k’=i.$

Решение.

Из условия мы имеем $e_1=i, e_2-j, e_3=k;$ $e_1’=j=(0, 1, 0),$ $e_2’=k=(0, 0, 1),$ $e_3’=i=(1, 0, 0).$

Подставляя этот результат в формулу $X’=(T_)^X,$ получаем:

Домашнее задание.

Пусть $B=(i, j, k)$ и $B’=(i’, j’, k’) -$ прямоугольные базисы в $R_3.$ Написать матрицу перехода $T_,$ и выписать столбец координат вектора $x=i-2j+k$ в базисе $B’.$

4.16. Базис $B’$ получен изменением на противоположное направление всех трех базисных ортов $B.$

4.18. Базис $B’$ получен поворотом базиса $B$ на угол $varphi$ вокруг орта $i.$

🌟 Видео

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисе

Линал 2.6. Умножение матрицы на векторСкачать

Линал 2.6. Умножение матрицы на вектор

Собственные значения и собственные векторы матрицы (4)Скачать

Собственные значения и собственные векторы матрицы (4)

Как разложить вектор по базису - bezbotvyСкачать

Как разложить вектор по базису - bezbotvy

Разложение вектора по базису. 9 класс.Скачать

Разложение вектора по базису. 9 класс.

Базис и матрица перехода. Координаты вектора в разных базисах.Скачать

Базис и матрица перехода. Координаты вектора в разных базисах.

Координаты вектора. 9 класс.Скачать

Координаты вектора. 9 класс.

5 4 Координаты Преобразование координат при замене базисаСкачать

5 4  Координаты  Преобразование координат при замене базиса

Нахождение координат вектора. Практическая часть. 9 класс.Скачать

Нахождение координат вектора. Практическая часть. 9 класс.

Векторы #3: многомерные системы координат, базисные векторыСкачать

Векторы #3: многомерные системы координат, базисные векторы

Матрица перехода от одного базиса к другомуСкачать

Матрица перехода от одного базиса к другому

Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.

Высшая математика. Линейные пространства. Векторы. БазисСкачать

Высшая математика. Линейные пространства. Векторы. Базис

9 класс, 2 урок, Координаты вектораСкачать

9 класс, 2 урок, Координаты вектора
Поделиться или сохранить к себе: