Ортогонализировать систему векторов это

Видео:Ортогональные системы векторов. Процесс ортогонализации (задача 1357)Скачать

Ортогональные системы векторов. Процесс ортогонализации (задача 1357)

97. Ортогональная система векторов. Процесс ортогонализации. Ортогональный и ортонормированный базис

Определение 1. Два вектора A и B из E Называются ортогональными, Если их скалярное произведение равно нулю.

Определение 2. Система ненулевых векторов B1, B2, . BM называется Ортогональной системой векторов, если различные векторы этой системы попарно ортогональны: BIBJ = 0 (I, J = 1, 2,…, M; IJ).

Теорема 1. Ортогональная система векторов линейно независима.

Доказательство. Пусть A1, A2 , . AK — Ортогональная система ненулевых векторов из V. Доказывая линейную независимость системы A1, A2 , . AK допустим, что выполняется равенство:

Скалярно умножим обе части этого равенства на AI , I = 1, 2, . K, получим в силу свойств 1, 2

В силу ортогональности системы отсюда находим aI(AIAI) = 0 . Так как AI0 и скалярное произведение невырожденное, то AIAI ≠ 0. Таким образом

AI = 0 для всех I = 1, 2, . K. Таким образом система векторов A1, A2 , . AK линейно независима. 

Теорема 2. Для любой линейно независимой системы векторов A1, A2, . AM существует ортогональная система векторов B1, B2, . BM таких, что каждый вектор BJ (J = 1, 2,…, M) линейная комбинация векторов BJ (J = 1, 2,…, J).

Доказательство. Доказательство проводим методом математической индукции по K. При K =1 вторая система состоит из одного вектора B1 ≠ 0 и поэтому ортогональна. Предположим, что теорема справедлива для K-1 векторов A1, A2 , . AK-1, т. е. и поэтим векторам найдена ортогональная система ненулевых векторов B1, B2 , . BK-1 с указанными выше свойствами. Докажем утверждение для K векторов. Для этого ищем вектор BK в виде:

Где значения коэффициентов b1 , b2 . , bK-1 находим из условия ортогональности BK векторам B1, B2 , . BK-1:

Которое можно записать в виде

Так как по предположению BJBI = 0 при всех I = 1, 2, . K —1, IJ, то находим

При таком выборе коэффициентов aI вектор BK ортогонален векторам B1, B2 , . BK-1 и полученная ситема векторов B1, B2 , . BK ортогональна.

Отсюда следует, что система A1, A2 , . AK линейно зависима, а это противоречит условию.

Определение 3. Базис пространства En называется Ортогональным, если он образует ортогональную систему векторов.

Определение 4. Ортогональный базис E1, E2, . EN называется Ортонормированным, если все его векторы единичную длину.

Теорема 4. Любое N-мерное евклидово пространство обладает ортогональным базисом.

Теорема 5. Любое N-мерное евклидово пространство обладает ортонормированным базисом.

Теорема 6. Скалярное произведение векторов в ортонормированном базисе равно сумме попарных произведений соответствующих координат

Определение 7. Вектор A евклидова пространства называется Нормированным, если его длина равна единице, т. е. |A| =1.

Определение 8. Ортогональный базис евклидова пространства En называется Ортонормированным, если все вектора базиса нормированные, т. е. базис Е1, E2, . еN ортонормированный, если выполняются условия:

Теорема 7. Любое конечномерное евклидово пространство Еn обладает ортонормированным базисом.

Доказательство. Скалярное произведение в евклидовом пространстве невырожденное. Поэтому по следствю теоремы 2 Еn Обладает ортогональным базисом B1, B2 , . BN . Тогда легко показать, что система векторов

Е1 = Ортогонализировать систему векторов это, E2 = Ортогонализировать систему векторов это, . еN = Ортогонализировать систему векторов это

— линейно независима. Она образует ортонормированный базис Еn. Действительно,

ЕI×EJ =Ортогонализировать систему векторов это,

ЕI×EI =Ортогонализировать систему векторов это,

Пример 1. Ортогонализовать систему векторов A1 = (1, 0, 0) , A2 = =(-1,1, 0), A3 = (4, -2, 2) (скалярное произведение определено в примере 1). Пусть B1 = (1, 0, 0).

И ищем V2 = (-1, 1, 0), V3 = (4, -2, 2) линейно независима и образует базис пространства R3

Видео:A.7.4 Ортогонализация набора векторов. Процесс Грама-Шмидта.Скачать

A.7.4 Ортогонализация набора векторов. Процесс Грама-Шмидта.

Ортогональные векторы и условие ортогональности

В данной статье мы расскажем, что такое ортогональные векторы, какие существуют условия ортогональности, а также приведем подробные примеры для решения задач с ортогональными векторами.

Видео:Лекция 5.7. Ортогонализация Грама-Шмидта: примерСкачать

Лекция 5.7. Ортогонализация Грама-Шмидта: пример

Ортогональные векторы: определение и условие

Ортогональные векторы — это векторы a ¯ и b ¯ , угол между которыми равен 90 0 .

Необходимое условие для ортогональности векторов — два вектора a ¯ и b ¯ являются ортогональными (перпендикулярными), если их скалярное произведение равно нулю.

Видео:2 42 Ортогональность векторовСкачать

2 42 Ортогональность векторов

Примеры решения задач на ортогональность векторов

Плоские задачи на ортогональность векторов

Если дана плоская задача, то ортогональность для векторов a ¯ = и b ¯ = записывают следующим образом:

a ¯ × b ¯ = a x × b x + a y × b y = 0

Задача 1. Докажем, что векторы a ¯ = и b ¯ = ортогональны.

Как решить?

Находим скалярное произведение данных векторов:

a ¯ × b ¯ = 1 × 2 + 2 × ( — 1 ) = 2 — 2 = 0

Ответ: поскольку произведение равняется нулю, то векторы являются ортогональными.

Задача 2. Докажем, что векторы a ¯ = и b ¯ = ортогональны.

Как решить?

Находим скалярное произведение данных векторов:

a ¯ × b ¯ = 3 × 7 + ( — 1 ) × 5 = 21 — 5 = 16

Ответ: поскольку скалярное произведение не равняется нулю, то и векторы не являются ортогональными.

Задача 3. Найдем значение числа n , при котором векторы a ¯ = и b ¯ = будут ортогональными.

Как решить?

Найдем скалярное произведение данных векторов:

a ¯ × b ¯ = 2 × n + 4 × 1 = 2 n + 4 2 n + 4 = 0 2 n = — 4 n = — 2

Ответ: векторы являются ортогональными при значении n = 2 .

Примеры пространственных задач на ортогональность векторов

При решении пространственной задачи на ортогональность векторов a ¯ = и b ¯ = условие записывается следующим образом: a ¯ × b ¯ = a x × b x + a y × b y + a z × b z = 0 .

Задача 4. Докажем, что векторы a ¯ = и b ¯ = являются ортогональными.

Как решить?

Находим скалярное произведение данных векторов:

a ¯ × b ¯ = 1 × 2 + 2 × ( — 1 ) + 0 × 10 = 2 — 2 = 0

Ответ: поскольку произведение векторов равняется нулю, то они являются ортогональными.

Задача 5. Найдем значение числа n , при котором векторы a ¯ = и b ¯ = будут являться ортогональными.

Как решить?

Находим скалярное произведение данных векторов:

a ¯ × b ¯ = 2 × n + 4 × 1 + 1 × ( — 8 ) = 2 n + 4 — 8 = 2 n — 4 2 n — 4 = 0 2 n = 4 n = 2

Ответ: векторы a ¯ и b ¯ будут ортогональными при значении n = 2 .

Видео:Ортогонализация Грама Шмидта 1361Скачать

Ортогонализация Грама Шмидта 1361

Ортогональные векторы евклидова пространства и их свойства

Два вектора [math]mathbf[/math] и [math]mathbf[/math] евклидова пространства называются ортогональными (перпендикулярными) , если их скалярное произведение равно нулю: [math]langle mathbf,mathbfrangle[/math] .

Система векторов [math]mathbf_1,mathbf_2,ldots, mathbf_k[/math] называется ортогональной, если все ее векторы попарно ортогональны, т.е. [math]langle mathbf_i, mathbf_jrangle=0[/math] при [math]ine j[/math] . Система векторов [math]mathbf_1, mathbf_2, ldots,mathbf_k[/math] называется ортонормированной , если все ее векторы попарно Ортогональны и длина (норма) каждого вектора системы равна единице, т.е.

Говорят, что вектор [math]mathbf[/math] ортогонален (перпендикулярен) множеству [math]M[/math] , если он ортогонален каждому вектору из [math]M[/math] . Ортогональность векторов обозначается знаком перпендикуляра [math](perp)[/math] .

Видео:§48 Ортонормированный базис евклидова пространстваСкачать

§48 Ортонормированный базис евклидова пространства

Свойства ортогональных векторов

1. Нулевой вектор ортогонален каждому вектору пространства.

2. Взаимно ортогональные ненулевые векторы линейно независимы.

В самом деле, пусть векторы [math]mathbf_1,mathbf_2,ldots,mathbf_k[/math] попарно ортогональны. Составим из них линейную комбинацию и приравняем ее нулевому вектору:

Умножим обе части равенства скалярно на вектор [math]mathbf_1:[/math]

Следовательно, [math]lambda_1cdot|mathbf_1|^2=0[/math] . Так как [math]mathbf_1ne mathbf[/math] , то [math]lambda_1=o[/math] . Аналогично доказываем, что [math]lambda_2=ldots= lambda_k=0[/math] , т.е рассматриваемая линейная комбинация тривиальная. Значит, ортогональная система векторов [math]mathbf_1,mathbf_2, ldots,mathbf_k[/math] линейно независима.

3. Если сумма взаимно ортогональных векторов равна нулевому вектору, то каждое из слагаемых равно нулевому вектору.

4. Если вектор [math]mathbf[/math] ортогонален каждому вектору системы [math]mathbf_1,mathbf_2,ldots,mathbf_k[/math] , то он также ортогонален и любой их линейной комбинации. Другими словами, если [math]mathbfperp mathbf_i,

i=1,ldots,k[/math] , то [math]mathbfperp operatorname (mathbf_1,ldots, mathbf_k)[/math] .

5. Если вектор [math]mathbf[/math] ортогонален подмножеству [math]M[/math] евклидова пространства, то он ортогонален и линейной оболочке этого подмножества, т.e. [math]mathbfperp M

6. Если [math]mathbf_1,mathbf_2,ldots,mathbf_k[/math] — ортогональная система векторов, то

Это утверждение является обобщением теоремы Пифагора.

Видео:Процесс ортогонализации Грама-Шмидта. ПримерСкачать

Процесс ортогонализации Грама-Шмидта. Пример

Процесс ортогонализации Грама-Шмидта

Рассмотрим следующую задачу. Дана линейно независимая система [math]mathbf_1,mathbf_2,ldots,mathbf_k[/math] векторов конечномерного евклидова пространства. Требуется построить ортогональную систему [math]mathbf_1,mathbf_2, ldots,mathbf_k[/math] векторов того же пространства так, чтобы совпадали линейные оболочки:

Решение задачи находится при помощи процесса ортогонализации Грама–Шмидта , выполняемого за [math]k[/math] шагов.

1. Положить [math]mathbf_1=mathbf_1[/math] .

2. Найти [math]mathbf_2=mathbf_2-alpha_cdot mathbf_1[/math] , где [math]alpha_= frac<langle mathbf_2, mathbf_1rangle><langle mathbf_1, mathbf_1 rangle>[/math] .

3. Найти [math]mathbf_3=mathbf_3-alpha_ mathbf_1-alpha_ mathbf_2[/math] , где [math]alpha_=frac<langle mathbf_3,mathbf_1 rangle><langle mathbf_1, mathbf_1rangle>,

4. Найти [math]mathbf_k=mathbf_k-sum_^alpha_mathbf_i[/math] , где [math]alpha_= frac<langle mathbf_k,mathbf_irangle><langle mathbf_i, mathbf_irangle>,

Поясним процесс ортогонализации. Искомый на втором шаге вектор [math]mathbf_2[/math] представлен в виде линейной комбинации [math]mathbf_2=mathbf_2-alpha mathbf_1[/math] . Коэффициент [math]alpha[/math] подберем так, чтобы обеспечить ортогональность векторов [math]mathbf_2[/math] и [math]mathbf_1[/math] . Приравняем нулю скалярное произведение этих векторов [math]langle mathbf_2,mathbf_1rangle= langle mathbf_2,mathbf_1rangle- alpha langle mathbf_1,mathbf_1rangle=0[/math] . Отсюда получаем, что [math]alpha=alpha_[/math] (см. пункт 2 алгоритма). Подбор коэффициентов [math]alpha_[/math] на j-м шаге алгоритма делается так, чтобы искомый вектор [math]mathbf_j[/math] был ортогонален всем ранее найденным векторам [math]mathbf_1, mathbf_2,ldots,mathbf_[/math] .

1. Векторы, найденные в процессе ортогонализации, обладают следующими свойствами:

а) [math]mathbf_j perp operatorname(mathbf_1,mathbf_2,ldots,mathbf_),quad j=2,ldots,k[/math] ;

б) [math]operatorname(mathbf_1)= operatorname(mathbf_1),quad operatorname(mathbf_1,mathbf_2, ldots,mathbf_)= operatorname(mathbf_1,mathbf_2, ldots,mathbf_),quad j=2,ldots,k[/math] .

Первое свойство следует из свойства 4 ортогональных векторов. Второе свойство следует из того, что каждый вектор системы [math]mathbf_1,mathbf_2,ldots,mathbf_[/math] линейно выражается через векторы [math]mathbf_1,mathbf_2, ldots, mathbf_[/math] , и наоборот.

2. В процессе ортогонализации любой вектор [math]mathbf_j[/math] можно заменить на коллинеарный ему ненулевой вектор [math]lambdacdot mathbf_j[/math] . При этом свойства, перечисленные в пункте 1, не нарушаются.

3. Если система [math]mathbf_1,mathbf_2,ldots, mathbf_[/math] векторов линейно зависима, то в процессе ортогонализации будем получать (на некоторых шагах) нулевые векторы. Действительно, если подсистема math]mathbf_1,mathbf_2,ldots, mathbf_[/math] линейно зависима, то [math]mathbf_jin operatorname (mathbf_1,ldots,mathbf_)[/math] . Тогда вектор [math]mathbf_j=mathbf_j-sum_^alpha_ mathbf_i[/math] одновременно удовлетворяет двум условиям [math]mathbf_jperp operatorname(mathbf_1,ldots, mathbf_)[/math] и [math]mathbf_jin operatorname(mathbf_1,ldots,mathbf_)[/math] . Значит, это нулевой вектор [math]mathbf_i=mathbf[/math] .

Поэтому в данном случае формулы вычисления коэффициентов [math]alpha_[/math] на j-м шаге следует записывать в виде:

В остальном процесс ортогонализации остается неизменным.

4. Процесс ортогонализации можно дополнить процессом нормировки, разделив каждый вектор ортогональной системы [math]mathbf_1, mathbf_2,ldots,mathbf_k[/math] на его длину:

В результате получим ортонормированную систему [math]mathbf_1,mathbf_2, ldots, mathbf_k[/math] , отвечающую условию [math]operatorname(mathbf_1, ldots, mathbf_k)= operatorname(mathbf_1,ldots,mathbf_k)[/math] . Если исходная система векторов является линейно зависимой, то среди векторов ортогональной системы [math]mathbf_1,mathbf_2, ldots,mathbf_k[/math] будут нулевые. Чтобы получить ортонормированную систему, нулевые векторы следует исключить, а остальные векторы нормировать.

Пример 8.18. Даны системы векторов евклидовых пространств:

а) [math]x=begin1\0end!,quad y=begin2\0end!,quad z=begin0\1end[/math] — элементы пространства [math]mathbb^2[/math] со скалярным произведением (8.26):

p_3(x)=x^2[/math] — элементы пространства [math]C[-1;1][/math] со скалярным произведением (8.28):

Провести ортогонализацию данных векторов.

Решение. а) Заметим, что система векторов [math]x,,y,,z[/math] линейно зависимая, так как [math]x[/math] и [math]y[/math] пропорциональны, поэтому используем процесс ортогонализации Грама–Шмидта с учетом пункта 3 замечаний 8.11.

1. Полагаем [math]mathbf=x[/math] .

Проверим условие ортогональности [math]langle mathbf,mathbfrangle= 2cdot1cdot left(-fracright)+ 1cdot1+ 0cdotleft(-fracright)+0cdot1=0[/math] .

Для получения ортонормированной системы исключаем нулевой вектор [math]mathbf=mathbf[/math] , а остальные нормируем (см. пункт 4 замечаний 8.11):

Таким образом, для системы трех векторов [math]x,,y,,z[/math] построена ортогональная система из трех векторов [math]mathbf,mathbf,mathbf[/math] и ортонормированная система из двух векторов [math]widehat<mathbf>,widehat<mathbf>[/math] . Линейные оболочки этих трех систем совпадают между собой (и со всем пространством [math]mathbb^2[/math] ).

б) 1. Полагаем [math]q_1(x)=p_1(x)=1[/math] .

и находим [math]q_3(x)= x^2-alpha_cdot1-alpha_cdot x=x^2-frac[/math] .

Получили ортогональные многочлены [math]q_1(x)=1,

q_3(x)=x^2-frac[/math] . Выполним нормировку:

📸 Видео

Ортогональность. ТемаСкачать

Ортогональность. Тема

Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.Скачать

Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.

Высшая математика. Линейные пространства. Векторы. БазисСкачать

Высшая математика. Линейные пространства. Векторы. Базис

Линейная зависимость и линейная независимость векторов.Скачать

Линейная зависимость и  линейная независимость  векторов.

Как разложить вектор по базису - bezbotvyСкачать

Как разложить вектор по базису - bezbotvy

Базис. Разложение вектора по базису.Скачать

Базис. Разложение вектора по базису.

Линейная зависимость векторовСкачать

Линейная зависимость векторов

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисе

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

СКАЛЯРНОЕ УМНОЖЕНИЕ ВЕКТОРОВ ЧАСТЬ I #математика #егэ #огэ #формулы #профильныйегэ #векторыСкачать

СКАЛЯРНОЕ УМНОЖЕНИЕ ВЕКТОРОВ ЧАСТЬ I #математика #егэ #огэ #формулы #профильныйегэ #векторы

#вектор Разложение вектора по ортам. Направляющие косинусыСкачать

#вектор Разложение вектора по ортам.  Направляющие косинусы
Поделиться или сохранить к себе: