Окружность эквидистанта и орицикл на плоскости лобачевского

Окружность, эквидистанта и орицикл

1. На плоскости Лобачевского существуют три различных типа пучков, а именно: а) пучок пересекающихся прямых, т.е. множество всех прямых плоскости, проходящих через одну точку — центр пучка (рис. 231 ,а);

б) пучок расходящихся прямых, т.е. множество всех прямых плоскости, перпендикулярных к данной прямой (рис. 231, б); в) пучок параллельных прямых — множество прямых, состоящее из некоторой направленной прямой и всех направленных прямых, параллельных ей (рис. 231, в).

Окружность эквидистанта и орицикл на плоскости лобачевского

Ясно, что если задан пучок, то через любую точку плоскости (отличную от центра пучка пересекающихся прямых) проходит одна и только одна прямая пучка.

С каждым пучком прямых связаны определенные линии, которые мы рассмотрим в следующих пунктах этого параграфа.

  • 2. Окружность. Как известно из школьного курса геометрии, окружностью называется фигура, которая состоит из всех точек плоскости, равноудаленных от данной точки (центра окружности). Это определение относится к абсолютной геометрии, поэтому окружность — линия как евклидовой плоскости, так и плоскости Лобачевского. Многие теоремы об окружности, известные учащемуся из курса геометрии средней школы, доказываются без помощи аксиомы параллельных, поэтому они справедливы и на плоскости Лобачевского. Прежде всего отметим теорему о том, что любая прямая, лежащая в плоскости окружности, пересекается с ней не более чем в двух точках. Перечислим другие свойства окружности, которые относятся к абсолютной геометрии. При этом рассмотрим только те свойства, которые относятся к расположению точек окружности по отношению к пучку пересекающихся прямых с центром в центре окружности. Прямые этого пучка называются осями окружности.
  • 1°. Окружность симметрична относительно любой своей оси.
  • 2°. В каждой точке окружности существует касательная, которая перпендикулярна к оси, проходящей через точку касания.

Учитывая это свойство, мы можем говорить, что окружность пересекает свои оси под прямым углом или что окружность есть ортогональная траектория пучка прямых с центром в центре окружности (рис. 232, а).

Окружность эквидистанта и орицикл на плоскости лобачевского

Прямая АВ, где А е а н В А’ММ2 ф Z В’М2М (см. рис. 237, на этом рисунке Z А’ММ2 Z В’МХМ, так как Z В’М2М — внешний угол треугольника МХММ2). Поэтому ММХ единственная секущая равного наклона к прямым АА ‘и В В’, я

Пусть на плоскости задан пучок параллельных прямых. На множестве Q всех точек плоскости введем бинарное отношение Д следующим образом. Будем говорить, что точки А и В находятся в отношении Д, если они совпадают или прямая АВ является секущей равного наклона к прямым данного пучка, проходящим соответственно через точки А и В. Из этого определения непосредственно следует, что отношение Д удовлетворяет условиям рефлексивности и симметричности. Можно также доказать, что оно удовлетворяет условию транзитивности. Каждый элемент фактор-множества Г2/Д называется орициклом (или предельной линией). Прямые данного пучка называются осями орицикла. Если задан пучок параллельных прямых, то через каждую точку И плоскости проходит один и только один орицикл, который представляет собой класс эквивалентности КА по отношению Д. Это множество состоит из точки А и всех таких точек X плоскости, что АХ — секущая равного наклона к прямым данного пучка, проходящим через точки А иХ.

Из предыдущего изложения ясно, что если даны направленная прямая UVи на ней некоторая точка А, то тем самым однозначно определяется орицикл, проходящий через точку И с осью UV.

Свойства орицикла аналогичны свойствам окружности и эквиди- станты.

Теорема 2. Любая прямая, лежащая в плоскости орицикла, пересекается с орициклом не более чем в двух точках.

и Допустим, что некоторая прямая имеет с орициклом три общие точки А, В и С, которые обозначены так, что А — В —С. Обозначим через АА’, ВВ’и ССоси орицикла, проходящие через эти точки. По определению АА‘|| ВВ’и ВВ’I СС. Отсюда следует, что точки И’, В’и С’лежат в одной полуплоскости с границей АВ (рис. 238).

По определению орицикла Zl=Z2nZ3=Z4 (см. рис. 238). Так как параллельные прямые не имеют общего перпендикуляра, то углы

Окружность эквидистанта и орицикл на плоскости лобачевского

1, 2, 3 и 4 не являются прямыми углами. Ни один из этих углов не может быть также и тупым углом. В самом деле, если, например, Z 1 и Z 2 тупые, то Z 3, смежный с Z 2, острый (см. рис. 238). Отложив от луча АВ угол МАВ, равный Z 3, как показано на рисунке 238, мы получаем луч AM, лежащий внутри угла А ‘АВ и не пересекающий луч В В’ (§ 69, лемма 1). Это противоречит определению параллельности прямых АА’ и В В’.

Таким образом, Z 2 и Z 3 — острые углы. Но эти углы смежные, поэтому мы пришли в противоречие с теоремой о смежных углах. ? Предлагаем учащемуся самостоятельно убедиться в том, что свойства 1°—4°, сформулированные для окружности и эквидистанты, имеют место и для орицикла. В частности, орицикл симметричен относительно любой своей оси и является ортогональной траекторией пучка его параллельных осей (см. рис. 232, в).

Можно доказать, что любые два орицикла на плоскости Лобачевского равны.

Видео:1. Лобачевский и его наследие. Основные постулаты геометрии.Скачать

1. Лобачевский и его наследие. Основные постулаты геометрии.

Плоскость Лобачевского. Непротиворечивость системы аксиом плоскости Лобачевского. Взаимное расположение прямых на плоскости Лобачевского

Аксиома: Через точку, лежащую вне прямой в плоскости, определяемой ими, можно провести не менее двух прямых, не пересекающих данной прямой.

Существование хотя бы одной прямой, проходящей через данную точку и не пересекающей данной прямой, есть факт абсолютной геометрии. Аксиома Лобачевского утверждает существование по крайней мере двух таких прямых. Отсюда немедленно следует, что таких прямых существует бесконечное множество.

Плоскость, в которой предполагается выполнение аксиомы Лобачевского, называется плоскостью Лобачевского.

Геометрию Лобачевского называют гиперболической геометрией, в соответствии с чем плоскость и пространство Лобачевского называются гиперболическими.

Теорема: Пусть в плоскости даны прямая a и не лежащая на ней точка A. Тогда в пучке прямых с центром в точке A существуют две пограничные прямые, разделяющие все прямые пучка на два класса: на класс прямых, пересекающих a, и класс прямых, не пересекающих a. Эти граничные прямые сами не пересекают a.

Окружность эквидистанта и орицикл на плоскости лобачевского

Всё сказанное приводит нас к следующей картине расположения прямых пучка с центром в точке A, взятой вне данной прямой BB’. В этом пучке существуют две граничные прямые CC’ и DD’, симметрично расположенные относительно перпендикуляра AP, опущенного из точки A на BB’, и образующие с ним ےCAP=ےD’AP=α

1) пучок прямых, пересекающихся в одной точке, называемой центром пучка; такой пучок называется центральным или эллиптическим;

2) пучок прямых, параллельных в заданном направлении некоторой прямой, называемой осью пучка; такой пучок называется параболическим;

3) пучок расходящихся прямых, перпендикулярных к некоторой прямой, называемой базой пучка; такой пучок называется гиперболическим.

Эти три вида пучков связаны с тремя основными кривыми плоскости Лобачевского, являющимися кривыми постоянной кривизны.

Секущей равного наклона к двум данным прямымназывается прямая, которая при пересечении с данными образует равные внутренние односторонние углы.

Если a и b – две прямые пучка и AB – какая-нибудь секущая равного наклона, пересекающая a и b в точках A и B, то эти точки называютсявзаимно соответственными относительно пучка.

Геометрическое место точек, соответственных некоторой точке A, взятой на одной прямой пучка, называется окружностью, орициклом или эквидистантой в зависимости от того, будет ли данный пучок прямых соответственно эллиптическим, параболическим или гиперболическим. Сама точка A также включается в соответствующее геометрическое место.

Прямая, как база гиперболического пучка, является частным случаем эквидистанты.

Орицикл может скользить по себе самому без деформации, подобно тому как это имеет место для прямой и окружности. Таким же свойством обладает и эквидистанта: если заставить скользить по самой себе базу эквидистанты, то и сама эквидистанта будет скользить сама по себе без деформации, ибо расстояния всех точек эквидистанты от базы равны между собой.

Таким образом, в геометрии Лобачевского имеется четыре типа линий постоянной кривизны: прямая, окружность, орицикл и эквидистанта.

В зависимости от того, принадлежат ли три перпендикуляра в серединах сторон треугольника к эллиптическому, гиперболическому или параболическому пучку, около треугольника можно описать либо окружность, либо эквидистанту, либо орицикл, ибо стороны треугольника будут секущими равного наклона относительно соответствующего пучка. В отличие от окружности орицикл и эквидистанта – линии незамкнутые.

Дата добавления: 2015-07-30 ; просмотров: 2913 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Видео:#177. ГЕОМЕТРИЯ ЛОБАЧЕВСКОГО (советский диафильм)Скачать

#177. ГЕОМЕТРИЯ ЛОБАЧЕВСКОГО (советский диафильм)

Реферат на тему «Геометрия Лобачевского»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Видео:Лекция 8. Геометрия Лобачевского для начинающих. Окружности, прямые, орициклы, эквидистанты.Скачать

Лекция 8. Геометрия Лобачевского для начинающих. Окружности, прямые, орициклы, эквидистанты.

«Снятие эмоционального напряжения
у детей и подростков с помощью арт-практик
и психологических упражнений»

Сертификат и скидка на обучение каждому участнику

Окружность эквидистанта и орицикл на плоскости лобачевского

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ»

Геометрия Лобачевского. Факты геометрии Лобачевского. Параллельные и сверхпараллельные прямые по Лобачевскому. Пучки прямых и кривых плоскости Лобачевского. Модели геометрии Лобачевского (модель Бельтрами-Клейна, модель Пуанкаре, модель в пространстве).

студентка 4 курса

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Введение

Геометрия Лобачевского (гиперболическая геометрия) — одна из неевклидовых геометрий , геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия , за исключением аксиомы о параллельных , которая заменяется на аксиому о параллельных Лобачевского .

В конце прошлого века в работах Пуанкаре и Клейна была установлена прямая связь геометрии Лобачевского с теорией функций комплексной переменной и с теорией чисел (точнее, арифметикой неопределенных квадратичных форм). С тех пор аппарат геометрии Лобачевского стал неотъемлемым компонентом этих разделов математики. В последние 15 лет значение геометрии Лобачевского еще более возросло благодаря работам американского математика Тёрстона (лауреата Филдсовской медали 1983 г.), установившего ее связь с топологией трехмерных многообразий. Десятки работ ежегодно публикуются в этой области. Современные исследования все больше требуют делового владения геометрией Лобачевского.

Теория геометрии Лобачевского помогает взглянуть по-другому на окружающий нас мир, это интересный, необычный и прогрессивный раздел современной геометрии. Она дает материал для размышлений – в ней не все просто, не все ясно с первого взгляда, чтобы ее понять, нужно обладать фантазией и пространственным воображением.

Видео:Аналитическая геометрия: окружность и эллипсСкачать

Аналитическая геометрия: окружность и эллипс

ТЕОРЕТИЧЕСКАЯ КОНЦЕПЦИЯ ГЕОМЕТРИИ ЛОБАЧЕВСКОГО

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

1. Геометрия Лобачевского

Геометрия, как наука, впервые сформировалась в Древней Греции, когда геометрические закономерности и зависимости, найденные ранее опытным путем, были приведены в надлежащую систему и доказаны.

«Начала» — величайший памятник деятельности Евклида, в котором он собрал воедино всё то, что сделали его предшественники в области геометрии и «словесной алгебры». Но не только в этом его заслуга. Он также внёс много своего, нового, оригинального. Вплоть до XX века геометрию в школах преподавали по учебникам, в которые были включены евклидовы «Начала», переведённые и литературно обработанные.

Однако не всё написанное Евклидом удовлетворяло живших после него математиков. Он сделал попытку дать аксиоматическое изложение геометрии, т.е. сформулировать небольшое количество аксиом, из которых логически выводятся все теоремы геометрии. Список аксиом сразу же подвергся критике, некоторые из них оказались совсем не нужными, например, что «все прямые углы равны между собой».

Так называемый пятый постулат Евклида вызвал особые нарекания математиков. Именно эта аксиома, как показала историческое развитие науки, содержала в себе зародыш другой, неевклидовой геометрии.

Вот о чём говорится в пятом постулате: если две прямые a и b образуют при пересечении с третьей прямой односторонние внутренние углы α и β, сумма величин которых меньше двух прямых углов (т.е. меньше 180˚), то эти две прямые обязательно пересекаются, причём именно стой стороны от третьей прямой, по которую расположены углы α и β (составляющие вместе не менее 180˚).

Данное утверждение заметно сложнее остальных аксиом, поэтому пятый постулат часто заменяют равносильной аксиомой параллельности: через точку, лежащую вне данной прямой, можно провести не более одной прямой, лежащей с данной в одной плоскости и не пересекающей ее.

Попытки доказательства пятого постулата предпринимались в течение более чем двух тысячелетий сначала в Древней Греции, затем на средневековом Востоке, а позже в Западной Европе. Но неудачные попытки прямого доказательства направили ход мыслей ученных в иное русло. Пятый постулат решили заменить противоположным утверждением. Двери в новую геометрию приоткрыли такие ученые, как Джованни Саккери и Иоганн Ламберт, а их работу продолжили уже другие ученые, среди которых был выдающийся русский математик Николай Иванович Лобачевский.

Н. И. Лобачевский родился 20 ноября (1 декабря) 1792 года в Нижнем Новгороде. Окончил Казанскую гимназию в конце 1806 года, показав хорошие знания, особенно по математике и языкам — латинскому, немецкому, французскому. В проявившемся уже тогда его интересе к математике — большая заслуга преподавателя гимназии Г. И. Карташевского. В 15 лет поступил на физико-математический факультет Казанского университета. В это время там читал лекции по математике профессор И. Бартельс (1769-1836). Он обратил внимание на одаренного мальчика и начал заниматься с Лобачевским. В 19 лет Николай Иванович получил степень магистра, а в 23 года стал профессором. В течение 40 лет преподавал в Казанском университете, в том числе 19 лет руководил им в должности ректора; его активность и умелое руководство вывели университет в число передовых российских учебных заведений.

Еще до открытия неевклидовой геометрии Лобачевский написал в 1823г. учебное руководство, озаглавленное «Геометрия». В нем впервые со всей четкостью отражена так называемая теперь фузионистская точка зрения, согласно которой планиметрию не следует по евклидовой манере отрывать от стереометрии; наоборот, обе эти части геометрии нужно по возможности объединить, т.е. аналогичные начала планиметрии и стереометрии следует преподавать параллельно. Так рядом с кругом Лобачевский рассматривал шар и сферу; взаимное расположение прямых на плоскости он рассматривает совместно с взаимным расположением плоскостей в пространстве, почти одновременно трактует многоугольники и многогранники. Лишь в конце позапрошлого столетия итальянский математик Г. Веронезе также стал проводить в своих учебных руководствах по элементарной геометрии идею фузионизма.

Хотя Лобачевский занимался различными вопросами математики, мировую известность он получил как создатель новой геометрии. Лобачевский был с юношеских лет заинтересован аксиомой параллельных прямых. Сначала он пытался доказать пятый постулат, но постепенно пришел к выводу, что этого сделать нельзя, исходя из остальных аксиом. Тогда он заменил его на противоположное утверждение, которое сейчас называют аксиомой Лобачевского: через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её.

В разработанной Лобачевским новой геометрии многие утверждения звучат неожиданно. Вот некоторые из них:

Окружность эквидистанта и орицикл на плоскости лобачевского

1. Через точку А, не лежащую на прямой а, проходит бесконечное множество прямых, не пересекающих прямую а и лежащих с ней в одной плоскости.

2. Геометрическое место точек, равноудаленных от данной прямой, есть кривая линия.

3. Сумма углов треугольника – величина переменная. Она зависит от размера треугольника, но всегда меньше π.

4. Площадь треугольника вычисляется по формуле S = r 2 ( π – A – B – C ), где r – радиус кривизны пространства, а A , B , C – величины углов треугольника, выраженные в радианах

Остальные аксиомы Лобачевский оставил без изменения и на основе новой системы построил новую геометрию, отличную от евклидовой.

Можно считать, что неевклидова геометрия родилась в феврале 1826 года. Лобачевский выступил с докладом о своем открытии, но поддержки не нашёл. Математики его времени ещё не были подготовлены к мысли о возможности существования иной, неевклидовой геометрии. Учёный умер, так и не добившись признания своих идей. Впрочем, один человек понимал и поддерживал его работы.

Гениальный Гаусс, «король математиков» (судя по архиву, разобранному уже после смерти), ещё в 1815 г., за девять лет до сообщения Лобачевского, размышлял над аналогичными идеями. И тем не менее Гаусс, к мнению которого прислушивались все, не решился опубликовать свои работы. Однако Гаусс добился того, что Лобачевского избрали иностранным членом – корреспондентом Геттингенского учёного общества. Это единственная почесть, возданная Лобачевскому при жизни.

Видео:Неевклидова геометрия Лобачевского — Валентина КириченкоСкачать

Неевклидова геометрия Лобачевского — Валентина Кириченко

2. Факты геометрии Лобачевского

Ло­ба­чев­ский стро­ил свою гео­мет­рию, от­прав­ля­ясь от ос­нов­ных геометрических по­ня­тий и сво­ей ак­сио­мы, и до­ка­зы­вал тео­ре­мы геометрическим ме­то­дом, по­доб­но то­му как это де­ла­ет­ся в гео­мет­рии Евк­ли­да. Ос­но­вой слу­жи­ла тео­рия па­рал­лель­ных ли­ний, т. к. имен­но здесь на­чи­на­ет­ся от­ли­чие геометрии Лобачевского от гео­мет­рии Евк­ли­да. Все тео­ре­мы, не за­ви­ся­щие от ак­сио­мы о па­рал­лель­ных, об­щи обе­им гео­мет­ри­ям и об­ра­зу­ют т. н. аб­со­лют­ную гео­мет­рию, к ко­то­рой от­но­сят­ся, напр., тео­ре­мы о ра­вен­ст­ве тре­уголь­ни­ков. Вслед за тео­ри­ей па­рал­лель­ных строи­лись др. раз­де­лы, вклю­чая три­го­но­мет­рию и на­ча­ла ана­ли­ти­че­ской и диф­фе­рен­ци­аль­ной гео­мет­рий. Ни­же пе­ре­чис­ле­ны неск. фак­тов геометрии Лобачевского, ус­та­нов­лен­ных са­мим Н. И. Ло­ба­чев­ским, ко­то­рые от­ли­ча­ют её от гео­мет­рии Евк­ли­да. [12]

1) В геометрии Лобачевского не су­ще­ст­ву­ет по­доб­ных, но не рав­ных тре­уголь­ни­ков; тре­уголь­ни­ки рав­ны, ес­ли их уг­лы рав­ны. По­это­му су­ще­ст­ву­ет аб­со­лют­ная еди­ни­ца дли­ны, т. е. от­ре­зок, вы­де­лен­ный по сво­им свой­ст­вам, по­доб­но то­му как пря­мой угол вы­де­лен свои­ми свой­ст­ва­ми. Та­ким от­рез­ком мо­жет слу­жить, напр., сто­ро­на пра­виль­но­го тре­уголь­ни­ка с дан­ной сум­мой уг­лов.

2) Сум­ма уг­лов вся­ко­го тре­уголь­ни­ка мень­ше ππ и мо­жет быть сколь угод­но близ­кой к ну­лю. Это вид­но на мо­де­ли Пу­ан­ка­ре. Разность π−(α+β+γ)π−(α+β+γ), где α,β,γα,β,γ – уг­лы тре­уголь­ни­ка, про­пор­цио­наль­на его пло­ща­ди.

3) Че­рез точ­ку, не ле­жа­щую на дан­ной пря­мой, про­хо­дит бес­ко­неч­но мно­го пря­мых, не пе­ре­се­каю­щих прямую и на­хо­дя­щих­ся с ней в од­ной плос­ко­сти; сре­ди них есть две край­ние, ко­то­рые назы­ва­ют­ся па­рал­лель­ны­ми пря­мой в смыс­ле Ло­ба­чев­ско­го. В мо­де­лях Клей­на и Пу­ан­ка­ре они изо­бра­жа­ют­ся хор­да­ми (ду­га­ми ок­руж­но­стей), имею­щи­ми с хор­дой (ду­гой) об­щий ко­нец.

4) Ес­ли пря­мые име­ют об­щий пер­пен­ди­ку­ляр, то они бес­ко­неч­но рас­хо­дят­ся в обе сто­ро­ны от не­го. К лю­бой из них мож­но вос­ста­но­вить пер­пен­ди­ку­ля­ры, ко­то­рые не дос­ти­га­ют др. пря­мой.

5) Ли­ния рав­ных рас­стоя­ний от пря­мой есть не пря­мая, а осо­бая кри­вая, на­зы­вае­мая эк­ви­ди­стан­той или ги­пер­цик­лом.

6) Пре­дел бес­ко­неч­но рас­ту­щих ок­руж­но­стей есть не пря­мая, а осо­бая кри­вая, на­зы­вае­мая пре­дель­ной ок­руж­но­стью или ори­цик­лом.

7) Пре­дел сфер бес­ко­неч­но уве­ли­чи­ваю­ще­гося ра­диу­са есть не плос­кость, а осо­бая по­верх­ность – пре­дель­ная сфе­ра, или ори­сфе­ра; за­ме­ча­тель­но, что на ней име­ет ме­сто евк­ли­до­ва гео­мет­рия. Это по­слу­жи­ло Ло­ба­чев­ско­му ос­но­вой для вы­во­да фор­мул три­го­но­мет­рии.

8) Дли­на ок­руж­но­сти не про­пор­цио­наль­на ра­диу­су, а рас­тёт бы­ст­рее, чем ра­ди­ус.

9) Чем мень­ше об­ласть в про­стран­ст­ве или на плос­ко­сти Ло­ба­чев­ско­го, тем мень­ше мет­рические со­от­но­ше­ния в этой об­лас­ти от­ли­ча­ют­ся от со­от­но­ше­ний евк­ли­до­вой гео­мет­рии. Напр., чем мень­ше тре­уголь­ник, тем мень­ше сум­ма его уг­лов от­ли­ча­ет­ся от π, чем мень­ше ок­руж­ность, тем мень­ше от­но­ше­ние её дли­ны к ра­диу­су от­ли­ча­ет­ся от 2π, и т. п. Умень­ше­ние об­лас­ти фор­маль­но рав­но­силь­но уве­ли­че­нию еди­ни­цы дли­ны, по­это­му при без­гра­нич­ном уве­ли­че­нии еди­ни­цы дли­ны фор­му­лы Л. г. пе­ре­хо­дят в фор­му­лы евк­ли­до­вой гео­мет­рии. Евк­ли­до­ва гео­мет­рия есть в этом смыс­ле «пре­дель­ный» слу­чай гео­мет­рии Ло­ба­чев­ско­го.

Видео:2. Пятый постулат геометрииСкачать

2. Пятый постулат геометрии

3. Параллельные и сверхпараллельные прямые по Лобачевскому.

В 19 веке Николай Иванович Лобачевский, а также немец Гаусс и венгр Больяи, предложили геометрию, в которой имеются минимум 2 прямые коллинеарные заданной. Эти прямые пересекаются между собой и приближаются к заданной прямой с двух различных направлений. Место их пересечения с заданной прямой находится в бесконечно удаленной точке. Непересекающиеся, но не параллельные прямые называются сверхпараллельными прямыми.

Теорема 1. Два перпендикуляра к одной прямой – сверхпараллельны.

Теорема 2. Две сверхпараллельные прямые имеют общий перпендикуляр и притом единственный, он является кратчайшим расстоянием между этими прямыми.

Теорема 3. Если две прямые при пересечении с третьей образуют равные соответственные углы или равные накрест лежащие углы, или внутренние односторонние углы, в сумме составляющие 2d, то эти прямые сверхпараллельны [12].

Видео:НЕЕВКЛИДОВАЯ ГЕОМЕТРИЯ. оказывается это так просто...Скачать

НЕЕВКЛИДОВАЯ ГЕОМЕТРИЯ. оказывается это так просто...

4. Пучки прямых и кривых на плоскости Лобачевского

Совокупность всех прямых плоскости Лобачевского, пересекающихся в общей точке О, называется пучком прямых первого рода. Точка О называется центром пучка.

Совокупность прямых плоскости Лобачевского, параллельных между собой в одном направлении, называется пучком прямых второго рода. Говорят также, что этот пучок имеет бесконечно удаленный центр.

Совокупность прямых плоскости Лобачевского, перпендикулярных одной прямой а, называется пучком третьего рода. Прямая а называется осью пучка. Говорят, также, что пучок прямых третьего рода имеет идеальный центр.

Множество всех прямых плоскости Лобачевского, проходящих через одну точку, будем называть пучком пересекающихся прямых. Множество всех расходящихся прямых, имеющих один и тот же общий перпендикуляр будем называть пучком расходящихся прямых. И множество всех прямых, параллельных между собой в одном и том же направлении, назовем пучком параллельных прямых. Точка пересечения прямых, принадлежащих пучку пересекающихся прямых, называется его центром. Общий перпендикуляр прямых, принадлежащих пучку расходящихся прямых, носит название его базы.

Теорема о серединных перпендикулярах к сторонам треугольника Серединные перпендикуляры сторон треугольника на плоскости Лобачевского принадлежат либо пучку пересекающихся, либо пучку расходящихся, либо пучку параллельных прямых, при этом существуют треугольники, серединные перпендикуляры которых принадлежат каждому из трех типов пучков. [12]

Свойства траекторий пучков

1) Траектория пучка симметрична относительно любой своей оси. Под хордой траектории пучка будем понимать отрезок, соединяющий его две точки.

2) Серединный перпендикуляр к хорде траектории является осью пучка.

3) Пусть АВ – хорда траектории пучка. Тогда прямая АВ образует равные углы с лучами траектории, проведенными в точках А и В.

Видео:15. Проективная плоскостьСкачать

15. Проективная плоскость

5. Модели геометрии Лобачевского (модель Бельтрами-Клейна, модель Пуанкаре, модель в пространстве).

Окружность эквидистанта и орицикл на плоскости лобачевскогоПосле создания неевклидовой геометрии она долгое время не признавалась учеными. И первой, сразу возникшей проблемой, стало доказательство непротиворечивости геометрии Лобачевского. Первые исследования по вопросу непротиворечивости геометрии Лобачевского были проведены итальянским математиком Бельтрами (1835-1900). В 1868г. он построил поверхность в евклидовом пространстве – псевдосферу которая получается вращением трактрисы вокруг оси OZ. Псевдосфера – это поверхность постоянной отрицательной кривизны. [12]

Модель Пуанкаре плоскости Лобачевского

Анри Пуанкаре в 1882г. построил конформное отображение плоскости Лобачевского на открытую полуплоскость Евклида, тем самым, получив новую модель плоскости Лобачевского.

Окружность эквидистанта и орицикл на плоскости лобачевскогоРоль прямых плоскости Лобачевского (неевклидовых прямых) будут выполнять:

1) евклидовы полупрямые, перпендикулярные прямой l (рис.72) без точки пересечения с l .

2) евклидовы полуокружности, перпендикулярные абсолюту, т.е. с центром на прямой l.

На приведенном ниже рисунке 1 изображены четыре модели геометрии Лобачевского: модель Пуанкаре в верхней полуплоскости, модель Пуанкаре в круге (верхний ряд), модель Клейна (под моделью Пуанкаре в круге) и модель на верхней полусфере. Также в каждой из моделей нарисована кратчайшая сеть, соединяющая три заданных точки, и проведены некоторые дополнительные построения. Соответствие между объектами задано цветом. Так прямые в моделях Пуанкаре (верхний ряд) представляют собой окружности, перпендикулярные так называемому абсолюту – прямой или окружности, ограничивающей модель. В модели Клейна прямые – это прямолинейные хорды. Наконец, в модели верхней полусферы прямые представляют собой параллели, перпендикулярные абсолюту – граничному экватору. [12]

Окружность эквидистанта и орицикл на плоскости лобачевского

Видео:Rotation in horocyclic coordinatesСкачать

Rotation in horocyclic coordinates

ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ГЕОМЕТРИИ ЛОБАЧЕВСКОГО

Видео:Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математикаСкачать

Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математика

1. Применение в повседневной жизни.

Сам Лобачевский применял неевклидову геометрию для вычисления определенных интегралов при нахождении длины, площади или объема фигуры в своей геометрии. Но применение новых знаний не ограничилось математикой. Была установлена связь геометрии Лобачевского с физикой, а именно кинематикой – специальной (частной) теории относительности. Эта связь основана на том, что равенство,
выражающее закон распространения света x 2 + y 2 + z 2 = c 2 t 2 при делении на t 2 , даёт Окружность эквидистанта и орицикл на плоскости лобачевского– уравнение сферы в пространстве с координатами vx , vy , vz – составляющими скорости по осям х, у, z (в «пространстве скоростей»). [ 6 ] Во-вторых, геометрия Лобачевского используется в астрономии: при описании голографической Вселенной или черных дыр. [ 7 ]

Интересно применение в игровой индустрии: игра «Жизнь» (модель зарождения жизни во «Вселенной») [ 9 ] или HyperRogue (гибрид паззла и рогалика на гиперболической плоскости). [ 3 ]

Применяется геометрия Лобачевского в живописи. В 2013 году в московском Музее современного искусства прошла выставка Маурица Корнелиса Эшера. Нидерландский художник-график известен благодаря своим работам, где он использует различные математические понятия, приемы и теории: пределы, ленты Мебиуса, геометрию Лобачевского. Заинтересовали работы-иллюзии и орнаменты. [ 2 ]

Окружность эквидистанта и орицикл на плоскости лобачевского Окружность эквидистанта и орицикл на плоскости лобачевского

В 2015 году в Центральном зале центра дизайна ARTPLAY прошла еще одна не менее интересная выставка «Ван Гог. Ожившие полотна (Van Gogh Alive)». На его картинах отсутствует ровный фон, геометрия вангоговского пространства подчиняется законам, которые только предстояло открыть учёным 19-го столетия. Более того, во время просмотра посетители слушали классическую музыку. [ 1 ]

Окружность эквидистанта и орицикл на плоскости лобачевского

Использование геометрии Лобачевского в искусстве не ограничивается живописью. Творчество Фрэнка Гери тому доказательство. Он продемонстрировал возможности современных технологий проектирования. Его здания похожи друг на друга словно детали «конструктора из титана», но «мнет и гнет» он их каждый раз по-другому. В этом заключается уникальность дизайна построенных объектов. [ 11 ]

Окружность эквидистанта и орицикл на плоскости лобачевского Окружность эквидистанта и орицикл на плоскости лобачевского

Спутниковые навигационные системы (GPS и ГЛОНАСС) состоят из двух частей: орбитальная группировка из 24-29 спутников, равномерно расположенных вокруг Земли, и управленческий сегмент на Земле, обеспечивающий синхронизацию времени на спутниках и использование ими единой системы координат. На спутниках установлены очень точные атомные часы, а в приемниках (GPS-навигаторах) обычные, кварцевые. В приемниках также есть информация о координатах всех спутников в любой момент времени. Спутники с маленькими интервалами передают сигнал, содержащий данные о времени начала передачи. Получив сигнал от не менее четырех спутников, приемник может скорректировать свои часы и вычислить расстояния до этих спутников по формуле ((время отправки сигнала спутником) – (время приема сигнала от спутника)) х (скорость света) = (расстояние до спутника). Вычисленные расстояния также корректируются по встроенным в приемник формулам. Далее, приемник находит координаты точки пересечения сфер с центрами в спутниках и радиусами, равными вычисленным расстояниям до них. Очевидно, это будут координаты приемника.

Формулы геометрии Лобачевского также используются в физике высоких энергий, а именно, в расчетах ускорителей заряженных частиц. Гиперболические пространства (т.е. пространства, в которых действуют законы гиперболической геометрии) встречаются и в самой природе. Приведем побольше примеров:

Геометрия Лобачевского проглядывается в структурах кораллов, в организации клеточных структур у растений, в архитектуре, у некоторых цветков и так далее. Кстати, если вы помните в прошлом выпуске мы рассказывали о шестиугольниках в природе, так вот, в гиперболической природе альтернативой являются семиугольники, которые также широко распространены

Видео:10 класс, 12 урок, Числовая окружность на координатной плоскостиСкачать

10 класс, 12 урок, Числовая окружность на координатной плоскости

2. Примеры решения задач с помощью геометрии Лобачевского.

Два спутника связи запустили на орбиту. Чтобы понять, пересекаются ли их зоны покрытия, необходимо доказать, что любые две прямые пересекаются.

В сферической геометрии окружность максимального радиуса называется «прямой» линией.

Окружность эквидистанта и орицикл на плоскости лобачевского Дано:
сфера(R;О),
две прямые на сфере

Доказать:
любые прямые пересекаются

Вторая «прямая» полностью лежит в одной из полусфер, потому что первая «прямая» делит сферу на две половины.

Поэтому её радиус (r) вторая «прямая» не является прямой => любые две «прямые» пересекаются на сфере, что и требовалось доказать.

Из-за загрязнения окружающей среды и появления озоновых дыр ученые прогнозировали на западном полушарии Земли потепление. Они описали его приблизительные размеры с использованием параллель и меридиан. Найти сумму углов предполагаемой зоны потепления, чтобы в дальнейшем Окружность эквидистанта и орицикл на плоскости лобачевскоговысчитать ее точную площадь.

Найти:
Сумму углов ΔABC, образованного двумя меридианами и параллелью.

AC перпендикулярна DF; AB перпендикулярна DF (как меридианы) => угол β и угол α = 90° =>

ΔABC = угол α + угол β + угол 1 = (90°·2) + 45°= 225°.

Окружность эквидистанта и орицикл на плоскости лобачевскогоЗа последние 5 лет одним из самых крупнейших извержений вулкана было извержение Мерапи на острове Ява. В результате извержения, продолжавшегося около двух недель, потоки лавы распространились на пять километров и преобладал юго-восточный ветер. Найти сумму углов территории, пострадавшей от извержения, чтобы вулканологи смогли высчитать ее площадь.

Дано:
сфера(R;О),
сфера разбита на 8 частей (равных) тремя ортогональными прямыми; каждая часть является сферическим треугольником.

Найти:
Сумму углов ABC.

Так как стороны треугольника ортогональны, углы треугольника по 90° => сумма углов ΔABC = 90°· 3 = 270°.

В модели геометрии Лобачевского в верхней полуплоскости найти радиус (в смысле геометрии Лобачевского) окружности, описанной около треугольника ABC, где A = (2; 6),

Верно ли, что около любого треугольника на плоскости Лобачевского

можно описать окружность? Верно ли это для сферической геометрии?

Нетрудно заметить, что любая окружность в модели геометрии Лобачевского в верхней полуплоскости является окружностью и в смысле евклидовой геометрии, но не наоборот. Например, если она пересекает Абсолют (т.е. ось абсцисс) под прямым углом, то она является прямой с точки зрения геометрии Лобачевского. Поэтому, для того, чтобы понять, что в геометрии Лобачевского не около любого треугольника можно описать окружность, достаточно взять какой-нибудь треугольник в верхней полуплоскости, описанная окружность которого выходит за ее пределы.

Легко проверить, что евклидова окружность, описанная около треугольника ABC, задается уравнением:

(x — 7) 2 + (y — 6) 2 = 25;

Очевидно, что она будет также и описанной окружностью с точки зрения геометрии Лобачевского, поскольку она целиком содержится в верхней полуплоскости. Найдем теперь ее центр. Пусть M = (7; 11) и N = (7; 1) — две диаметрально противоположные точки этой окружности, найдем середину O отрезка MN. Естественно выбирать именно этот диаметр рассматриваемой окружности, поскольку в метрики

Лобачевского совсем просто вычисляется расстояние между точками с одинаковой ординатой:

d (( x 0 ; y 1 ); ( x 1 ; y 2 )) = Окружность эквидистанта и орицикл на плоскости лобачевского

Пусть O = (7; y), тогда для радиуса r нашей окружности имеют место равенства:

Окружность эквидистанта и орицикл на плоскости лобачевского

откуда Окружность эквидистанта и орицикл на плоскости лобачевскогои, соответственно, Окружность эквидистанта и орицикл на плоскости лобачевского

Видео:#221. ЛЮТАЯ ДИЧЬ с IMO (математика)Скачать

#221. ЛЮТАЯ ДИЧЬ с IMO (математика)

Тесты

В каждом задании выберите один из четырёх вариантов ответа.

1. Авторы неевклидовой геометрии

A. Лобачевский и Я. Больяи

B. Лобачевский, Больяи и Гаусс

C. Ламберт и Гаусс

D. Лобачевский и Ламберт

2. В геометрии Лобачевского сумма углов любого треугольника

A. меньше Окружность эквидистанта и орицикл на плоскости лобачевского

B. больше Окружность эквидистанта и орицикл на плоскости лобачевского

C. больше Окружность эквидистанта и орицикл на плоскости лобачевского

D. больше Окружность эквидистанта и орицикл на плоскости лобачевского, но меньше Окружность эквидистанта и орицикл на плоскости лобачевского

3.В геометрии Лобачевского имеет место четвертый признак равенства треугольников:

A. если углы одного треугольника соответственно равны углам другого треугольника, то эти треугольники равны.

B. две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу ними другого треугольника

C. сторона и два прилежащих к ней угла одного треугольника равны соответственно стороне и двум прилежащим к ней углам другого треугольника

D. три стороны одного треугольника равны соответственно трем сторонам другого треугольника

4. Выберите свойства параллельных прямых на плоскости Лобачевского:

A. две параллельные прямые на плоскости Лобачевского имеют общий перпендикуляр

B. понятие параллельных прямых на плоскости Лобачевского транзитивно в данном направлении

C. понятие параллельных прямых на плоскости Лобачевского симметрично в данном направлении

D. расстояние между параллельными прямыми бесконечно убывает в направлении параллельности и неограниченно растет в противоположном направлении

5. Выберите свойства свехпараллельных прямых на плоскости Лобачевского:

A. две параллельные прямые на плоскости Лобачевского имеют общий перпендикуляр

B. понятие параллельных прямых на плоскости Лобачевского транзитивно в данном направлении

C. понятие параллельных прямых на плоскости Лобачевского симметрично в данном направлении

D. расстояние между параллельными прямыми бесконечно убывает в направлении параллельности и неограниченно растет в противоположном направлении

6. Если прямые Окружность эквидистанта и орицикл на плоскости лобачевского Окружность эквидистанта и орицикл на плоскости лобачевского Лобачевского составляют с третьей прямой Окружность эквидистанта и орицикл на плоскости лобачевского соответственно равные углы, то прямые Окружность эквидистанта и орицикл на плоскости лобачевского Окружность эквидистанта и орицикл на плоскости лобачевского

A. прямые Окружность эквидистанта и орицикл на плоскости лобачевского Окружность эквидистанта и орицикл на плоскости лобачевскогопараллельны

B. прямые Окружность эквидистанта и орицикл на плоскости лобачевского Окружность эквидистанта и орицикл на плоскости лобачевскогосверхпараллельны

C. прямые Окружность эквидистанта и орицикл на плоскости лобачевского Окружность эквидистанта и орицикл на плоскости лобачевскогопересекаются

D. прямые Окружность эквидистанта и орицикл на плоскости лобачевского Окружность эквидистанта и орицикл на плоскости лобачевскогоравноудалены от Окружность эквидистанта и орицикл на плоскости лобачевского

7. На плоскости Лобачевского существует

A. три вида пучков прямых: пучок параллельных прямых в заданном направлении; пучок пересекающихся прямых; пучок сверхпараллельных прямых;

B. два вида пучков прямых: пучок параллельных и пучок пересекающихся прямых;

C. два вида пучков прямых: пучок параллельных и пучок сверхпараллельных прямых;

D. два вида пучков прямых: пучок пересекающихся и пучок сверхпараллельных прямых;

8. Плоскость Лобачевского реализуется в евклидовом пространстве

A. только в модели Пуанкаре на полуплоскости;

B. в модели Пуанкаре в круге, в модели Пуанкаре на полуплоскости; в модели Бельтрами –Клейна в круге; в модели на псевдосфере; в модели на одной полости двуполостного гиперболоида;

C. в модели Бельтрами –Клейна в круге; в модели на псевдосфере; в модели на одной полости двуполостного гиперболоида;

D. только в модели на псевдосфере;

9. В какой из геометрий верно утверждение: существует прямая линия, перпендикулярная к одной из двух параллельных прямых и параллельная к другой?

A. только в геометрии Евклида

B. только в абсолютной геометрии

C. только в геометрии Лобачевского

D. только в геометрии Римана

10. В какой из геометрий не существует понятия «подобие фигур»?

📸 Видео

Неевклидова геометрия. Часть 1. История математикиСкачать

Неевклидова геометрия. Часть 1. История математики

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Неевклидова геометрия. Часть 2. История математикиСкачать

Неевклидова геометрия. Часть 2. История математики

17. Модель Пуанкаре Лобачевского в кругеСкачать

17. Модель Пуанкаре Лобачевского в круге

Модель Клейна Геометрии ЛобачевскогоСкачать

Модель Клейна Геометрии Лобачевского
Поделиться или сохранить к себе: