Найти вектор магнитной индукции в точке а расположенной на расстоянии

Содержание
  1. Расчёт магнитных полей с помощью закона Био–Савара–Лапласа. Магнитное поле в веществе (Главы 3-4 учебного пособия по общей физике)
  2. Страницы работы
  3. Содержание работы
  4. 3.4. Расчёт магнитных полей с помощью закона
  5. Био–Савара–Лапласа
  6. 3.4.1. Индукция магнитного поля отрезка прямолинейного проводника с током
  7. 3.4.2. Индукция магнитного поля бесконечно длинного
  8. прямолинейного проводника с током
  9. 3.4.3. Индукция магнитного поля в центре квадрата
  10. 3.4.4. Расчёт магнитного поля замкнутого кругового тока
  11. (витка с током).
  12. Магнитное поле и его характеристики
  13. теория по физике 🧲 магнетизм
  14. Основные свойства магнитного поля
  15. Вектор магнитной индукции
  16. Напряженность магнитного поля
  17. Направление вектора магнитной индукции и способы его определения
  18. Магнитное поле прямолинейного тока
  19. Магнитное поле кругового тока
  20. Магнитное поле электромагнита (соленоида)
  21. Алгоритм определения полярности электромагнита
  22. Найти вектор магнитной индукции в точке а расположенной на расстоянии
  23. 💡 Видео

Видео:Поток вектора магнитной индукцииСкачать

Поток вектора магнитной индукции

Расчёт магнитных полей с помощью закона Био–Савара–Лапласа. Магнитное поле в веществе (Главы 3-4 учебного пособия по общей физике)

Страницы работы

Найти вектор магнитной индукции в точке а расположенной на расстоянии

Найти вектор магнитной индукции в точке а расположенной на расстоянии

Найти вектор магнитной индукции в точке а расположенной на расстоянии

Найти вектор магнитной индукции в точке а расположенной на расстоянии

Найти вектор магнитной индукции в точке а расположенной на расстоянии

Содержание работы

где v – скорость направленного движения свободных носителей заряда. Умножив В на количество свободных носителей заряда в элементе проводника dl, получим индукцию магнитного поля, созданную этим элементом проводника с током,

Найти вектор магнитной индукции в точке а расположенной на расстоянии

Найти вектор магнитной индукции в точке а расположенной на расстоянии;

Найти вектор магнитной индукции в точке а расположенной на расстоянии.

Таким образом, индукция магнитного поля, созданного элементом dl проводника с током I на расстоянии r от элемента проводника, определяется выражением

Найти вектор магнитной индукции в точке а расположенной на расстоянии

Найти вектор магнитной индукции в точке а расположенной на расстоянии.

Это выражение и представляет собой закон Био–Савара–Лапласа.

Из закона видно, что вектор магнитной индукции dB всегда перпендикулярен плоскости, в ко-торой лежат векторы dl и r. Его направление определяется по правилу правого винта.

Модуль вектора dB определяется из выражения

Найти вектор магнитной индукции в точке а расположенной на расстоянии,

где a – угол между векторами dl и r.

* Здесьj – вектор плотности тока.

Необходимо учесть, что полученное выражение позволяет рассчитать индукцию магнитного поля, созданную одним бесконечно малым элементом проводника dl с током I.

Для того чтобы найти магнитную индукцию, созданную всемпроводником, необходимо использовать принцип суперпозиции, т. е. просуммировать векторы dB, созданные каждым элементом проводника в интересующей нас точке.

Видео:Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??Скачать

Правило рук 👋 КАК ЛЕГКО определять НАПРАВЛЕНИЕ ЛИНИЙ МАГНИТНОГО ПОЛЯ??

3.4. Расчёт магнитных полей с помощью закона

Видео:Индукция магнитного поля | Физика 9 класс #37 | ИнфоурокСкачать

Индукция магнитного поля | Физика 9 класс #37 | Инфоурок

Био–Савара–Лапласа

3.4.1. Индукция магнитного поля отрезка прямолинейного проводника с током

Найти вектор магнитной индукции в точке а расположенной на расстоянии

Для всех бесконечно малых элементов dl отрезка векторы dl и r лежат в плоскости листа. Поэтому векторы dB, созданные в выбранной нами точке различными элементами проводника направлены одинаково – перпендикулярно плоскости листа. Следовательно, сложение векторов dB можно заменить сложением их модулей dB.

Найти вектор магнитной индукции в точке а расположенной на расстоянииИз рисунка видно, что r = b/sina
(b – расстояние от проводника до инте-ресующей нас точки), и

Найти вектор магнитной индукции в точке а расположенной на расстоянии.

Тогда индукция, созданная элементом проводника dl, равна

Найти вектор магнитной индукции в точке а расположенной на расстоянии.

Индукция магнитного поля, созданного всем проводником, может быть найдена как интеграл от dB в пределах от a1 до + a2:

Найти вектор магнитной индукции в точке а расположенной на расстоянии

Иногда удобнее воспользоваться другим выражением:

Найти вектор магнитной индукции в точке а расположенной на расстоянииНайти вектор магнитной индукции в точке а расположенной на расстоянии

(обратите внимание на рисунок, показывающий углы q1 и q2).

Найти вектор магнитной индукции в точке а расположенной на расстоянииОбратите также внимание на то, что если точка расположена так, как показано на следующем рисунке, то q2 меняет знак и формула для расчёта магнитного поля прямолинейного отрезка записывается следующим образом:

Найти вектор магнитной индукции в точке а расположенной на расстоянии.

3.4.2. Индукция магнитного поля бесконечно длинного

прямолинейного проводника с током

Если длина прямого проводника бесконечно велика, то a1 = 0, а a2 = p.

В этом случае индукция магнитного поля, созданного проводником, будет равна

Найти вектор магнитной индукции в точке а расположенной на расстоянии.

Найти вектор магнитной индукции в точке а расположенной на расстоянииТаким образом, индукция магнитного поля, созданного бесконечно длинным проводником прямо пропорциональна току в проводнике и обратно пропорциональна расстоянию от проводника до интересующей нас точки.

Дополнительно рассмотрим магнитное поле, созданное бесконечным проводником, который изогнут под прямым углом.

Ограничимся получением расчётной формулы для точки А, расположенной на продолжении одной из половин проводника.

Участок DB в точке А не создаёт магнитного поля, так как для него a1 и a2 равны 0.

Для участка ВС a1 = 90 0 , a2 = -180 0 . Поэтому индукция, созданная этим участком, равна

Найти вектор магнитной индукции в точке а расположенной на расстоянии.

Таким образом, индукция магнитного поля в точке А равна половине индукции, созданной прямым бесконечно длинным проводником с таким же током.

3.4.3. Индукция магнитного поля в центре квадрата

Найти вектор магнитной индукции в точке а расположенной на расстоянииРассмотрим квадрат со стороной а, в котором течёт ток I.

Все стороны квадрата создают в его центре одинаковое магнитное поле. Поэтому если индукция, созданная одной стороной, равна В, то магнитная индукция, созданная всеми сторонами, равна 4В.

В рассматриваемом случае a1 = 45 0 , а a2 = 135 0 (см. рисунок).

Индукция магнитного поля, созданного одной стороной, равна:

Найти вектор магнитной индукции в точке а расположенной на расстоянии.

Соответственно индукция магнитного поля, созданного всеми сторонами, равна

Найти вектор магнитной индукции в точке а расположенной на расстоянии.

В показанном на рисунке случае индукция магнитного поля направлена перпендикулярно плоскости квадрата на нас.

3.4.4. Расчёт магнитного поля замкнутого кругового тока

(витка с током).

Пусть радиус витка равен R, а ток в нём – I.

Найти вектор магнитной индукции в точке а расположенной на расстоянии

Вначале рассмотрим расчёт поля в центре витка.

Каждый элемент тока будет создавать индукцию, направленную вдоль оси витка. Поэтому, как и в предыдущем случае, сложение dB алгебраическое и

Найти вектор магнитной индукции в точке а расположенной на расстоянии,

(в каждой точке a = 90 0 )

Найти вектор магнитной индукции в точке а расположенной на расстоянии.

Поле на оси витка на расстоянии b от центра витка рассчитывается несколько сложнее. В этом случае векторы dB не параллельны друг другу.

Найти вектор магнитной индукции в точке а расположенной на расстоянии

При суммировании составляющие векторов dB, перпендикулярные оси, уничтожаются, а параллельные оси – складываются.

Из рисунка видно, что

Найти вектор магнитной индукции в точке а расположенной на расстоянии

Найти вектор магнитной индукции в точке а расположенной на расстоянии;

Найти вектор магнитной индукции в точке а расположенной на расстоянии.

Проинтегрировав это выражение по всему контуру, получаем

Найти вектор магнитной индукции в точке а расположенной на расстоянии.

Видео:Магнитное поле. Магнитная индукция | Физика 11 класс #1 | ИнфоурокСкачать

Магнитное поле. Магнитная индукция | Физика 11 класс #1 | Инфоурок

Магнитное поле и его характеристики

теория по физике 🧲 магнетизм

Магнитное поле — особая форма материи, посредством которой осуществляется взаимодействие между движущимися электрическими частицами.

Основные свойства магнитного поля

  • Магнитное поле порождается электрическим током (движущимися зарядами).
  • Магнитное поле обнаруживается по действию на электрический ток (движущиеся заряды).
  • Магнитное поле существует независимо от нас, от наших знаний о нем.

Видео:Физика - Магнитное полеСкачать

Физика - Магнитное поле

Вектор магнитной индукции

Вектор магнитной индукции — силовая характеристика магнитного поля. Она определяет, с какой силой магнитное поле действует на заряд, движущийся в поле с определенной скоростью. Обозначается как → B . Единица измерения — Тесла (Тл).

За единицу магнитной индукции можно принять магнитную индукцию однородного поля, котором на участок проводника длиной 1 м при силе тока в нем 1 А действует со стороны поля максимальная сила, равна 1 Н. 1 Н/(А∙м) = 1 Тл.

Модуль вектора магнитной индукции — физическая величина, равная отношению максимальной силы, действующей со стороны магнитного поля на отрезок проводника с током, к произведению силы тока и длины проводника:

B = F A m a x I l . .

За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.

Найти вектор магнитной индукции в точке а расположенной на расстоянии

Наглядную картину магнитного поля можно получить, если построить так называемые линии магнитной индукции. Линиями магнитной индукции называют линии, касательные к которым направлены так же, как и вектор магнитной индукции в данной точке поля.

Найти вектор магнитной индукции в точке а расположенной на расстоянии

Особенность линий магнитной индукции состоит в том, что они не имеют ни начала, ни конца. Они всегда замкнуты. Поля с замкнутыми силовыми линиями называют вихревыми. Поэтому магнитное поле — вихревое поле.

Замкнутость линий магнитной индукции представляет собой фундаментальное свойство магнитного поля. Оно заключается в том, что магнитное поле не имеет источников. Магнитных зарядов, подобным электрическим, в природе нет.

Видео:Урок 281. Электромагнитная индукция. Магнитный поток. Правило ЛенцаСкачать

Урок 281. Электромагнитная индукция. Магнитный поток. Правило Ленца

Напряженность магнитного поля

Вектор напряженности магнитного поля — характеристика магнитного поля, определяющая густоту силовых линий (линий магнитной индукции). Обозначается как → H . Единица измерения — А/м.

μ — магнитная проницаемость среды (у воздуха она равна 1), μ 0 — магнитная постоянная, равная 4 π · 10 − 7 Гн/м.

Внимание! Направление напряженности всегда совпадает с направлением вектора магнитной индукции: → H ↑↑ → B .

Видео:Линии магнитной индукции наглядно. Правило правой рукиСкачать

Линии магнитной индукции наглядно. Правило правой руки

Направление вектора магнитной индукции и способы его определения

Чтобы определить направление вектора магнитной индукции, нужно:

  1. Расположить в магнитном поле компас.
  2. Дождаться, когда магнитная стрелка займет устойчивое положение.
  3. Принять за направление вектора магнитной индукции направление стрелки компаса «север».

В пространстве между полюсами постоянного магнита вектор магнитной индукции выходит из северного полюса:

Найти вектор магнитной индукции в точке а расположенной на расстоянии

При определении направления вектора магнитной индукции с помощью витка с током следует применять правило буравчика:

При вкручивании острия буравчика вдоль направления тока рукоятка будет вращаться по направлению вектора → B магнитной индукции.

Найти вектор магнитной индукции в точке а расположенной на расстоянии

Отсюда следует, что:

  • Если по витку ток идет против часовой стрелки, то вектор магнитной индукции → B направлен вверх.

Найти вектор магнитной индукции в точке а расположенной на расстоянии

  • Если по витку ток идет по часовой стрелке, то вектор магнитной индукции → B направлен вниз.

Найти вектор магнитной индукции в точке а расположенной на расстоянии

Способы обозначения направлений векторов:

ВверхНайти вектор магнитной индукции в точке а расположенной на расстоянии
ВнизНайти вектор магнитной индукции в точке а расположенной на расстоянии
ВлевоНайти вектор магнитной индукции в точке а расположенной на расстоянии
ВправоНайти вектор магнитной индукции в точке а расположенной на расстоянии
На нас перпендикулярно плоскости чертежаНайти вектор магнитной индукции в точке а расположенной на расстоянии
От нас перпендикулярно плоскости чертежаНайти вектор магнитной индукции в точке а расположенной на расстоянии

Пример №1. На рисунке изображен проводник, по которому течет электрический ток. Направление тока указано стрелкой. Как направлен (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) вектор магнитной индукции в точке С?

Найти вектор магнитной индукции в точке а расположенной на расстоянии

Если мысленно начать вкручивать острие буравчика по направлению тока, то окажется, что вектор магнитной индукции в точке С будет направлен к нам — к наблюдателю.

Видео:Электромагнитная индукция за 1 минутуСкачать

Электромагнитная индукция за 1 минуту

Магнитное поле прямолинейного тока

Линии магнитной индукции представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику. Центр окружностей совпадает с осью проводника.

Найти вектор магнитной индукции в точке а расположенной на расстоянии

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Найти вектор магнитной индукции в точке а расположенной на расстоянии

Если ток идет вверх, то силовые линии направлены против часовой стрелки. Если вниз, то они направлены по часовой стрелке. Их направление можно определить с помощью правила буравчика или правила правой руки:

Правило буравчика (правой руки)

Если большой палец правой руки, отклоненный на 90 градусов, направить в сторону тока в проводнике, то остальные 4 пальца покажут направление линий магнитной индукции.

Найти вектор магнитной индукции в точке а расположенной на расстоянии

Модуль вектора магнитной индукции на расстоянии r от оси проводника:

B = μ μ 0 I 2 π r . .

Магнитное поле кругового тока

Силовые линии представляют собой окружности, опоясывающие круговой ток. Вектор магнитной индукции в центре витка направлен вверх, если ток идет против часовой стрелки, и вниз, если по часовой стрелке.

Найти вектор магнитной индукции в точке а расположенной на расстоянии

Определить направление силовых линий магнитного поля витка с током можно также с помощью правила правой руки:

Если расположить четыре пальца правой руки по направлению тока в витке, то отклоненный на 90 градусов большой палец, покажет направление вектора магнитной индукции.

Найти вектор магнитной индукции в точке а расположенной на расстоянии

Модуль вектора магнитной индукции в центре витка, радиус которого равен R:

Модуль напряженности в центре витка:

Пример №2. На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в вертикальной плоскости. Точка А находится на горизонтальной прямой, проходящей через центр витка. Как направлен (вверх, вниз, влево, вправо) вектор магнитной индукции магнитного поля в точке А?

Найти вектор магнитной индукции в точке а расположенной на расстоянии

Если мысленно обхватить виток так, чтобы четыре пальца правой руки были бы направлены в сторону тока, то отклоненный на 90 градусов большой палец правой руки показал бы, что вектор магнитной индукции в точке А направлен вправо.

Видео:Урок 270. Магнитное поле и его характеристикиСкачать

Урок 270. Магнитное поле и его характеристики

Магнитное поле электромагнита (соленоида)

Соленоид — это катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра.

Число витков в соленоиде N определяется формулой:

l — длина соленоида, d — диаметр проволоки.

Найти вектор магнитной индукции в точке а расположенной на расстоянии

Линии магнитной индукции являются замкнутыми, причем внутри соленоида они располагаются параллельно друг другу. Поле внутри соленоида однородно.

Если ток по виткам соленоида идет против часовой стрелки, то вектор магнитной индукции → B внутри соленоида направлен вверх, если по часовой стрелке, то вниз. Для определения направления линий магнитной индукции можно воспользоваться правилом правой руки для витка с током.

Модуль вектора магнитной индукции в центральной области соленоида:

B = μ μ 0 I N l . . = μ μ 0 I d . .

Модуль напряженности магнитного поля в центральной части соленоида:

H = I N l . . = I d . .

Алгоритм определения полярности электромагнита

  1. Определить полярность источника.
  2. Указать на витках электромагнита условное направление тока (от «+» источника к «–»).
  3. Определить направление вектора магнитной индукции.
  4. Определить полюса электромагнита. Там, откуда выходят линии магнитной индукции, располагается северный полюс электромагнита (N, или «–». С противоположной стороны — южный (S, или «+»).

Найти вектор магнитной индукции в точке а расположенной на расстоянии

Пример №3. Через соленоид пропускают ток. Определите полюсы катушки.

Найти вектор магнитной индукции в точке а расположенной на расстоянии

Ток условно течет от положительного полюса источника тока к отрицательному. Следовательно, ток течет по виткам от точки А к точке В. Мысленно обхватив соленоид пальцами правой руки так, чтобы четыре пальца совпадали с направлением тока в витках соленоида, отставим большой палец на угол 90 градусов. Он покажет направление линий магнитной индукции внутри соленоида. Проделав это, увидим, что линии магнитной индукции направлены вправо. Следовательно, они выходят из В, который будет являться северным полюсом. Тогда А будет являться южным полюсом.

Найти вектор магнитной индукции в точке а расположенной на расстоянииНа рисунке изображён круглый проволочный виток, по которому течёт электрический ток. Виток расположен в вертикальной плоскости. В центре витка вектор индукции магнитного поля тока направлен

а) вертикально вверх в плоскости витка

б) вертикально вниз в плоскости витка

в) вправо перпендикулярно плоскости витка

г) влево перпендикулярно плоскости витка

Алгоритм решения

Решение

По условию задачи мы имеем дело с круглым проволочным витком. Поэтому для определения вектора → B магнитной индукции мы будем использовать правило правой руки.

Чтобы применить это правило, нам нужно знать направление течение тока в проводнике. Условно ток течет от положительного полюса источника к отрицательному. Следовательно, на рисунке ток течет по витку в направлении хода часовой стрелки.

Теперь можем применить правило правой руки. Для этого мысленно направим четыре пальца правой руки в направлении тока в проволочном витке. Теперь отставим на 90 градусов большой палец. Он показывает относительно рисунка влево. Это и есть направление вектора магнитной индукции.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Найти вектор магнитной индукции в точке а расположенной на расстоянииМагнитная стрелка компаса зафиксирована на оси (северный полюс затемнён, см. рисунок). К компасу поднесли сильный постоянный полосовой магнит и освободили стрелку. В каком положении установится стрелка?

а) повернётся на 180°

б) повернётся на 90° по часовой стрелке

в) повернётся на 90° против часовой стрелки

г) останется в прежнем положении

Алгоритм решения

  1. Вспомнить, как взаимодействуют магниты.
  2. Определить исходное положение полюсов.
  3. Определить конечное положение полюсов и установить, как изменится положение магнитной стрелки.

Решение

Одноименные полюсы магнитов отталкиваются, а разноименные притягиваются. Изначально южный полюс магнитной стрелки находится справа, а северный — слева. Полосовой магнит подносят к ее южному полюсу северной стороной. Поскольку это разноименные полюса, положение магнитной стрелки не изменится.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Найти вектор магнитной индукции в точке а расположенной на расстоянииНепосредственно над неподвижно закреплённой проволочной катушкой вдоль её оси на пружине подвешен полосовой магнит (см. рисунок). Куда начнёт двигаться магнит сразу после замыкания ключа? Ответ поясните, указав, какие физические явления и законы Вы использовали для объяснения.

Алгоритм решения

  1. Определить направление тока в соленоиде.
  2. Определить полюса соленоида.
  3. Установить, как будет взаимодействовать соленоид с магнитом.
  4. Установить, как будет себя вести магнит после замыкания электрической цепи.

Решение

Чтобы определить направление тока в соленоиде, посмотрим на расположение полюсов источника тока. Ток условно направлен от положительного полюса к отрицательному. Следовательно, относительно рисунка ток в витках соленоида направлен по часовой стрелке.

Зная направление тока в соленоиде, можно определить его полюса. Северным будет тот полюс, из которого выходят линии магнитной индукции. Определить их направление поможет правило правой руки для соленоида. Мысленно обхватим соленоид так, чтобы направление четырех пальцев правой руки совпадало с направлением тока в витках соленоида. Теперь отставленный на 90 градусов большой палец покажет направление вектора магнитной индукции. Проделав все манипуляции, получим, что вектор магнитной индукции направлен вниз. Следовательно, внизу соленоида расположен северный полюс, а вверху — южный.

Известно, что одноименные полюса магнитов отталкиваются, а разноименные — притягиваются. Подвешенный полосовой магнит обращен к южному полюсу соленоида северным полюсом. А это значит, что при замыкании электрической цепи он будет растягивать пружину, притягиваясь к соленоиду (двигаться вниз).

pазбирался: Алиса Никитина | обсудить разбор | оценить

Видео:Теорема о циркуляции вектора магнитной индукции. Магнитный поток.Скачать

Теорема о циркуляции вектора магнитной индукции. Магнитный поток.

Найти вектор магнитной индукции в точке а расположенной на расстоянии

По двум тонким прямым проводникам, параллельным друг другу, текут одинаковые токи I (см. рисунок). Как направлен вектор индукции создаваемого ими магнитного поля в точке С?

Вектор магнитной индукции в точке C есть сумма векторов магнитной индукции от двух проводников. Согласно правилу правой руки: «Если отведенный в сторону большой палец правой руки расположить по направлению тока, то направление обхвата провода четырьмя пальцами покажет направление линий магнитной индукции». Следовательно, вектор магнитной индукции от нижнего проводника направлен в точке C от нас, а вектор магнитной индукции от верхнего проводника — к нам. Однако модуль вектора магнитной индукции ослабевает по мере удаления от проводника. Таким образом, суммарный вектор магнитной индукции в точке C направлен к нам.

Направление поля можно искать, используя также правило буравчика: «Если направление поступательного движения буравчика (винта) совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением вектора магнитной индукции поля, создаваемого этим током».

💡 Видео

ИНДУКЦИЯ МАГНИТНОГО ПОЛЯ сила Ампера правило левой рукиСкачать

ИНДУКЦИЯ МАГНИТНОГО ПОЛЯ сила Ампера правило левой руки

Урок 287. Индуктивность контура (катушки). Явление самоиндукцииСкачать

Урок 287. Индуктивность контура (катушки). Явление самоиндукции

Урок 222. Поток вектора напряженности электрического поляСкачать

Урок 222. Поток вектора напряженности электрического поля

Демо версия ЕГЭ по физике 2016. Задание 14. Направление вектора магнитной индукцииСкачать

Демо версия ЕГЭ по физике 2016. Задание 14. Направление вектора магнитной индукции

МАГНИТНОЕ ПОЛЕ за 24 минуты. ЕГЭ Физика. Николай Ньютон. ТехноскулСкачать

МАГНИТНОЕ ПОЛЕ за 24 минуты. ЕГЭ Физика. Николай Ньютон. Техноскул

Как решать задачи на нахождение магнитного поля.Скачать

Как решать задачи на нахождение магнитного поля.

Билет №16 "Теорема о циркуляции и теорема Гаусса для магнитного поля"Скачать

Билет №16 "Теорема о циркуляции и теорема Гаусса для магнитного поля"

Физика 11 класс (Урок№3 - Магнитная индукция. Действие магнитного поля на проводник с током.)Скачать

Физика 11 класс (Урок№3 - Магнитная индукция. Действие магнитного поля на проводник с током.)

Закон Био Савара Лапласа. Магнитное поле прямого и кругового тока.Скачать

Закон Био Савара Лапласа. Магнитное поле прямого и кругового тока.

№ 701-800 - Физика 10-11 класс РымкевичСкачать

№ 701-800 - Физика 10-11 класс Рымкевич
Поделиться или сохранить к себе: