Этот онлайн калькулятор позволит вам очень просто найти длину вектора для плоских и пространственных задач.
Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на вычисление модуля вектора и закрепить пройденный материал.
- Калькулятор для вычисления длины вектора (модуля вектора) по двум точкам
- Инструкция использования калькулятора для вычисления длины вектора
- Ввод даных в калькулятор для вычисления длины вектора (модуля вектора)
- Дополнительные возможности калькулятора для вычисления длины вектора (модуля вектора)
- Вычисления длины вектора (модуля вектора)
- Решение задач по математике онлайн
- Калькулятор онлайн. Длина вектора. Модуль вектора.
- Немного теории.
- Скалярные и векторные величины
- Определение вектора
- Проекция вектора на ось
- Проекции вектора на оси координат
- Направляющие косинусы вектора
- Линейные операции над векторами и их основные свойства
- Сложение двух векторов
- Произведение вектора на число
- Основные свойства линейных операций
- Теоремы о проекциях векторов
- Разложение вектора по базису
- Сумма векторов. Длина вектора. Задачи!
- 🎦 Видео
Видео:Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать
Калькулятор для вычисления длины вектора (модуля вектора) по двум точкам
Размерность вектора:
Форма представления вектора:
Инструкция использования калькулятора для вычисления длины вектора
Ввод даных в калькулятор для вычисления длины вектора (модуля вектора)
В онлайн калькулятор можно вводить числа или дроби. Более подробно читайте в правилах ввода чисел..
Дополнительные возможности калькулятора для вычисления длины вектора (модуля вектора)
- Между полями для ввода можно перемещаться нажимая клавиши «влево» и «вправо» на клавиатуре.
Видео:МОДУЛЬ ВЕКТОРА длина вектора 10 и 11 классСкачать
Вычисления длины вектора (модуля вектора)
Например, для вектора a = <ax; ay; az> длина вектора вычисляется cледующим образом:
Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Видео:ЕГЭ Векторы Длина вектора АВ равна 6, длина вектора АС равна 7Скачать
Калькулятор онлайн.
Длина вектора. Модуль вектора.
Этот калькулятор онлайн вычисляет длину (модуль) вектора. Вектор может быть задан в 2-х и 3-х мерном пространстве.
Онлайн калькулятор для вычисления длины (модуля) вектора не просто даёт ответ задачи, он приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.
Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Если вы не знакомы с правилами ввода чисел, рекомендуем с ними ознакомиться.
Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.
Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5 или так 1,3
Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3
Результат: ( -frac )
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: -1&5/7
Результат: ( -1frac )
Вычислить длину (модуль) вектора
Видео:егэ векторы решу егэ все задания №2 профильСкачать
Немного теории.
Видео:Длина вектора через координаты. 9 класс.Скачать
Скалярные и векторные величины
Многие физические величины полностью определяются заданием некоторого числа. Это, например, объем, масса, плотность, температура тела и др. Такие величины называются скалярными. В связи с этим числа иногда называют скалярами. Но есть и такие величины, которые определяются заданием не только числа, но и некоторого направления. Например, при движении тела следует указать не только скорость, с которой движется тело, но и направление движения. Точно так же, изучая действие какой-либо силы, необходимо указать не только значение этой силы, но и направление ее действия. Такие величины называются векторными. Для их описания было введено понятие вектора, оказавшееся полезным для математики.
Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Определение вектора
Любая упорядоченная пара точек А к В пространства определяет направленный отрезок, т.е. отрезок вместе с заданным на нем направлением. Если точка А первая, то ее называют началом направленного отрезка, а точку В — его концом. Направлением отрезка считают направление от начала к концу.
Определение
Направленный отрезок называется вектором.
Будем обозначать вектор символом ( overrightarrow ), причем первая буква означает начало вектора, а вторая — его конец.
Вектор, у которого начало и конец совпадают, называется нулевым и обозначается ( vec ) или просто 0.
Расстояние между началом и концом вектора называется его длиной и обозначается ( |overrightarrow| ) или ( |vec| ).
Нулевой вектор будем считать направленным одинаково с любым вектором; длина его равна нулю, т.е. ( |vec| = 0 ).
Теперь можно сформулировать важное понятие равенства двух векторов.
Определение
Векторы ( vec ) и ( vec ) называются равными (( vec = vec )), если они коллинеарны, одинаково направлены и их длины равны.
Видео:Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора АВ-АССкачать
Проекция вектора на ось
Пусть в пространстве заданы ось ( u ) и некоторый вектор ( overrightarrow ). Проведем через точки А и В плоскости, перпендикулярные оси ( u ). Обозначим через А’ и В’ точки пересечения этих плоскостей с осью (см. рисунок 2).
Проекцией вектора ( overrightarrow ) на ось ( u ) называется величина А’В’ направленного отрезка А’В’ на оси ( u ). Напомним, что
( A’B’ = |overrightarrow| ) , если направление ( overrightarrow ) совпадает c направлением оси ( u ),
( A’B’ = -|overrightarrow| ) , если направление ( overrightarrow ) противоположно направлению оси ( u ),
Обозначается проекция вектора ( overrightarrow ) на ось ( u ) так: ( Пр_u overrightarrow ).
Теорема
Проекция вектора ( overrightarrow ) на ось ( u ) равна длине вектора ( overrightarrow ) , умноженной на косинус угла между вектором ( overrightarrow ) и осью ( u ) , т.е. ( Пр_u overrightarrow = |overrightarrow|cos varphi ) где ( varphi ) — угол между вектором ( overrightarrow ) и осью ( u ).
Замечание
Пусть ( overrightarrow=overrightarrow ) и задана какая-то ось ( u ). Применяя к каждому из этих векторов формулу теоремы, получаем
( Пр_u overrightarrow = Пр_u overrightarrow )
т.е. равные векторы имеют равные проекции на одну и ту же ось.
Видео:Равенство векторов, Длина вектора.Как найти длину вектора?Скачать
Проекции вектора на оси координат
Пусть в пространстве заданы прямоугольная система координат Oxyz и произвольный вектор ( overrightarrow ). Пусть, далее, ( X = Пр_u overrightarrow, ;; Y = Пр_u overrightarrow, ;; Z = Пр_u overrightarrow ). Проекции X, Y, Z вектора ( overrightarrow ) на оси координат называют его координатами. При этом пишут
( overrightarrow = (X;Y;Z) )
Теорема
Каковы бы ни были две точки A(x1; y1; z1) и B(x2; y2; z2), координаты вектора ( overrightarrow ) определяются следующими формулами:
Замечание
Если вектор ( overrightarrow ) выходит из начала координат, т.е. x2 = x, y2 = y, z2 = z, то координаты X, Y, Z вектора ( overrightarrow ) равны координатам его конца:
X = x, Y = y, Z = z.
Видео:ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэСкачать
Направляющие косинусы вектора
Возводя в квадрат левую и правую части каждого из предыдущих равенств и суммируя полученные результаты, имеем
( cos^2 alpha + cos^2 beta + cos^2 gamma = 1 )
т.е. сумма квадратов направляющих косинусов любого вектора равна единице.
Видео:Модуль вектора. Длина вектора.Скачать
Линейные операции над векторами и их основные свойства
Видео:Полный разбор задач с векторами №2 ЕГЭ ПРОФИЛЬ 2024 | Профильная математика ЕГЭ 2024 | УМСКУЛСкачать
Сложение двух векторов
Замечание
Определив сумму двух векторов, можно найти сумму любого числа данных векторов. Пусть, например, даны три вектора ( vec,;; vec, ;; vec ). Сложив ( vec ) и ( vec ), получим вектор ( vec + vec ). Прибавив теперь к нему вектор ( vec ), получим вектор ( vec + vec + vec )
Видео:Стороны правильного треугольника ABC равны 3. Найдите длину вектора АВ - АССкачать
Произведение вектора на число
Видео:Косинус угла между векторами. Коллинеарность векторовСкачать
Основные свойства линейных операций
1. Переместительное свойство сложения
( vec + vec = vec + vec )
3. Сочетательное свойство умножения
( lambda (mu vec) = (lambda mu) vec )
4. Распределительное свойство относительно суммы чисел
( (lambda +mu) vec = lambda vec + mu vec )
5. Распределительное свойство относительно суммы векторов
( lambda ( vec+vec) = lambda vec + lambda vec )
Замечание
Эти свойства линейных операций имеют фундаментальное значение, так как дают возможность производить над векторами обычные алгебраические действия. Например, в силу свойств 4 и 5 можно выполнять умножение скалярного многочлена на векторный многочлен «почленно».
Видео:ПРОСТОЙ СПОСОБ, как запомнить Векторы за 10 минут! (вы будете в шоке)Скачать
Теоремы о проекциях векторов
Теорема
Проекция суммы двух векторов на ось равна сумме их проекций на эту ось, т.е.
( Пр_u (vec + vec) = Пр_u vec + Пр_u vec )
Теорему можно обобщить на случай любого числа слагаемых.
Видео:Угол между векторами | МатематикаСкачать
Разложение вектора по базису
Пусть векторы ( vec, ; vec, ; vec ) — единичные векторы осей координат, т.e. ( |vec| = |vec| = |vec| = 1 ), и каждый из них одинаково направлен с соответствующей осью координат (см. рисунок). Тройка векторов ( vec, ; vec, ; vec ) называется базисом.
Имеет место следующая теорема.
Теорема
Любой вектор ( vec ) может быть единственным образом разложен по базису ( vec, ; vec, ; vec; ), т.е. представлен в виде
( vec = lambda vec + mu vec + nu vec )
где ( lambda, ;; mu, ;; nu ) — некоторые числа.
Видео:Задание 3 (№27717) ЕГЭ по математике. Урок 80Скачать
Сумма векторов. Длина вектора. Задачи!
Сумма векторов. Длина вектора. Дорогие друзья, в составе типов задний экзамена присутствует группа задач с векторами. Задания довольно широкого спектра (важно знать теоретические основы). Большинство решается устно. Вопросы связаны с нахождением длины вектора, суммы (разности) векторов, скалярного произведения. Так же много заданий, при решении которых необходимо осуществить действия с координатами векторов.
Теория касающаяся темы векторов несложная, и её необходимо хорошо усвоить. В этой статье разберём задачи связанные с нахождением длины вектора, также суммы (разности) векторов. Некоторые теоретические моменты:
Вектор — это направленный отрезок.
Все векторы, имеющие одинаковое направление и равные по длине являются равными.
*Все представленные выше четыре вектора равны!
То есть, если мы будем при помощи параллельного переноса перемещать данный нам вектор, то всегда получим вектор равный исходному. Таким образом, равных векторов может быть бесчисленное множество.
Вектор может быть обозначен латинскими заглавными буквами, например:
При данной форме записи сначала записывается буква обозначающая начало вектора, затем буква обозначающая конец вектора.
Ещё вектор обозначается одной буквой латинского алфавита (прописной):
Возможно также обозначение без стрелок:
Суммой двух векторов АВ и ВС будет являться вектор АС .
Записывается как АВ + ВС = АС .
Это правило называется – правилом треугольника.
То есть, если мы имеем два вектора – назовём их условно (1) и (2), и конец вектора (1) совпадает с началом вектора (2), то суммой этих векторов будет вектор, начало которого совпадает с началом вектора (1), а конец совпадает с концом вектора (2).
Вывод: если мы имеем на плоскости два вектора, то всегда сможем найти их сумму. При помощи параллельного переноса можно переместить любой из данных векторов и соединить его начало с концом другого. Например:
Перенесём вектор b, или по-другому – построим равный ему:
Как находится сумма нескольких векторов? По тому же принципу:
Это правило является следствием изложенного выше.
Для векторов с общим началом их сумма изображается диагональю параллелограмма, построенного на этих векторах.
Построим вектор равный вектору b так, чтобы его начало совпадало с концом вектора a, и мы можем построить вектор, который будет являться их суммой:
Ещё немного важной информации, необходимой для решения задач.
Вектор, равный по длине исходному, но противоположно направленный, обозначается также но имеет противоположный знак:
Эта информация крайне полезна для решения задач, в которых стоит вопрос о нахождении разности векторов. Как видите, разность векторов это та же сумма в изменнёном виде.
Пусть даны два вектора, найдём их разность:
Мы построили вектор противоположный вектору b, и нашли разность.
Чтобы найти координаты вектора, нужно из координат конца вычесть соответствующие координаты начала:
То есть, координаты вектора представляют собой пару чисел.
И координаты векторов имеют вид:
Модулем вектора называется его длина, определяется по формуле:
Формула для определения длины вектора, если известны координаты его начала и конца:
Две стороны прямоугольника ABCD равны 6 и 8. Диагонали пересекаются в точке О. Найдите длину разности векторов АО и ВО .
Найдём вектор, который будет являться результатом АО – ВО:
АО – ВО = АО +(– ВО )= АВ
То есть разность векторов АО и ВО будет являться вектор АВ. А его длина равна восьми.
Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора АВ + AD .
Найдём вектор, который будет являться суммой векторов AD и AB . Вектор BC равен вектору AD . Значит AB + AD = AB + BC = AC
Длина вектора AC это длина диагонали ромба АС, она равна 16.
Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите длину вектора АО + ВО .
Найдём вектор, который будет являться суммой векторов АО и ВО . Вектор ВО равен вектору OD, з начит
Длина вектора AD это длина стороны ромба. Задача сводится к нахождению гипотенузы в прямоугольном треугольнике AOD. Вычислим катеты:
По теореме Пифагора:
Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите длину вектора АО – ВО .
Найдём вектор, который будет являться результатом АО – ВО :
Длина вектора АВ это длина стороны ромба. Задача сводится к нахождению гипотенузы АВ в прямоугольном треугольнике AOB. вычислим катеты:
По теореме Пифагора:
Стороны правильного треугольника ABC равны 3.
Найдите длину вектора АВ – АС .
Найдём результат разности векторов:
Длина вектора СВ равна трём, так как в условии сказано, что треугольник равносторонний и его стороны равны 3.
27663. Найдите длину вектора а (6;8).
27664. Найдите квадрат длины вектора АВ .
27707. Две стороны прямоугольника ABCD равны 6 и 8. Найдите длину вектора АС .
27708. Две стороны прямоугольника ABCD равны 6 и 8. Найдите длину суммы векторов AB и AD .
27709. Две стороны прямоугольника ABCD равны 6 и 8. Найдите длину разности векторов AB и AD .
27711. Две стороны прямоугольника ABCD равны 6 и 8. Диагонали пересекаются в точке O. Найдите длину суммы векторов АО и ВО .
27713. Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора АВ .
27715. Диагонали ромба ABCD равны 12 и 16.
Найдите длину вектора АВ – AD .
27716. Диагонали ромба ABCD равны 12 и 16.
Найдите длину вектора АВ – АС .
Стороны правильного треугольника ABC равны 2√3. Найдите длину вектора АВ + АС .
В будущем мы продолжим рассматривать задачи с векторами, не пропустите! Задания будут связаны с координатами векторов, скалярным произведением.
На этом всё. Успеха вам!
С уважением, Александр
Вступительный экзамен по математике. Преподаватели приглашают первого абитуриента:
— Сколько будет два плюс два?
— Три! — Нет! — Пять! — Нет! — Шесть!
— Неправильно! Да… дурак, но ищущий… берем!
Заходит второй абитуриент:
— Сколько будет два плюс два?
— Три! — Нет! — Три! — Нет! — Три!
— Неправильно! Да… дурак, но настырный… берем!
Заходит третий абитуриент:
— Сколько будет два плюс два?
— Четыре, конечно!
— Да… умный. Но мест уже нет!
🎦 Видео
2. Векторы в параллелограмме Решение задач №2Скачать
1. Векторы и параллелограмм задачи №1Скачать
Новое задание профиля №2. Все, что нужно знать о векторах | Аня МатеманяСкачать