Окружность касается всех сторон четырехугольника abcd докажите что ab cd bc ad

Четырехугольник ABCD описан около окружности. Докажите, что AB + CD = BC + AD.

Видео:ОГЭ по математике. Задание 15Скачать

ОГЭ по математике. Задание 15

Ваш ответ

Видео:9 класс. Геометрия. ОГЭ. Окружность. Четырехугольники.Скачать

9 класс. Геометрия. ОГЭ. Окружность. Четырехугольники.

решение вопроса

Видео:№47. В пространственном четырехугольнике ABCD стороны АВ и CD равны. Докажите, что прямые АВ и CDСкачать

№47. В пространственном четырехугольнике ABCD стороны АВ и CD равны. Докажите, что прямые АВ и CD

Похожие вопросы

  • Все категории
  • экономические 43,277
  • гуманитарные 33,618
  • юридические 17,900
  • школьный раздел 606,727
  • разное 16,824

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:Задача 25 (Тренировочный вариант на 06.04)Скачать

Задача 25 (Тренировочный вариант на 06.04)

Окружность, вписанная в четырехугольник

Определение 1. Окружность называют вписанным в четырехугольник, если окружность касается всех сторон четырехугольника.

На рисунке 1 окружность вписан в четырехугольник ABCD. В этом случае говорят также, что четырехугольник описан около окружности.

Окружность касается всех сторон четырехугольника abcd докажите что ab cd bc ad

Теорема 1. Если окружность вписан в четырехугольник, то сумма противолежащих сторон четырехугольника равны.

Доказательство. Пусть окружность ABCD вписан в четырехугольник (Рис.2). Докажем, что ( small AB+CD=AD+BC ).

Окружность касается всех сторон четырехугольника abcd докажите что ab cd bc ad

Точки M, N, Q, P − точки касания окружности со сторонами четырехугольника. Так как отрезки касательных, проведенных к окружности через одну точку, равны (статья Касательная к окружности теорема 2), то

( small AM=AQ=a, ) ( small BM=BN=b, ) ( small CN=CP=c, ) ( small DQ=DP=d )
( small AB+CD ) ( small=AM+BM+CP+DP ) ( small =a+b+c+d, )(1)
( small AD+BC) ( small=AQ+DQ+BN+CN) ( small=a+d+b+c. )(2)

Из равенств (1) и (2), следует:

( small AB+CD=AD+BC. ) Окружность касается всех сторон четырехугольника abcd докажите что ab cd bc ad

Теорема 2. Если в выпуклом четырехугольнике сумма противолежащих сторон равны, то в него можно вписать окружность.

Доказательство. Пусть задан выпуклый четырехугольник ABCD и пусть ( small AB+CD=AD+BC. ) (Рис.3). Докажем, что в него можно вписать окружность.

Окружность касается всех сторон четырехугольника abcd докажите что ab cd bc ad

Проведем биссектрисы углов A и B четырехугольника ABCD. Точку их пересечения обозначим буквой O. Тогда точка O равноудалена от сторон AB, BC, AD. Следовательно существует окружность с центром в точке O, которая касается этих трех сторон.

Пусть эта окружность не касается стороны CD. Тогда возможны два случая.

Случай 1. Сторона CD не имеет общих точек с построенной окружностью.

Проведем касательную C1D1 к окружности, параллельно стороне CD четырехугольника.

Тогда окружность с центром O вписан в четырехугольник ABC1D1. Следовательно, по теореме 1, имеем:

( small AB+C_1D_1=AD_1+BC_1. )(3)

Но по условию данной теоремы:

( small AB+CD=AD+BC. )(4)

Вычтем из равенства (4) равенство (3):

( small CD-C_1D_1) (small=AD-AD_1+BC-BC_1 )
( small CD-C_1D_1=DD_1+CC_1 )
( small CD=DD_1+CC_1+C_1D_1)

Получили, что в четырехугольнике CC1D1D длина одной стороны равна сумме длин трех остальных сторон, что невозможно (см. задачу 1 статьи Четырехугольник).

Таким образом сторона CD должна иметь общие точки с рассматриваемой окружностью.

Случай 2. Сторона CD имеет две общие точки с построенной окружностью (Рис.4).

Окружность касается всех сторон четырехугольника abcd докажите что ab cd bc ad

Аналогичными рассуждениями можно показать, что сторона CD не может иметь две общие точки с построенной окружностью.

Следовательно, предполагая, что построенная окружность не касается стороны CD, мы пришли к противоречию. Таким образом, если в выпуклом четырехугольнике сумма противолежащих сторон равны, то в него можно вписать окружность.Окружность касается всех сторон четырехугольника abcd докажите что ab cd bc ad

Если в четырехугольник вписан окружность, то существует точка, равноудаленная от всех сторон четырехугольника. Эта точка является центром вписанной в четырехугольник окружности. Для нахождения этой точки достаточно найти точку пересечениия биссектрис двух соседних углов данного четырехугольника.

Видео:Четырехугольники, вписанные в окружность. 9 класс.Скачать

Четырехугольники, вписанные в окружность. 9 класс.

Многоугольник. Свойства четырехугольников описанных около окружности.

Если все стороны какого-нибудь многоугольника (MNPQ) касаются окружности, то говорят, что этот многоугольник описан около окружности, или что окружность вписана в него.

Окружность касается всех сторон четырехугольника abcd докажите что ab cd bc ad

Теорема.

В описанном выпуклом четырехугольнике суммы противоположных сторон равны.

Пусть ABCD будет описанный выпуклый четырехугольник, т.е. стороны его касаются окружности. Требуется доказать, что AB + CD = BC + AD.

Обратная теорема.

Если в выпуклом четырехугольнике равны суммы противоположных сторон, то в него можно вписать окружность.

Требуется доказать, что в него можно вписать окружность.

Пусть ABCD такой выпуклый четырехугольник, в котором: AB + CD = AD + BC.

🎬 Видео

Урок 2. Описанная окружность около четырехугольника. Задача из ОГЭ| Подобные треугольникиСкачать

Урок 2. Описанная окружность около четырехугольника. Задача из ОГЭ| Подобные треугольники

2041 четырёхугольник ABCD вписан в окружность угол abd равен 38 угол cаd равен 54 Найдите угол ABCСкачать

2041 четырёхугольник ABCD вписан в окружность угол abd равен 38 угол cаd равен 54 Найдите угол ABC

Четырёхугольник ABCD вписан в окружность и при этом AB CD 1 2 BD AC 2 3 Найдите AD BCСкачать

Четырёхугольник ABCD вписан в окружность и при этом AB CD 1 2 BD AC 2 3 Найдите AD BC

№137. На рисунке 53 (с. 31) BC=AD, AB = CD. Докажите, что ∠B=∠D.Скачать

№137. На рисунке 53 (с. 31) BC=AD, AB = CD. Докажите, что ∠B=∠D.

16) Четырехугольник АВСD описан около окружности, AD=7, DC=12, BC=13. Найдите AB. Математика огэ.Скачать

16) Четырехугольник АВСD описан около окружности, AD=7, DC=12, BC=13. Найдите AB. Математика огэ.

Геометрия Известно, что около четырехугольника ABCD можно описать окружность и что продолжениеСкачать

Геометрия Известно, что около четырехугольника ABCD можно описать окружность и что продолжение

Геометрия В выпуклом четырёхугольнике ABCD известны стороны и диагональ: AB = 3, BC = CD = 5, AD = 8Скачать

Геометрия В выпуклом четырёхугольнике ABCD известны стороны и диагональ: AB = 3, BC = CD = 5, AD = 8

Геометрия Четырёхугольник ABCD вписан в окружность радиуса R = 8. Известно, что AB = BC = CD = 12Скачать

Геометрия Четырёхугольник ABCD вписан в окружность радиуса R = 8. Известно, что AB = BC = CD = 12

ОГЭ Задание 25 Доказательство от противногоСкачать

ОГЭ Задание 25 Доказательство от противного

ЕГЭ математика 2023 вариант 3 задача 16 ПланиметрияСкачать

ЕГЭ математика 2023 вариант 3 задача 16  Планиметрия

Доказать неравенство ➜ a⁴+b⁴+c⁴+d⁴≥4abcd ➜ Задача от ВМК МГУСкачать

Доказать неравенство ➜ a⁴+b⁴+c⁴+d⁴≥4abcd ➜ Задача от ВМК МГУ

№172. На рисунке 96 AC=AD, AB⊥CD. Докажите, что BC=BD и ∠ACB=∠ADB.Скачать

№172. На рисунке 96 AC=AD, AB⊥CD. Докажите, что BC=BD и ∠ACB=∠ADB.

№144. Отрезки АВ и CD — диаметры окружности. Докажите, что: а) хорды BD и АС равны; б) хорды AD и ВССкачать

№144. Отрезки АВ и CD — диаметры окружности. Докажите, что: а) хорды BD и АС равны; б) хорды AD и ВС

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение

ОГЭ по математике 2022. Геометрия. Окружность.Скачать

ОГЭ по математике 2022. Геометрия. Окружность.
Поделиться или сохранить к себе: