Пример №1 . Даны векторы ε1(2;1;3), ε2(3;-2;1), ε3(1;-3;-4), X(7;0;7). Показать, что векторы образуют базис трехмерного пространства и найти координаты вектора X в этом базисе.
Решение. Данная задача состоит из двух частей. Сначала необходимо проверить, образуют ли векторы базис. Векторы образуют базис, если определитель, составленный из координат этих векторов, отличен от нуля, в противном случае вектора не являются базисными и вектор X нельзя разложить по данному базису.
Вычислим определитель матрицы:
E = |
|
∆ = 2*((-2)*(-4) — (-3)*1) — 3*(1*(-4) — (-3)*3) + 1*(1*1 — (-2)*3) = 14
Определитель матрицы равен ∆ =14
Так как определитель отличен от нуля, то векторы образуют базис, следовательно, вектор X можно разложить по данному базису. Т.е. существуют такие числа α1α2α3, что имеет место равенство:
X = ⓫ε1 + ⓬ε2 + ⓭ε3
Запишем данное равенство в координатной форме:
(7;0;7) = α(2;1;3) + α(3;-2;1) + α(1;-3;-4)
Используя свойства векторов, получим следующее равенство:
(7;0;7) = (2α1;1α1;3α1😉 + (3α2;-2α2;1α2😉 + (1α3;-3α3;-4α3😉
(7;0;7) = (2α1 + 3α2 + 1α3;1α1 -2α2 -3α3;3α1 + 1α2 -4α3)
По свойству равенства векторов имеем:
2α1 + 3α2 + 1α3 = 7
1α1 -2α2 -3α3 = 0
3α1 + 1α2 -4α3 = 7
Решаем полученную систему уравнений методом Гаусса или методом Крамера.
Ответ:
X = |
|
X = 2ε1 + ε2
В системе векторов a1, a2, a3, a4 найти любую подсистему векторов, которые образуют базис, разложить векторы по базису, перейти к другому базису, найти коэффициенты разложения векторов во втором базисе; в обоих случаях определить обратные матрицы, соответствующие векторам базиса. Правильность вычисления в каждом случае проверить с помощью умножения вектора слева на матрицу, обратную матрице вектора базиса.
Пример №2 . В системе векторов a1, a2, a3, a4 найти любую подсистему векторов, которые образуют базис, разложить векторы по базису, перейти к другому базису, найти коэффициенты разложения векторов во втором базисе; в обоих случаях определить обратные матрицы, соответствующие векторам базиса. Правильность вычисления в каждом случае проверить с помощью умножения вектора слева на матрицу, обратную матрице вектора базиса.
a1=(1;5;3), a2=(2;1;-1), a3=(4;2;1), a4=(17;13;4).
- Онлайн калькулятор. Разложение вектора по базису.
- Калькулятор для разложения вектора по базисным векторам
- Инструкция использования калькулятора для разложение вектора по базисным векторам
- Ввод данных в калькулятор для разложение вектора по базисным векторам
- Дополнительные возможности калькулятора разложение вектора по базисным векторам
- Теория. Разложение вектора по базису
- Математический портал
- Nav view search
- Navigation
- Search
- Преобразование координат. Матрица перехода.
- 🌟 Видео
Видео:Матрица переходаСкачать
Онлайн калькулятор. Разложение вектора по базису.
Этот онлайн калькулятор позволит вам очень просто разложить вектор по базисным векторам.
Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач и закрепить пройденый материал.
Видео:Собственные векторы и собственные значения матрицыСкачать
Калькулятор для разложения вектора по базисным векторам
Выберите размерность пространства
Количество координат в векторе:
Введите значение базисных векторов:
Введите значение вектора, который необходимо разложить по базису:
Инструкция использования калькулятора для разложение вектора по базисным векторам
- Для того чтобы разложить вектор по базисным векторам онлайн:
- выберите необходимую вам размерность пространства (количество координат в векторе);
- введите значения базисных векторов;
- введите значения вектора который нужно разложить по базису;
- Нажмите кнопку «Разложить вектор по базису» и вы получите детальное решение задачи.
Ввод данных в калькулятор для разложение вектора по базисным векторам
В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
Дополнительные возможности калькулятора разложение вектора по базисным векторам
- Между полями для ввода можно перемещаться нажимая клавиши «влево» и «вправо» на клавиатуре.
Видео:Координаты в новом базисеСкачать
Теория. Разложение вектора по базису
Чтобы разложить, вектор b по базисным векторам a1 , . an , необходимо найти коэффициенты x 1, . xn , при которых линейная комбинация векторов a1 , . an равна вектору b .
Коэффициенты x 1, . xn будут координатами вектора b в базисе a1 , . an .
Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Видео:Найдите разложение вектора по векторам (базису)Скачать
Математический портал
Видео:А.7.35 Собственные вектора и собственные значения матрицыСкачать
Nav view search
Navigation
Search
- Вы здесь:
- Home
- Векторная алгебра.
- Преобразование координат. Матрица перехода.
Видео:Базис линейного пространства. Матрица переходаСкачать
Преобразование координат. Матрица перехода.
Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.
Пусть $L_n -$ произвольное мерное пространство, $B=(e_1, . e_n) -$ фиксированный базис в нем. Тогда всякому вектору $xin L_n$ взаимно однозначно соответствует столбец его координат в этом базисе.
$$x=x_1e_1+. +x_ne_nLeftrightarrow X=beginx_1\ vdots\x_nend$$
При этом линейные комбинации над векторами в координатной форме выглядят следующим образом:
$y=lambda xLeftrightarrow Y=lambda X.$
Пусть $B=(e_1, e_2, . e_n)$ и $B’=(e_1′, e_2′, . e_n’) -$ два различных базиса в $L_n.$ Каждый из векторов базиса $B’$ разложим по базису $B:$
Матрицей перехода $T_$ от базиса $B$ к базису $B’$ называется матрица
$T_=begint_&. &t_\. &. &. \t_&. &t_end$ $k$-й столбец которой есть столбец $E’_k$ координат вектора $e’_k$ в базисе $B.$ Если $x -$ произвольный вектор из $L_n,$ $X$ и $X’ -$ столбцы его координат в базисах $B$ и $B’$ соответственно то имеет место равенство $$X’=(T_)^X$$ (формула преобразования координат при преобразовании базиса).
Примеры.
4.15. В постранстве $V_3$ заданы векторы $e_1’=i+j, $ $e_2’=i-j, $ $e_3’=-i+2j-k.$ Доказать, что система $B’=(e_1′, e_2′, e_3′)$ базис в $R_3 $ и написать матрицу перехода $T_$ где $B=(e_1=i, e_2=j, e_3=k).$ Найти координаты вектора $x=i-2j+2k$ в базисе $B’.$
Решение.
Для того, чтобы показать, что система векторов $B’=(e_1′, e_2′, e_3′)$ базис в $R_3, $ достаточно показать, что эти вектора не компланарны.
Из условия мы имеем $e_1’=i+j=(1, 1, 0),$ $e_2’=i-j=(1, -1, 0),$ $e_3’=-i+2j-k=(-1, 2, -1).$ Вектора $e_1′, e_2′, e_3’$ не компланарны, если $begin1&1&0\1&-1&0\-1&2&-1endneq 0.$ Проверим это:
Далее запишем матрицу перехода $T_$
Подставляя этот результат в формулу $X’=(T_)^X,$ получаем:
4.17. Пусть $B=(i, j, k)$ и $B’=(i’, j’, k’) -$ прямоугольные базисы в $R_3.$ Написать матрицу перехода $T_,$ и выписать столбец координат вектора $x=i-2j+k$ в базисе $B’.$
Базис $B’$ получен перестановкой $i’=j,$ $j’=k,$ $k’=i.$
Решение.
Из условия мы имеем $e_1=i, e_2-j, e_3=k;$ $e_1’=j=(0, 1, 0),$ $e_2’=k=(0, 0, 1),$ $e_3’=i=(1, 0, 0).$
Подставляя этот результат в формулу $X’=(T_)^X,$ получаем:
Домашнее задание.
Пусть $B=(i, j, k)$ и $B’=(i’, j’, k’) -$ прямоугольные базисы в $R_3.$ Написать матрицу перехода $T_,$ и выписать столбец координат вектора $x=i-2j+k$ в базисе $B’.$
4.16. Базис $B’$ получен изменением на противоположное направление всех трех базисных ортов $B.$
4.18. Базис $B’$ получен поворотом базиса $B$ на угол $varphi$ вокруг орта $i.$
🌟 Видео
Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать
Линал 2.6. Умножение матрицы на векторСкачать
Собственные значения и собственные векторы матрицы (4)Скачать
Как разложить вектор по базису - bezbotvyСкачать
Разложение вектора по базису. 9 класс.Скачать
Базис и матрица перехода. Координаты вектора в разных базисах.Скачать
Координаты вектора. 9 класс.Скачать
5 4 Координаты Преобразование координат при замене базисаСкачать
Нахождение координат вектора. Практическая часть. 9 класс.Скачать
Векторы #3: многомерные системы координат, базисные векторыСкачать
Матрица перехода от одного базиса к другомуСкачать
Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать
Высшая математика. Линейные пространства. Векторы. БазисСкачать
9 класс, 2 урок, Координаты вектораСкачать