|  Вписанные четырехугольники и их свойства | 
|  Теорема Птолемея | 
Видео:ОКРУЖНОСТЬ (необходимое и достаточное условие вписанного четырехугольника) ЧАСТЬ 6Скачать

Вписанные четырёхугольники и их свойства
Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .
Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .
Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .
Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.
Теорема 1 доказана.
Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.
Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).
Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.
Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.
Теорема 2 доказана.
Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.
| Фигура | Рисунок | Свойство | |||||||||||||||||||||||||||||||
| Окружность, описанная около параллелограмма |  | Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | |||||||||||||||||||||||||||||||
| Окружность, описанная около ромба |  | Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | |||||||||||||||||||||||||||||||
| Окружность, описанная около трапеции |  | Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | |||||||||||||||||||||||||||||||
| Окружность, описанная около дельтоида |  | Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | |||||||||||||||||||||||||||||||
| Произвольный вписанный четырёхугольник |  | ||||||||||||||||||||||||||||||||
| Окружность, описанная около параллелограмма | ||
|  | Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | |
| Окружность, описанная около ромба | ||
|  | Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | |
| Окружность, описанная около трапеции | ||
|  | Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | |
| Окружность, описанная около дельтоида | ||
|  | Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | |
| Произвольный вписанный четырёхугольник | ||
|  | ||
| Окружность, описанная около параллелограмма | 
|  | 
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.

Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.

Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.

Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Видео:свойства вписанного и описанного четырехугольника #SHORTSСкачать

Теорема Птолемея
Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.
Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).
Докажем, что справедливо равенство:
Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).
Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:
откуда вытекает равенство:
|  | (1) | 
Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:
Видео:3 правила для вписанного четырехугольника #shortsСкачать

Необходимое и достаточное условие вписанного четырехугольника
Четырехугольник называется вписанным , если все его вершины лежат на окружности.
Четырехугольник называется описанным , если все его стороны касаются некоторой окружности.
Для того, чтобы четырехугольник был вписанным, необходимо и достаточно, чтобы сумма его противолежащих углов равнялась .
Необходимость. Пусть четырехугольник вписан в окружность с центром в точке .
По теореме 6.1 
Достаточность. Пусть – данный четырехугольник и 






Для того, чтобы выпуклый четырехугольник был описанным, необходимо и достаточно, чтобы суммы длин его противолежащих сторон были равны.
Необходимость. Пусть четырехугольник описанный, и – точки касания его сторон. Имеем (отрезки касательных, проведенных из одной точки равны). Отсюда .
Достаточность. Пусть в четырехугольнике выполнено равенство . Биссектрисы углов и пересекаются в точке . Точка одинаково удалена от прямых , и . Пусть – окружность, касающаяся сторон , и , а сторона пересекает окружность . Проведем касательную к окружности из точки , и пусть она пересекает прямую в точке . Тогда из необходимого условия – . Вычитая из данного равенства равенство в условиях теоремы получаем или , . Мы пришли к противоречию, так как . В случае, если прямая не пересекает окружность , доказательство аналогично. Теорема доказана.
Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Около четырехугольника можно описать окружность
Теорема (свойство вписанного четырёхугольника)
Сумма противолежащих углов вписанного четырёхугольника равна 180°.

∠A — вписанный угол, опирающийся на дугу BCD.
∠C — вписанный угол, опирающийся на дугу DAB.
Так как вписанный угол равен половине дуги, на которую он опирается, то
Что и требовалось доказать.
Теорема (признак вписанного четырёхугольника)
Около четырёхугольника можно описать окружность, если сумма его противолежащих углов равна 180°.
Дано: ABCD — четырёхугольник,
Доказать: ABCD можно вписать в окружность
Опишем окружность около треугольника ABC и докажем, что точка D лежит на этой окружности.
Доказательство будем вести методом от противного.
Предположим, что точка D не лежит на описанной около треугольника ABD окружности. Тогда D лежит либо внутри этой окружности, либо вне её.

В этом случае четырёхугольник ABCE — вписанный, и сумма его противолежащих углов равна 180°: ∠B+∠E=180°.
По условию, ∠B+∠D=180°. Отсюда следует, что ∠D=∠E.
Но угол D — внешний угол треугольника DCE при вершине D.
Так как внешний угол треугольника равен сумме двух внутренних не смежных с ним углов, то
∠ADC=∠DEC+∠DCE, то есть угол D не может быть равным углу E. Пришли к противоречию. А значит, точка D не может лежать внутри окружности, описанной около треугольника ABC.

Луч AD пересекает окружность в точке E.
Тогда ABCE — вписанный четырёхугольник и ∠B+∠E=180°.
По условию, ∠B+∠D=180°. Получаем, что ∠D=∠E.
Но угол E — внешний угол треугольника ECD при вершине E. А значит,
∠AEC=∠EDC+∠DCE, то есть углы D и E не могут быть равными. Противоречие получили потому, что предположили, что точка D лежит вне окружности.
Так как точка D не может лежать внутри либо вне описанной около треугольника ABC окружности, то D лежит на этой окружности. Это значит, что около четырёхугольника ABCD можно описать окружность.
Что и требовалось доказать.
На основании свойства и признака вписанного четырёхугольника сформулируем необходимое и достаточное условие вписанного четырёхугольника.
Теорема (Необходимое и достаточное условие вписанного четырёхугольника)
Около четырёхугольника можно описать окружность тогда и только тогда, когда сумма уго противолежащих углов равна 180°.
🎬 Видео
Свойство и признак вписанного четырехугольникаСкачать

Вписанный четырёхугольник | ЕГЭ-2018. Задание 16. Математика. Профильный уровень | Борис ТрушинСкачать

Следствие, необходимые и достаточные условия (версия 2)Скачать

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Необходимые и достаточные условия | Курс молодого бойца | Занятие 1Скачать

#58. Олимпиадная задача о четырехугольникеСкачать

Урок 2. Описанная окружность около четырехугольника. Задача из ОГЭ| Подобные треугольникиСкачать

11 класс, 43 урок, Вписанный четырехугольникСкачать

Вписанные четырехугольники. 9 класс.Скачать

Описанная и вписанная окружности четырехугольника - 8 класс геометрияСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Всё про углы в окружности. Геометрия | МатематикаСкачать

Вписанная и описанная окружность - от bezbotvyСкачать

11 класс, 44 урок, Описанный четырехугольникСкачать

Четырехугольники, вписанные в окружность. 9 класс.Скачать

Вписанные и описанные окружности. Вебинар | МатематикаСкачать
















