Площадь произвольного четырехугольника, формулы и калькулятор для вычисления в режиме онлайн. Для вычисления площади произвольного четырехугольника применяются различные формулы, в зависимости от известных исходных данных. Ниже приведены формулы и калькулятор, который поможет вычислить площадь произвольного четырехугольника или проверить уже выполненные вычисления.
В окончании статьи приведены ссылки для вычисления частных случаев четырехугольников: квадрата, трапеции, параллелограмма, прямоугольника, ромба.
- Площадь четырехугольника по диагоналям и углу между ними
- Площадь четырехугольника через стороны и углы между этими сторонами
- Площадь четырехугольника вписанного в окружность, вычисляемая по Формуле Брахмагупты
- Площадь четырехугольника в который можно вписать окружность
- Площадь четырехугольника в который можно вписать окружность, определяемая через стороны и углы между ними
- Таблица с формулами площади четырехугольника
- Площадь частных случаев четырехугольников
- Определения
- Площади четырехугольников
- Формулы для площадей четырехугольников
- Вывод формул для площадей четырехугольников
- Все формулы для площадей полной и боковой поверхности тел
- 1. Площадь полной поверхности куба
- 2. Найти площадь поверхности прямоугольного параллелепипеда
- 3. Найти площадь поверхности шара, сферы
- 4. Найти площадь боковой и полной поверхности цилиндра
- 5. Площадь поверхности прямого, кругового конуса
- 🌟 Видео
Видео:КАК НАЙТИ ПЛОЩАДЬ БОКОВОЙ ПОВЕРХНОСТИ ПИРАМИДЫ?Скачать
Площадь четырехугольника по диагоналям и углу между ними
Видео:№538. Площадь боковой поверхности цилиндра равна 5. Найдите площадь осевогоСкачать
Площадь четырехугольника через стороны и углы между этими сторонами
При вычислении площади четырехугольника с использованием данной формулы, необходимо предварительно вычислить полупериметр четырехугольника по формуле:
Видео:Геометрия 10 класс. Площадь боковой поверхности правильной усеченной пирамидыСкачать
Площадь четырехугольника вписанного в окружность, вычисляемая по Формуле Брахмагупты
Данная формула справедлива только для четырехугольников, вокруг которых можно описать окружность.
При вычислении площади четырехугольника с использованием данной формулы, необходимо предварительно вычислить полупериметр четырехугольника по формуле:
Видео:Нахождение площади боковой поверхности цилиндраСкачать
Площадь четырехугольника в который можно вписать окружность
Данная формула справедлива только для четырехугольников, в которые можно вписать окружность. Вписанная окружность должна иметь точки соприкосновения со всеми четырьмя сторонами четырехугольника.
При вычислении площади четырехугольника с использованием данной формулы, необходимо предварительно вычислить полупериметр четырехугольника по формуле:
Видео:Найти площадь поверхности правильной четырехугольной пирамидыСкачать
Площадь четырехугольника в который можно вписать окружность, определяемая через стороны и углы между ними
Данная формула справедлива только для четырехугольников, в которые можно вписать окружность. Вписанная окружность должна иметь точки соприкосновения со всеми четырьмя сторонами четырехугольника.
Если в исходных данных угол задан в радианах, то для перевода в градусы вы можете воспользоваться «Конвертером величин». Или вычислить самостоятельно по формуле: 1 рад × (180/π) ° = 57,296°
Видео:№570. Площадь боковой поверхности конуса равна 80 см2. Через середину высоты конуса проведена плоскоСкачать
Таблица с формулами площади четырехугольника
исходные данные (активная ссылка для перехода к калькулятору) | эскиз | формула | |
1 | диагональ и угол между ними | ||
2 | стороны и углы между этими сторонами | ||
3 | стороны (по Формуле Брахмагупты) | ||
4 | стороны и радиус вписанной окружности | ||
5 | стороны и углы между ними |
Видео:Площадь поверхности призмы. 11 класс.Скачать
Площадь частных случаев четырехугольников
Для вычисления частных случаев четырехугольников можно воспользоваться формулами и калькуляторами, приведенными в других статьях сайта:
Определения
Четырехугольник – это геометрическая плоская фигура, образованная четырьмя последовательно соединенными отрезками.
Площадь – это численная характеристика, характеризующая размер плоскости, ограниченной замкнутой геометрической фигурой.
Площадь четырехугольника — это численная характеристика, характеризующая размер плоскости, ограниченной геометрической фигурой, образованной четырьмя последовательно соединенными отрезками.
Площадь измеряется в единицах измерения в квадрате: км 2 , м 2 , см 2 , мм 2 и т.д.
Видео:№264. Найдите площадь боковой поверхности правильной шестиугольной пирамиды, если сторона ееСкачать
Площади четырехугольников
Формулы для площадей четырехугольников |
Вывод формул для площадей четырехугольников |
Вывод формулы Брахмагупты для площади вписанного четырехугольника |
В данном разделе рассматриваются только выпуклые фигуры, и считается известной формула:
которая позволяет найти площадь прямоугольника прямоугольника с основанием a и высотой b.
Видео:№236. Докажите, что площадь боковой поверхности наклонной призмы равна произведению периметраСкачать
Формулы для площадей четырехугольников
Четырехугольник | Рисунок | Формула площади | Обозначения | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Прямоугольник | S = ab | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Параллелограмм | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Квадрат | S = a 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
S = 4r 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ромб | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Трапеция | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
S = m h | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Дельтоид | S = ab sin φ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Произвольный выпуклый четырёхугольник | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Вписанный четырёхугольник |
Прямоугольник | ||
Параллелограмм | ||
Квадрат | ||
S = a 2 где | ||
S = 4r 2 | ||
Ромб | ||
Трапеция | ||
Дельтоид | ||
где | ||
Произвольный выпуклый четырёхугольник | ||
Вписанный четырёхугольник | ||
Прямоугольник |
где
a и b – смежные стороны
где
d – диагональ,
φ – любой из четырёх углов между диагоналями
где
R – радиус описанной окружности,
φ – любой из четырёх углов между диагоналями
Формула получается из верхней формулы подстановкой d = 2R
где
a – сторона,
ha – высота, опущенная на эту сторону
где
a и b – смежные стороны,
φ – угол между ними
φ – любой из четырёх углов между ними
где
a – сторона квадрата
Получается из верхней формулы подстановкой d = 2R
где
a – сторона,
ha – высота, опущенная на эту сторону
где
a – сторона,
φ – любой из четырёх углов ромба
где
r – радиус вписанной окружности,
φ – любой из четырёх углов ромба
где
a и b – основания,
h – высота
φ – любой из четырёх углов между ними
где
a и b – основания,
c и d – боковые стороны ,
где
a и b – неравные стороны,
φ – угол между ними
где
a и b – неравные стороны,
φ1 – угол между сторонами, равными a ,
φ2 – угол между сторонами, равными b .
где
a и b – неравные стороны,
r – радиус вписанной окружности
φ – любой из четырёх углов между ними
где
a, b, c, d – длины сторон четырёхугольника,
p – полупериметр
Формулу называют «Формула Брахмагупты»
Видео:Геометрия. 11 класс. Развертка, площадь боковой и полной поверхности /29.09.2020/Скачать
Вывод формул для площадей четырехугольников
Утверждение 1 . Площадь выпуклого четырёхугольника можно найти по формуле
Доказательство . В соответствии с рисунком 1 справедливо равенство:
что и требовалось доказать.
Утверждение 2 . Площадь параллелограмма параллелограмма можно найти по формуле
где a – сторона параллелограмма, а ha – высота высота высота , опущенная на эту сторону (рис. 2).
Доказательство . Поскольку прямоугольный треугольник DFC равен прямоугольному треугольнику AEB (рис.26), то четырёхугольник AEFB – прямоугольник. Поэтому
что и требовалось доказать.
Утверждение 3 .Площадь параллелограмма параллелограмма можно найти по формуле
где a и b – смежные стороны параллелограмма, а φ – угол между ними (рис. 3).
то, в силу утверждения 2, справедлива формула
что и требовалось доказать.
Утверждение 4 . Площадь ромба ромба можно найти по формуле
,
где r – радиус вписанной в ромб окружности, а φ – любой из четырёх углов ромба (рис.4).
что и требовалось доказать.
Утверждение 5 . Площадь трапеции можно найти по формуле
,
где a и b – основания трапеции, а h – высота высота высота (рис.5).
Доказательство . Проведём прямую BE через вершину B трапеции и середину E боковой стороны CD . Точку пересечения прямых AD и BE обозначим буквой F (рис. 5). Поскольку треугольник BCE равен треугольнику EDF (по стороне и прилежащим к ней углам), то площадь трапеции ABCD равна площади треугольника ABF . Поэтому
что и требовалось доказать.
Утверждение 6 . Площадь трапеции трапеции можно найти по формуле
где a и b – основания, а c и d – боковые стороны трапеции ,
(рис.6).
Доказательство . Воспользовавшись теоремой Пифагора, составим следующую систему уравнений с неизвестными x, y, h (рис. 6):
,
что и требовалось доказать.
Утверждение 7 . Площадь дельтоида, дельтоида, можно найти по формуле:
где a и b – неравные стороны дельтоида, а r – радиус вписанной в дельтоид окружности (рис.7).
Доказательство . Докажем сначала, что в каждый дельтоид можно вписать окружность. Для этого заметим, что треугольники ABD и BCD равны в силу признака равенства треугольников «По трём сторонам» (рис. 7). Отсюда вытекает, что диагональ BD является биссектрисой углов B и D , а биссектрисы углов A и C пересекаются в некоторой точке O , лежащей на диагонали BD . Точка O и является центром вписанной в дельтоид окружности.
Если r – радиус вписанной в дельтоид окружности, то
Видео:№543. Угол между диагоналями развертки боковой поверхности цилиндра равен φ, диагональ равна d.Скачать
Все формулы для площадей полной и боковой поверхности тел
Видео:№561. Вычислите площадь основания и высоту конуса, если разверткой его боковой поверхностиСкачать
1. Площадь полной поверхности куба
a — сторона куба
Формула площади поверхности куба,(S):
Видео:Найти площадь боковой поверхности правильной треугольной пирамидыСкачать
2. Найти площадь поверхности прямоугольного параллелепипеда
a , b , c — стороны параллелепипеда
Формула площади поверхности параллелепипеда, (S):
Видео:10 класс — Задачи на площади боковой и полной поверхности пирамидыСкачать
3. Найти площадь поверхности шара, сферы
R — радиус сферы
Формула площади поверхности шара (S):
Видео:Правильная четырехугольная пирамида. Площадь боковой поверхности.Скачать
4. Найти площадь боковой и полной поверхности цилиндра
r — радиус основания
h — высота цилиндра
Формула площади боковой поверхности цилиндра, (S бок ):
Формула площади всей поверхности цилиндра, (S):
Видео:Площади четырехугольников: трапеция, параллелограмм, ромб. Геометрия на клеточке. ОГЭСкачать
5. Площадь поверхности прямого, кругового конуса
R — радиус основания конуса
H — высота
L — образующая конуса
Формула площади боковой поверхности конуса, через радиус ( R ) и образующую ( L ), (S бок ):
Формула площади боковой поверхности конуса, через радиус ( R ) и высоту ( H ), (S бок ):
Формула площади полной поверхности конуса, через радиус ( R ) и образующую ( L ), (S):
Формула площади полной поверхности конуса, через радиус ( R ) и высоту ( H ), (S):
🌟 Видео
Площади фигур. Сохраняй и запоминай!#shortsСкачать
ЕГЭ-2020 по математике: площадь боковой поверхности треугольной призмыСкачать
ОТКУДА? Как найти площадь боковой поверхности конуса? Развёртка конуса | Математика с ДетекторомСкачать
62. Площадь поверхности конусаСкачать