Ортогонализировать систему векторов это

97. Ортогональная система векторов. Процесс ортогонализации. Ортогональный и ортонормированный базис

Определение 1. Два вектора A и B из E Называются ортогональными, Если их скалярное произведение равно нулю.

Определение 2. Система ненулевых векторов B1, B2, . BM называется Ортогональной системой векторов, если различные векторы этой системы попарно ортогональны: BIBJ = 0 (I, J = 1, 2,…, M; IJ).

Теорема 1. Ортогональная система векторов линейно независима.

Доказательство. Пусть A1, A2 , . AK — Ортогональная система ненулевых векторов из V. Доказывая линейную независимость системы A1, A2 , . AK допустим, что выполняется равенство:

Скалярно умножим обе части этого равенства на AI , I = 1, 2, . K, получим в силу свойств 1, 2

В силу ортогональности системы отсюда находим aI(AIAI) = 0 . Так как AI0 и скалярное произведение невырожденное, то AIAI ≠ 0. Таким образом

AI = 0 для всех I = 1, 2, . K. Таким образом система векторов A1, A2 , . AK линейно независима. 

Теорема 2. Для любой линейно независимой системы векторов A1, A2, . AM существует ортогональная система векторов B1, B2, . BM таких, что каждый вектор BJ (J = 1, 2,…, M) линейная комбинация векторов BJ (J = 1, 2,…, J).

Доказательство. Доказательство проводим методом математической индукции по K. При K =1 вторая система состоит из одного вектора B1 ≠ 0 и поэтому ортогональна. Предположим, что теорема справедлива для K-1 векторов A1, A2 , . AK-1, т. е. и поэтим векторам найдена ортогональная система ненулевых векторов B1, B2 , . BK-1 с указанными выше свойствами. Докажем утверждение для K векторов. Для этого ищем вектор BK в виде:

Где значения коэффициентов b1 , b2 . , bK-1 находим из условия ортогональности BK векторам B1, B2 , . BK-1:

Которое можно записать в виде

Так как по предположению BJBI = 0 при всех I = 1, 2, . K —1, IJ, то находим

При таком выборе коэффициентов aI вектор BK ортогонален векторам B1, B2 , . BK-1 и полученная ситема векторов B1, B2 , . BK ортогональна.

Отсюда следует, что система A1, A2 , . AK линейно зависима, а это противоречит условию.

Определение 3. Базис пространства En называется Ортогональным, если он образует ортогональную систему векторов.

Определение 4. Ортогональный базис E1, E2, . EN называется Ортонормированным, если все его векторы единичную длину.

Теорема 4. Любое N-мерное евклидово пространство обладает ортогональным базисом.

Теорема 5. Любое N-мерное евклидово пространство обладает ортонормированным базисом.

Теорема 6. Скалярное произведение векторов в ортонормированном базисе равно сумме попарных произведений соответствующих координат

Определение 7. Вектор A евклидова пространства называется Нормированным, если его длина равна единице, т. е. |A| =1.

Определение 8. Ортогональный базис евклидова пространства En называется Ортонормированным, если все вектора базиса нормированные, т. е. базис Е1, E2, . еN ортонормированный, если выполняются условия:

Теорема 7. Любое конечномерное евклидово пространство Еn обладает ортонормированным базисом.

Доказательство. Скалярное произведение в евклидовом пространстве невырожденное. Поэтому по следствю теоремы 2 Еn Обладает ортогональным базисом B1, B2 , . BN . Тогда легко показать, что система векторов

Е1 = Ортогонализировать систему векторов это, E2 = Ортогонализировать систему векторов это, . еN = Ортогонализировать систему векторов это

— линейно независима. Она образует ортонормированный базис Еn. Действительно,

ЕI×EJ =Ортогонализировать систему векторов это,

ЕI×EI =Ортогонализировать систему векторов это,

Пример 1. Ортогонализовать систему векторов A1 = (1, 0, 0) , A2 = =(-1,1, 0), A3 = (4, -2, 2) (скалярное произведение определено в примере 1). Пусть B1 = (1, 0, 0).

И ищем V2 = (-1, 1, 0), V3 = (4, -2, 2) линейно независима и образует базис пространства R3

Видео:A.7.4 Ортогонализация набора векторов. Процесс Грама-Шмидта.Скачать

A.7.4 Ортогонализация набора векторов. Процесс Грама-Шмидта.

Ортогональные векторы и условие ортогональности

В данной статье мы расскажем, что такое ортогональные векторы, какие существуют условия ортогональности, а также приведем подробные примеры для решения задач с ортогональными векторами.

Видео:Лекция 5.7. Ортогонализация Грама-Шмидта: примерСкачать

Лекция 5.7. Ортогонализация Грама-Шмидта: пример

Ортогональные векторы: определение и условие

Ортогональные векторы — это векторы a ¯ и b ¯ , угол между которыми равен 90 0 .

Необходимое условие для ортогональности векторов — два вектора a ¯ и b ¯ являются ортогональными (перпендикулярными), если их скалярное произведение равно нулю.

Видео:Ортогональные системы векторов. Процесс ортогонализации (задача 1357)Скачать

Ортогональные системы векторов. Процесс ортогонализации (задача 1357)

Примеры решения задач на ортогональность векторов

Плоские задачи на ортогональность векторов

Если дана плоская задача, то ортогональность для векторов a ¯ = и b ¯ = записывают следующим образом:

a ¯ × b ¯ = a x × b x + a y × b y = 0

Задача 1. Докажем, что векторы a ¯ = и b ¯ = ортогональны.

Как решить?

Находим скалярное произведение данных векторов:

a ¯ × b ¯ = 1 × 2 + 2 × ( — 1 ) = 2 — 2 = 0

Ответ: поскольку произведение равняется нулю, то векторы являются ортогональными.

Задача 2. Докажем, что векторы a ¯ = и b ¯ = ортогональны.

Как решить?

Находим скалярное произведение данных векторов:

a ¯ × b ¯ = 3 × 7 + ( — 1 ) × 5 = 21 — 5 = 16

Ответ: поскольку скалярное произведение не равняется нулю, то и векторы не являются ортогональными.

Задача 3. Найдем значение числа n , при котором векторы a ¯ = и b ¯ = будут ортогональными.

Как решить?

Найдем скалярное произведение данных векторов:

a ¯ × b ¯ = 2 × n + 4 × 1 = 2 n + 4 2 n + 4 = 0 2 n = — 4 n = — 2

Ответ: векторы являются ортогональными при значении n = 2 .

Примеры пространственных задач на ортогональность векторов

При решении пространственной задачи на ортогональность векторов a ¯ = и b ¯ = условие записывается следующим образом: a ¯ × b ¯ = a x × b x + a y × b y + a z × b z = 0 .

Задача 4. Докажем, что векторы a ¯ = и b ¯ = являются ортогональными.

Как решить?

Находим скалярное произведение данных векторов:

a ¯ × b ¯ = 1 × 2 + 2 × ( — 1 ) + 0 × 10 = 2 — 2 = 0

Ответ: поскольку произведение векторов равняется нулю, то они являются ортогональными.

Задача 5. Найдем значение числа n , при котором векторы a ¯ = и b ¯ = будут являться ортогональными.

Как решить?

Находим скалярное произведение данных векторов:

a ¯ × b ¯ = 2 × n + 4 × 1 + 1 × ( — 8 ) = 2 n + 4 — 8 = 2 n — 4 2 n — 4 = 0 2 n = 4 n = 2

Ответ: векторы a ¯ и b ¯ будут ортогональными при значении n = 2 .

Видео:Ортогонализация Грама Шмидта 1361Скачать

Ортогонализация Грама Шмидта 1361

Ортогональные векторы евклидова пространства и их свойства

Два вектора [math]mathbf[/math] и [math]mathbf[/math] евклидова пространства называются ортогональными (перпендикулярными) , если их скалярное произведение равно нулю: [math]langle mathbf,mathbfrangle[/math] .

Система векторов [math]mathbf_1,mathbf_2,ldots, mathbf_k[/math] называется ортогональной, если все ее векторы попарно ортогональны, т.е. [math]langle mathbf_i, mathbf_jrangle=0[/math] при [math]ine j[/math] . Система векторов [math]mathbf_1, mathbf_2, ldots,mathbf_k[/math] называется ортонормированной , если все ее векторы попарно Ортогональны и длина (норма) каждого вектора системы равна единице, т.е.

Говорят, что вектор [math]mathbf[/math] ортогонален (перпендикулярен) множеству [math]M[/math] , если он ортогонален каждому вектору из [math]M[/math] . Ортогональность векторов обозначается знаком перпендикуляра [math](perp)[/math] .

Видео:2 42 Ортогональность векторовСкачать

2 42 Ортогональность векторов

Свойства ортогональных векторов

1. Нулевой вектор ортогонален каждому вектору пространства.

2. Взаимно ортогональные ненулевые векторы линейно независимы.

В самом деле, пусть векторы [math]mathbf_1,mathbf_2,ldots,mathbf_k[/math] попарно ортогональны. Составим из них линейную комбинацию и приравняем ее нулевому вектору:

Умножим обе части равенства скалярно на вектор [math]mathbf_1:[/math]

Следовательно, [math]lambda_1cdot|mathbf_1|^2=0[/math] . Так как [math]mathbf_1ne mathbf[/math] , то [math]lambda_1=o[/math] . Аналогично доказываем, что [math]lambda_2=ldots= lambda_k=0[/math] , т.е рассматриваемая линейная комбинация тривиальная. Значит, ортогональная система векторов [math]mathbf_1,mathbf_2, ldots,mathbf_k[/math] линейно независима.

3. Если сумма взаимно ортогональных векторов равна нулевому вектору, то каждое из слагаемых равно нулевому вектору.

4. Если вектор [math]mathbf[/math] ортогонален каждому вектору системы [math]mathbf_1,mathbf_2,ldots,mathbf_k[/math] , то он также ортогонален и любой их линейной комбинации. Другими словами, если [math]mathbfperp mathbf_i,

i=1,ldots,k[/math] , то [math]mathbfperp operatorname (mathbf_1,ldots, mathbf_k)[/math] .

5. Если вектор [math]mathbf[/math] ортогонален подмножеству [math]M[/math] евклидова пространства, то он ортогонален и линейной оболочке этого подмножества, т.e. [math]mathbfperp M

6. Если [math]mathbf_1,mathbf_2,ldots,mathbf_k[/math] — ортогональная система векторов, то

Это утверждение является обобщением теоремы Пифагора.

Видео:Процесс ортогонализации Грама-Шмидта. ПримерСкачать

Процесс ортогонализации Грама-Шмидта. Пример

Процесс ортогонализации Грама-Шмидта

Рассмотрим следующую задачу. Дана линейно независимая система [math]mathbf_1,mathbf_2,ldots,mathbf_k[/math] векторов конечномерного евклидова пространства. Требуется построить ортогональную систему [math]mathbf_1,mathbf_2, ldots,mathbf_k[/math] векторов того же пространства так, чтобы совпадали линейные оболочки:

Решение задачи находится при помощи процесса ортогонализации Грама–Шмидта , выполняемого за [math]k[/math] шагов.

1. Положить [math]mathbf_1=mathbf_1[/math] .

2. Найти [math]mathbf_2=mathbf_2-alpha_cdot mathbf_1[/math] , где [math]alpha_= frac<langle mathbf_2, mathbf_1rangle><langle mathbf_1, mathbf_1 rangle>[/math] .

3. Найти [math]mathbf_3=mathbf_3-alpha_ mathbf_1-alpha_ mathbf_2[/math] , где [math]alpha_=frac<langle mathbf_3,mathbf_1 rangle><langle mathbf_1, mathbf_1rangle>,

4. Найти [math]mathbf_k=mathbf_k-sum_^alpha_mathbf_i[/math] , где [math]alpha_= frac<langle mathbf_k,mathbf_irangle><langle mathbf_i, mathbf_irangle>,

Поясним процесс ортогонализации. Искомый на втором шаге вектор [math]mathbf_2[/math] представлен в виде линейной комбинации [math]mathbf_2=mathbf_2-alpha mathbf_1[/math] . Коэффициент [math]alpha[/math] подберем так, чтобы обеспечить ортогональность векторов [math]mathbf_2[/math] и [math]mathbf_1[/math] . Приравняем нулю скалярное произведение этих векторов [math]langle mathbf_2,mathbf_1rangle= langle mathbf_2,mathbf_1rangle- alpha langle mathbf_1,mathbf_1rangle=0[/math] . Отсюда получаем, что [math]alpha=alpha_[/math] (см. пункт 2 алгоритма). Подбор коэффициентов [math]alpha_[/math] на j-м шаге алгоритма делается так, чтобы искомый вектор [math]mathbf_j[/math] был ортогонален всем ранее найденным векторам [math]mathbf_1, mathbf_2,ldots,mathbf_[/math] .

1. Векторы, найденные в процессе ортогонализации, обладают следующими свойствами:

а) [math]mathbf_j perp operatorname(mathbf_1,mathbf_2,ldots,mathbf_),quad j=2,ldots,k[/math] ;

б) [math]operatorname(mathbf_1)= operatorname(mathbf_1),quad operatorname(mathbf_1,mathbf_2, ldots,mathbf_)= operatorname(mathbf_1,mathbf_2, ldots,mathbf_),quad j=2,ldots,k[/math] .

Первое свойство следует из свойства 4 ортогональных векторов. Второе свойство следует из того, что каждый вектор системы [math]mathbf_1,mathbf_2,ldots,mathbf_[/math] линейно выражается через векторы [math]mathbf_1,mathbf_2, ldots, mathbf_[/math] , и наоборот.

2. В процессе ортогонализации любой вектор [math]mathbf_j[/math] можно заменить на коллинеарный ему ненулевой вектор [math]lambdacdot mathbf_j[/math] . При этом свойства, перечисленные в пункте 1, не нарушаются.

3. Если система [math]mathbf_1,mathbf_2,ldots, mathbf_[/math] векторов линейно зависима, то в процессе ортогонализации будем получать (на некоторых шагах) нулевые векторы. Действительно, если подсистема math]mathbf_1,mathbf_2,ldots, mathbf_[/math] линейно зависима, то [math]mathbf_jin operatorname (mathbf_1,ldots,mathbf_)[/math] . Тогда вектор [math]mathbf_j=mathbf_j-sum_^alpha_ mathbf_i[/math] одновременно удовлетворяет двум условиям [math]mathbf_jperp operatorname(mathbf_1,ldots, mathbf_)[/math] и [math]mathbf_jin operatorname(mathbf_1,ldots,mathbf_)[/math] . Значит, это нулевой вектор [math]mathbf_i=mathbf[/math] .

Поэтому в данном случае формулы вычисления коэффициентов [math]alpha_[/math] на j-м шаге следует записывать в виде:

В остальном процесс ортогонализации остается неизменным.

4. Процесс ортогонализации можно дополнить процессом нормировки, разделив каждый вектор ортогональной системы [math]mathbf_1, mathbf_2,ldots,mathbf_k[/math] на его длину:

В результате получим ортонормированную систему [math]mathbf_1,mathbf_2, ldots, mathbf_k[/math] , отвечающую условию [math]operatorname(mathbf_1, ldots, mathbf_k)= operatorname(mathbf_1,ldots,mathbf_k)[/math] . Если исходная система векторов является линейно зависимой, то среди векторов ортогональной системы [math]mathbf_1,mathbf_2, ldots,mathbf_k[/math] будут нулевые. Чтобы получить ортонормированную систему, нулевые векторы следует исключить, а остальные векторы нормировать.

Пример 8.18. Даны системы векторов евклидовых пространств:

а) [math]x=begin1\0end!,quad y=begin2\0end!,quad z=begin0\1end[/math] — элементы пространства [math]mathbb^2[/math] со скалярным произведением (8.26):

p_3(x)=x^2[/math] — элементы пространства [math]C[-1;1][/math] со скалярным произведением (8.28):

Провести ортогонализацию данных векторов.

Решение. а) Заметим, что система векторов [math]x,,y,,z[/math] линейно зависимая, так как [math]x[/math] и [math]y[/math] пропорциональны, поэтому используем процесс ортогонализации Грама–Шмидта с учетом пункта 3 замечаний 8.11.

1. Полагаем [math]mathbf=x[/math] .

Проверим условие ортогональности [math]langle mathbf,mathbfrangle= 2cdot1cdot left(-fracright)+ 1cdot1+ 0cdotleft(-fracright)+0cdot1=0[/math] .

Для получения ортонормированной системы исключаем нулевой вектор [math]mathbf=mathbf[/math] , а остальные нормируем (см. пункт 4 замечаний 8.11):

Таким образом, для системы трех векторов [math]x,,y,,z[/math] построена ортогональная система из трех векторов [math]mathbf,mathbf,mathbf[/math] и ортонормированная система из двух векторов [math]widehat<mathbf>,widehat<mathbf>[/math] . Линейные оболочки этих трех систем совпадают между собой (и со всем пространством [math]mathbb^2[/math] ).

б) 1. Полагаем [math]q_1(x)=p_1(x)=1[/math] .

и находим [math]q_3(x)= x^2-alpha_cdot1-alpha_cdot x=x^2-frac[/math] .

Получили ортогональные многочлены [math]q_1(x)=1,

q_3(x)=x^2-frac[/math] . Выполним нормировку:

📸 Видео

§48 Ортонормированный базис евклидова пространстваСкачать

§48 Ортонормированный базис евклидова пространства

Как разложить вектор по базису - bezbotvyСкачать

Как разложить вектор по базису - bezbotvy

Ортогональность. ТемаСкачать

Ортогональность. Тема

Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.Скачать

Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.

Линейная зависимость и линейная независимость векторов.Скачать

Линейная зависимость и  линейная независимость  векторов.

Высшая математика. Линейные пространства. Векторы. БазисСкачать

Высшая математика. Линейные пространства. Векторы. Базис

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Базис. Разложение вектора по базису.Скачать

Базис. Разложение вектора по базису.

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисе

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Линейная зависимость векторовСкачать

Линейная зависимость векторов

СКАЛЯРНОЕ УМНОЖЕНИЕ ВЕКТОРОВ ЧАСТЬ I #математика #егэ #огэ #формулы #профильныйегэ #векторыСкачать

СКАЛЯРНОЕ УМНОЖЕНИЕ ВЕКТОРОВ ЧАСТЬ I #математика #егэ #огэ #формулы #профильныйегэ #векторы

#вектор Разложение вектора по ортам. Направляющие косинусыСкачать

#вектор Разложение вектора по ортам.  Направляющие косинусы
Поделиться или сохранить к себе: