O центр окружности oa ob oc радиусы

Видео:Точка O – центр окружности, на которой лежат точки ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Точка O – центр окружности, на которой лежат точки ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

Радиус и диаметр окружности

O центр окружности oa ob oc радиусы

Окружность — это фигура в геометрии, которая состоит
из множества точек, расположенных на одинаковом
расстоянии от заданной точки (центра окружности).

Радиус окружности — это отрезок, который соединяет
центр окружности с какой-либо точкой окружности.

Диаметр окружности — это отрезок, который соединяет
две любые точки окружности, причем сам отрезок
должен проходить через центр окружности

Eсли от центра окружности провести
отрезки ко всем точкам окружности, то они будут иметь
одинаковую длину, то есть равны. В математике
такие отрезки называют радиусами.

Все радиусы окружности, как и диаметры окружности,
равны между собой, имеют одинаковую длину.

O центр окружности oa ob oc радиусы

На рисунке выше изображена окружность, с центром в точке O.
OA = OB = OC — радиусы окружности;
BC = CO + OB — диаметр окружности;

Радиус окружности принято обозначать маленькой либо большой буквой, r или R.
Диаметр окружности обозначают буквой D.

Диаметр окружности условно состоит из двух
радиусов и равен длинам этих радиусов.

Длину радиуса окружности можно найти через диаметр окружности.
Для этого достаточно разделить на два длину диаметра окружности,
получившееся число и будет радиусом.

Формула радиуса окружности через диаметр:

Формула диаметра окружности через радиус:

Также, окружность, может быть вписанной в фигуру, описанной
около фигуры; или вообще может быть не вписана и не описана.
Формула радиуса окружности зависит от того находится фигура
внутри окружности, или окружность находится около фигуры.

Существует радиус вписанной окружности
и радиус описанной окружности.

Формулы радиуса вписанной и радиуса описанной окружностей
зависят в первую очередь от геометрической фигуры.

Радиус вписанной окружности — это радиус окружности,
которая вписана в геометрическую фигуру.

Радиус описанной окружности — это радиус окружности,
которая описана около геометрической фигуры.

Видео:Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Математика

Окружность есть такая плоская кривая, у которой все точки находятся на равном расстоянии от одной точки, лежащей внутри ее и называемой центром.

Круг. Кругом называется часть плоскости, ограниченная окружностью.

Радиус. Радиусом называется отрезок, соединяющий центр с какой-нибудь точкой окружности. Радиус есть расстояние точки окружности от центра.

Из самого определения окружности следует, что все ее радиусы равны.

O центр окружности oa ob oc радиусы

На чертеже 86 кривая линия BCDAEB есть окружность, O ее центр, отрезки OA, OB, OC — радиусы. Эти отрезки равны

Диаметр. Отрезок, проходящий через центр от одной точки окружности до другой, называется диаметром.

Всякий диаметр состоит из двух радиусов, а так как все радиусы равны, то следовательно и все диаметры равны.

Дуга есть часть окружности.

Слово дуга иногда обозначают знаком ◡, так что дугу BC изображают письменно: ◡BC.

Хорда. Отрезок, соединяющий две какие-нибудь точки окружности, называется хордой. Хорда есть прямая, стягивающая две точки дуги.

На чертеже 86 линия AB есть диаметр, часть окружности BC есть дуга, прямая CD есть хорда.

Сегмент есть часть плоскости, содержащийся между дугой и хордой.

Сектор есть часть плоскости, содержащийся между двумя радиусами и дугой круга.

На чертеже 86 площадь COB есть сектор, а CKD сегмент.

Касательная есть прямая, имеющая с окружностью только одну общую точку, которая называется точкой касания.

Углом при центре называется угол, имеющий вершину в центре. На чертеже 86 прямая FG есть касательная, а E точка касания.

Теорема 55. Прямая может пересечь окружность только в двух точках.

Доказательство. Если бы прямая AB кроме двух точек M и N (черт. 87) имела бы еще третью точку пересечения L, то три точки окружности M, N, L, по свойству окружности, были бы на равном расстоянии от центра O, следовательно, три отрезка MO, NO, LO были бы равны: MO = NO = LO.

O центр окружности oa ob oc радиусы

Если же NO = LO, то вышло бы, что равные наклонные находятся на неравных расстояниях от перпендикуляра OQ, что противоречит свойству косвенных, следовательно, третьей точки пересечения быть не может (ЧТД).

Теорема 56. Диаметр делит окружность и круг на две равные части.

Доказательство. Перегнем верхнюю часть круга около диаметра CD (черт. 87) до совпадения ее с нижней частью, тогда все точки верхней совпадут с точками нижней части окружности, ибо в противном случае не все точки окружности находились бы на равном расстоянии от центра.

Видео:Окружность и круг, 6 классСкачать

Окружность и круг, 6 класс

Зависимость между углами, дугами и хордами

Теорема 57. В двух равных кругах равным углам при центре соответствуют равные дуги.

Дано. Две окружности описаны (черт. 88) одними и теми же радиусами и углы при центре равны:

Требуется доказать, что ◡AB = ◡A’B’.

O центр окружности oa ob oc радиусы

Доказательство. Наложим круг O’ на круг O так, чтобы центр O’ совпал с центром O и сторона OA со стороною O’A’. Точка A’ по равенству радиусов совпадает с точкой A. По равенству углов A’O’B’ и AOB отрезок O’B’ пойдет по отрезку OB и по равенству радиусов точка B’ упадет в точку B. Две крайние точки дуги A’B’ совпадут с двумя крайними точками дуги AB, следовательно, и все промежуточные точки дуги A’B’ совпадут с промежуточными точками дуги AB, так как окружность O’ совпадает с окружностью O, ибо они описаны равными радиусами.

Теорема 58 (обратная 57). Равным дугам соответствуют равные углы.

Дано. Дуги AB и A’B’ равны (◡AB = ◡A’B’) (черт. 88).

Требуется доказать, что ∠AOB = ∠A’O’B’.

Доказательство. Наложим сектор A’O’B’ на сектор AOB так, чтобы отрезок O’A’ совпал с отрезком OA. Дуга A’B’ упадет на дугу AB и B’ упадет в B. Отрезок B’O’ совпадет с отрезком BO и угол AOB совпадет с углом A’O’B’, следовательно,

Теорема 59. Диаметр больше всякой хорды.

Даны диаметр CD и хорда MN (черт. 87).

Требуется доказать, что CD > MN.

Доказательство. Проведем радиусы MO и NO. Ломаная линия MON больше прямой MN

MON > MN или MO + ON > MN

Так как MO = CO, NO = OD, то заменяя MO и NO равными им величинами, получим неравенства:

CO + OD > MN или CD > MN (ЧТД).

Теорема 60. Равные хорды стягивают равные дуги.

Даны равные хорды AB и CD (черт. 89) (AB = CD).

Требуется доказать, что ◡AB = ◡CD.

O центр окружности oa ob oc радиусы

Доказательство. Соединив точки A, B, C, D с центром, имеем

OA = OC и OB = OD как радиусы, AB = CD по условию.

Следовательно, ∠AOB = ∠COD, откуда ◡AB = ◡CD (ЧТД).

Теорема 61 (обратная 60). Равные дуги стягиваются равными хордами.

Дано. Дуги AB и CD равны (черт. 89) (◡AB = ◡CD).

Требуется доказать, что AB = CD.

Доказательство. Два треугольника AOB и COD равны, ибо OA = OC и OB = OD как радиусы, ∠AOB = ∠COD ибо по условию дуги AB и CD равны, а потому и углы равны (теорема 58). Следовательно, AB = CD (ЧТД).

Теорема 62. Если дуги меньше полуокружности, то против большей дуги лежит большая хорда.

Дано. Дуга BD больше дуги AC (черт. 90) (◡BD > ◡AC).

Требуется доказать, что BD > AC.

O центр окружности oa ob oc радиусы

Доказательство. Соединим точки A, C, B, D с центром O. В двух треугольниках AOC и BOD OA = OB и OC = OD как радиусы, BOD > AOC. Следовательно, BD > AC (теорема 23) (ЧТД).

Теорема 63 (обратная 62). Против большей хорды лежит большая дуга.

Дано. Хорда BD больше хорды AC (черт. 90) (BD > AC).

Требуется доказать, что ◡BD > ◡AC.

Доказательство. В двух треугольниках AOC и BOD OA = OB и OC = OD как радиусы, BD > AC по условию. Поэтому ∠BOD > ∠AOC (теорема 24). Следовательно, ◡BD > ◡AC (ЧТД).

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Взаимное отношение хорд и их расстояний от центров

Теорема 64. Радиус, перпендикулярный к хорде, делит как хорду так и дугу пополам.

Радиус OC перпендикулярен к хорде AB (черт. 91).

Требуется доказать, что AD = BD и ◡AC = ◡CB.

O центр окружности oa ob oc радиусы

Доказательство. Соединим точки A и B с центром O. Равные наклонны OA и OB находятся на равных расстояниях от перпендикуляра OC, следовательно, AD = DB.

Если же перпендикуляр CD восставлен из середины отрезка AB, то его точка C находится на равном расстоянии от концов перпендикуляра, поэтому хорды AC и CB равны, а следовательно,

т. е. дуга AB делится перпендикуляром OC пополам (ЧТД).

Следствие. Перпендикуляр, восставленный из середины хорды, проходит через центр.

Доказательство. Так как центр находится на равном расстоянии от концов хорды, то он находится на перпендикуляре, восставленном из середины хорды.

Теорема 65. Равные хорды находятся на равном расстоянии от центра.

Дано. Хорды AB и CD равны: AB = CD (черт. 92).

Требуется доказать, что их расстояния от центра равны, т. е.

O центр окружности oa ob oc радиусы

Доказательство. Соединив точки A и C с центром O, имеем два равных прямоугольных треугольника AEO и COF, ибо OA = OC как радиусы, AE = CF как половины равных хорд (теорема 64). Следовательно,

Теорема 66 (обратная 65). На равных расстояниях от центра находятся равные хорды.

Дано. Расстояния хорд AB и CD от центра равны, т. е.

Требуется доказать, что AB = CD.

Доказательство. Два прямоугольных треугольника AEO и COF равны, ибо имеют по равной гипотенузе и равному катету. Действительно, OE = OF по условию, OA = OC как радиусы, следовательно, AE = CF или ½AB = ½CD, откуда

Теорема 67. Большая хорда к центру ближе меньшей.

Дано. Хорда AB больше хорды AC (черт. 93), т. е. AB > AC.

Требуется доказать, что OD ⊥ AO.

Требуется доказать, что AF касательная к окружности.

O центр окружности oa ob oc радиусы

Доказательство. Всякая другая точка B перпендикуляра AB находится на расстоянии BO большем AO, ибо наклонная больше перпендикуляра, следовательно точка B находится вне окружности. Таким образом прямая AB имеет с окружностью только одну общую точку A, следовательно, она будет касательной (ЧТД).

Теорема 69 (обратная 68). Касательная к окружности, проведенная в конец радиуса, перпендикулярна к радиусу.

Дано. Прямая AF касается окружности в точке A (черт. 94).

Требуется доказать, что AF ⊥ OA.

Доказательство. Прямая AB как касательная имеет с окружностью только одну общую точку A. Всякая другая точка B лежит вне окружности, следовательно, всякий отрезок OB больше OA. Таким образом, отрезок OA есть кратчайшее расстояние точки O от AB, следовательно, OA ⊥ AB (ЧТД).

Теорема 70. Между параллельными хордами находятся равные дуги.

Дано. Хорды AB и CD параллельны: AB || CD (черт. 95).

Требуется доказать, что ◡AC = ◡BD.

O центр окружности oa ob oc радиусы

Доказательство. a) Из центра окружности O опустим перпендикуляр OM на хорду AB, тогла отрезок OM перпендикулярен и к хорде CD.

Вычитая второе равенство из первого, получим:

◡CM — ◡AM = ◡MD — ◡MB или
◡AC = ◡BD.

b) Если параллельные хорды AB и EF (черт. 95) лежат по обе стороны центра, то, продолжив прямую OM до пересечения с окружностью в точке G, имеем:

Так как полуокружности MAG и MBG равны

MAG = MBG, то следовательно,
MAG — ◡MA — ◡GE = MBG — ◡MB — ◡GF
или ◡AE = ◡BF (ЧТД).

Видео:№203. Через центр О окружности, вписанной в треугольник ABC, проведена прямая ОK, перпендикулярнаяСкачать

№203. Через центр О окружности, вписанной в треугольник ABC, проведена прямая ОK, перпендикулярная

Относительное положение двух окружностей

Концентрические и эксцентрические круги. Два круга называются концентрическими, когда они имеют один общий центр, и эксцентрическими, когда из центры не совпадают.

На чертеже 96 представлены круги концентрические и на чертежах 97, 98, 99, 100 и 101 круги эксцентрические.

O центр окружности oa ob oc радиусы

Внешние и внутренние круги. Круги называются внешними, когда все точки одного лежат вне площади другого круга, и внутренними, когда все точки одного лежат внутри площади другого круга.

На чертежах 97 и 99 изображены круги внешние, на чертежах 96, 98 и 100 круги внутренние.

Касательные окружности. Окружности называются касательными, когда они имеют одну общую точку.

O центр окружности oa ob oc радиусы

Общая точка двух касательных окружностей называется их точкой соприкосновения. Соприкосновение называется внешним, когда два круга, имея общую точку, лежат один вне другого, и внутренним, когда один круг лежит внутри другого. На черт. 99 имеем случай внешнего, а на чертеже 100 случай внутреннего соприкосновения.

Пересекающиеся окружности. Окружности называются пересекающимися, когда они имеют две общие точки (черт. 101).

O центр окружности oa ob oc радиусы

Линия центров есть отрезок, соединяющий центры двух кругов.

Теорема 71. Две окружности, имеющие общую точку на линии центров, другой общей точки иметь не могут.

Дано. Две окружности с центрами O и O’ имеют общую точку A (черт. 102).

Требуется доказать, что другой общей точки у них нет.

O центр окружности oa ob oc радиусы

Доказательство. Положим, существует другая общая точка B, следовательно,

OB = OA и O’B = O’A.

Складывая эти равенства, мы имели бы

OB + O’B = OA + O’A или
OB + O’B = OO’

равенство несообразное, ибо ломаная не может равняться прямой.

Итак, другой общей точки быть не может (ЧТД).

Теорема 72. Две окружности, имеющие одну общую точку вне линии центров, имеют и другую общую точку по другую сторону линии центров.

Дано. Две окружности, центры которых O и O’, имеют общую точку A вне отрезка OO’ (черт. 103), соединяющей центры.

Требуется доказать, что существует и другая общая точка по другую сторону центров.

O центр окружности oa ob oc радиусы

Доказательство. Из точки A опустим на линию центров перпендикуляр AG и на продолжении его отложим отрезок BG, равный AG.

Докажем, что точка B будет другая общая точка. Точка B лежит на окружности O, ибо AO = BO как равные наклонные, находящиеся на равных расстояниях AG и BG от перпендикуляра OO’. Точка B лежит на окружности O’, ибо AO’ = BO’ как равные наклонные, находящиеся на равных расстояниях AG и BG от перпендикуляра OO’, следовательно, точка B есть другая общая точка (ЧТД).

Теорема 73. Если две окружности пересекаются в двух точках, то линия центров перпендикулярна и делит пополам хорду, соединяющую точки пересечения.

Дано. Точки A и B есть точки пересечения (черт. 104) двух окружностей.

Требуется доказать, что AG = BG и AB ⊥ OO’.

O центр окружности oa ob oc радиусы

Доказательство. Треугольники OAO’ и OBO’ равны, ибо OO’ сторона общая.

OA = OB как радиусы окружности O.

O’A = O’B как радиусы окружности O’.

Треугольники AOG и BOG равны, ибо OG сторона общая, AO = BO как радиусы, ∠AOG = ∠BOG по доказанному. Следовательно, AG = BG (хорда AB делится линией центров пополам), ∠AGO = ∠BGO (хорда AB перпендикулярна к линии центров).

Таким образом, хорда AB делится пополам и перпендикулярна к линии центров OO’ (ЧТД).

Видео:Уравнение окружности (1)Скачать

Уравнение окружности (1)

Расстояние между центрами окружностей

1. Если две окружности пересекаются в двух точках, расстояние центров меньше суммы и больше разности радиусов.

Действительно, с одной стороны (черт. 104)

2. Если две окружности касаются, расстояние центров равно сумме радиусов, если соприкосновение внешнее, и разности радиусов, если соприкосновение внутреннее.

O центр окружности oa ob oc радиусы

Из чертежа 105 видно, что

а из чертежа 106

3. Если одна окружность лежит вне другой, расстояние центров больше суммы радиусов.

Из чертежа 107 видно, что

4. Если окружность лежит одна внутри другой, расстояние центров меньше разности радиусов.

Действительно, из чертежа 108 видно, что

Для того, чтобы имело место равенство, нужно дробь во второй части неравенства (1) увеличить. Для этого следует ее знаменатель уменьшить.

Положим, мы нашли, что имеет место равенство

Разделим дугу AB на равное число таких частей, чтобы каждая часть была менее GF; тогда одна из точек деления i упадет в промежутке между G и F. Дуги AB и Ai соизмеримы, следовательно,

Разделив равенства (b) на (a), находим

равенство несообразное, ибо первая часть его больше, а вторая меньше 1, следовательно, допущение (1) не имеет места.

AOB/AOF ∆ ObC
∆ ObD = ∆ OcD
∆ OcA = ∆ OdA
∆ OdB = ∆ OaB

ибо они, будучи прямоугольными, имеют по равной гипотенузе OC, OD, OA, OB и равным катетам, следовательно,

aC = bC
aB = dB
cA = dA
cD = bD

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

O центр окружности oa ob oc радиусы

Радиус OB окружности с центром в точке O пересекает хорду AC в точке D и перпендикулярен ей. Найдите длину хорды AC, если BD = 1 см, а радиус окружности равен 5 см.

Найдем отрезок DO: DO = OB − BD = 5 − 1 = 4. Так как OB перпендикулярен AC, треугольник AOD — прямоугольный. По теореме Пифагора имеем: O центр окружности oa ob oc радиусы. Треугольник AOC — равнобедренный так как AO = OC = r, тогда AD = DC. Таким образом, AC = AD·2 = 6.

Найдите величину (в градусах) вписанного угла α, опирающегося на хорду AB, равную радиусу окружности.

Проведем радиусы OA и OB. Так как по условию задачи хорда AB равна радиусу, то треугольник AOB — равносторонний, следовательно, все его углы равны 60°. Угол AOB — центральный и равен 60° Угол ACB — вписанный и опирается на ту же дугу, что и угол AOB. Таким образом, O центр окружности oa ob oc радиусы

К окружности с центром в точке О проведены касательная AB и секущая AO. Найдите радиус окружности, если AB = 12 см, AO = 13 см.

Соединим отрезком точки O и B; полученный отрезок — радиус, проведённый в точку касания, поэтому OB перпендикулярен AB. Задача сводится к нахождению катета OB прямоугольного треугольника AOB. Из теоремы Пифагора:

O центр окружности oa ob oc радиусы

В треугольнике ABC угол C равен 90°, AC = 30 , BC = O центр окружности oa ob oc радиусыНайдите радиус окружности, описанной около этого треугольника.

Вписанный прямой угол опирается на диаметр окружности, поэтому радиус окружности, описанной вокруг прямоугольного треугольника, равен половине гипотенузы. По теореме Пифагора имеем:

O центр окружности oa ob oc радиусы

Длина хорды окружности равна 72, а расстояние от центра окружности до этой хорды равно 27. Найдите диаметр окружности.

Проведём построение и введём обозначения, как показано на рисунке. Рассмотрим треугольники AOH и HOB, они прямоугольные, OH — общая, AO и OB равны как радиусы окружности, следовательно, эти треугольники равны, откуда O центр окружности oa ob oc радиусыПо теореме Пифагора найдём радиус окружности:

O центр окружности oa ob oc радиусы

Диаметр равен двум радиусам, следовательно, O центр окружности oa ob oc радиусы

📽️ Видео

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Касательные к окружности с центром O в точках A и B ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Касательные к окружности с центром O в точках A и B ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

2038 центр окружности описанной около треугольника ABC лежит на стороне ABСкачать

2038 центр окружности описанной около треугольника ABC лежит на стороне AB

2020 точка О центр окружности на которой лежат точки A B и C известно что Угол ABC равен 62 градусаСкачать

2020 точка О центр окружности на которой лежат точки A B и C известно что Угол ABC равен 62 градуса

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Задача 6 №27862 ЕГЭ по математике. Урок 105Скачать

Задача 6 №27862 ЕГЭ по математике. Урок 105

Задача на нахождение длины хорды окружностиСкачать

Задача на нахождение длины хорды окружности

Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

№968. Напишите уравнение окружности с центром в точке А(0; 6), проходящей через точку В (-3; 2).Скачать

№968. Напишите уравнение окружности с центром в точке А(0; 6), проходящей через точку В (-3; 2).

Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

7 класс, 21 урок, ОкружностьСкачать

7 класс, 21 урок, Окружность

Длина окружности. Площадь круга - математика 6 классСкачать

Длина окружности. Площадь круга - математика 6 класс

5 класс, 22 урок, Окружность и кругСкачать

5 класс, 22 урок, Окружность и круг
Поделиться или сохранить к себе: