Найти длину окружности вписанной в ромб если

Нахождение радиуса вписанной в ромб окружности

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, вписанной в ромб. Также разберем примеры решения задач для закрепления изложенного материала.

Содержание
  1. Формулы вычисления радиуса вписанной в ромб окружности
  2. Через диагонали и сторону
  3. Через диагонали
  4. Через сторону и угол
  5. Через высоту
  6. Примеры задач
  7. Длина окружности вписанный ромб
  8. Ромб. Формулы, признаки и свойства ромба
  9. Признаки ромба
  10. Основные свойства ромба
  11. Сторона ромба
  12. Формулы определения длины стороны ромба:
  13. Диагонали ромба
  14. Формулы определения длины диагонали ромба:
  15. Периметр ромба
  16. Формула определения длины периметра ромба:
  17. Площадь ромба
  18. Формулы определения площади ромба:
  19. Окружность вписанная в ромб
  20. Формулы определения радиуса круга вписанного в ромб:
  21. Длина окружности
  22. Как найти длину окружности через диаметр
  23. Как найти длину окружности через радиус
  24. Как вычислить длину окружности через площадь круга
  25. Как найти длину окружности через диагональ вписанного прямоугольника
  26. Как вычислить длину окружности через сторону описанного квадрата
  27. Как найти длину окружности через стороны и площадь вписанного треугольника
  28. Как найти длину окружности через площадь и полупериметр описанного треугольника
  29. Как вычислить длину окружности через сторону вписанного правильного многоугольника
  30. Задачи для решения
  31. Нахождение радиуса вписанной в ромб окружности
  32. Формулы вычисления радиуса вписанной в ромб окружности
  33. Через диагонали и сторону
  34. Через диагонали
  35. Через сторону и угол
  36. Через высоту
  37. Примеры задач
  38. Вписанная в ромб окружность

Видео:+Как найти длину окружностиСкачать

+Как найти длину окружности

Формулы вычисления радиуса вписанной в ромб окружности

Найти длину окружности вписанной в ромб если

Через диагонали и сторону

Радиус r вписанной в ромб окружности равняется произведению его диагоналей, деленному на сторону, умноженную на 4.

Найти длину окружности вписанной в ромб если

  • d1 и d2 – диагонали ромба;
  • a – сторона ромба.

Через диагонали

Радиус r вписанной в ромб окружности можно найти, зная только длины его обеих диагоналей:

Найти длину окружности вписанной в ромб если

Эту формулу можно получить, если сторону a в формуле выше выразить через диагонали (согласно одному из свойств ромба):

Найти длину окружности вписанной в ромб если

Через сторону и угол

Найти длину окружности вписанной в ромб если

Радиус окружности r, вписанной в ромб, равняется половине произведения его стороны и синуса любого угла.

Найти длину окружности вписанной в ромб если

Через высоту

Найти длину окружности вписанной в ромб если

Радиус вписанного в ромб круга равняется половине его высоты.

Видео:Длина окружности. Площадь круга. 6 класс.Скачать

Длина окружности. Площадь круга. 6 класс.

Примеры задач

Задание 1
Известно, что диагонали ромба равны 6 и 8 см. Найдите радиус окружности, вписанной в него.

Решение
Применим соответствующую формулу, подставив в нее известные значения:

Найти длину окружности вписанной в ромб если

Задание 2
Вычислите радиус вписанного в ромб круга, если его сторона равна 11 см, а один из углов – 30°.

Решение
В данном случае мы можем воспользоваться последней из рассмотренных выше формул:

Видео:КАК НАЙТИ ДЛИНУ ОКРУЖНОСТИ, ВПИСАННОЙ В КВАДРАТ? Примеры | ГЕОМЕТРИЯ 9 классСкачать

КАК НАЙТИ ДЛИНУ ОКРУЖНОСТИ, ВПИСАННОЙ В КВАДРАТ? Примеры | ГЕОМЕТРИЯ 9 класс

Длина окружности вписанный ромб

Видео:Задача 6 №27913 ЕГЭ по математике. Урок 131Скачать

Задача 6 №27913 ЕГЭ по математике. Урок 131

Ромб. Формулы, признаки и свойства ромба

Найти длину окружности вписанной в ромб еслиНайти длину окружности вписанной в ромб если
Рис.1Рис.2

Видео:КАК НАЙТИ ДЛИНУ ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТЕН ДИАМЕТР ИЛИ РАДИУС? Примеры | МАТЕМАТИКА 6 классСкачать

КАК НАЙТИ ДЛИНУ ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТЕН ДИАМЕТР ИЛИ РАДИУС? Примеры | МАТЕМАТИКА 6 класс

Признаки ромба

∠BAC = ∠CAD или ∠BDA = ∠BDC

Δ ABO = Δ BCO = Δ CDO = Δ ADO

Видео:Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Основные свойства ромба

∠BAC = ∠CAD, ∠ABD = ∠DBC, ∠BCA = ∠ACD, ∠ADB = ∠BDC

AC 2 + BD 2 = 4AB 2

Видео:Радиус вписанной в ромб окружности (6701)Скачать

Радиус вписанной в ромб окружности (6701)

Сторона ромба

Формулы определения длины стороны ромба:

1. Формула стороны ромба через площадь и высоту:

a =S
ha

2. Формула стороны ромба через площадь и синус угла:

a =√ S
√ sinα
a =√ S
√ sinβ

3. Формула стороны ромба через площадь и радиус вписанной окружности:

a =S
2 r

4. Формула стороны ромба через две диагонали:

a =√ d 1 2 + d 2 2
2

5. Формула стороны ромба через диагональ и косинус острого угла ( cos α ) или косинус тупого угла ( cos β ):

a =d 1
√ 2 + 2 cosα
a =d 2
√ 2 — 2 cosβ

6. Формула стороны ромба через большую диагональ и половинный угол:

a =d 1
2 cos ( α /2)
a =d 1
2 sin ( β /2)

7. Формула стороны ромба через малую диагональ и половинный угол:

a =d 2
2 cos ( β /2)
a =d 2
2 sin ( α /2)

8. Формула стороны ромба через периметр:

a =Р
4

Видео:Радиус ОКРУЖНОСТИ, вписанной в РОМБСкачать

Радиус ОКРУЖНОСТИ, вписанной в РОМБ

Диагонали ромба

Формулы определения длины диагонали ромба:

d 1 = a √ 2 + 2 · cosα

d 1 = a √ 2 — 2 · cosβ

d 2 = a √ 2 + 2 · cosβ

d 2 = a √ 2 — 2 · cosα

d 1 = 2 a · cos ( α /2)

d 1 = 2 a · sin ( β /2)

d 2 = 2 a · sin ( α /2)

d 2 = 2 a · cos ( β /2)

7. Формулы диагоналей через площадь и другую диагональ:

d 1 =2S
d 2
d 2 =2S
d 1

8. Формулы диагоналей через синус половинного угла и радиус вписанной окружности:

d 1 =2 r
sin ( α /2)
d 2 =2 r
sin ( β /2)

Видео:КАК НАЙТИ РАДИУС КРУГА (ОКРУЖНОСТИ), ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 классСкачать

КАК НАЙТИ РАДИУС КРУГА (ОКРУЖНОСТИ), ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 класс

Периметр ромба

Периметром ромба называется сумма длин всех сторон ромба.

Длину стороны ромба можно найти за формулами указанными выше.

Формула определения длины периметра ромба:

Видео:Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 классСкачать

Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 класс

Площадь ромба

Формулы определения площади ромба:

4. Формула площади ромба через две диагонали:

S =1d 1 d 2
2

5. Формула площади ромба через синус угла и радиус вписанной окружности:

S =4 r 2
sinα

6. Формулы площади через большую диагональ и тангенс острого угла ( tgα ) или малую диагональ и тангенс тупого угла ( tgβ ):

S =1d 1 2 · tg ( α /2)
2
S =1d 2 2 · tg ( β /2)
2

Видео:КАК НАЙТИ ДИАМЕТР ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 классСкачать

КАК НАЙТИ ДИАМЕТР ОКРУЖНОСТИ, ЕСЛИ ИЗВЕСТНА ДЛИНА ОКРУЖНОСТИ? Примеры | МАТЕМАТИКА 6 класс

Окружность вписанная в ромб

Формулы определения радиуса круга вписанного в ромб:

1. Формула радиуса круга вписанного в ромб через высоту ромба:

r =h
2

2. Формула радиуса круга вписанного в ромб через площадь и сторону ромба:

r =S
2 a

3. Формула радиуса круга вписанного в ромб через площадь и синус угла:

r =√ S · sinα
2

4. Формулы радиуса круга вписанного в ромб через сторону и синус любого угла:

r =a · sinα
2
r =a · sinβ
2

5. Формулы радиуса круга вписанного в ромб через диагональ и синус угла:

r =d 1 · sin ( α /2)
2
r =d 2 · sin ( β /2)
2

6. Формула радиуса круга вписанного в ромб через две диагонали:

r =d 1 · d 2
2√ d 1 2 + d 2 2

7. Формула радиуса круга вписанного в ромб через две диагонали и сторону:

r =d 1 · d 2
4 a

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Длина окружности

Найти длину окружности вписанной в ромб если

О чем эта статья:

6 класс, 9 класс, ЕГЭ/ОГЭ

Если вы не знаете, как обозначается длина окружности, то знак окружности выглядит вот так — l

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Видео:КАК НАЙТИ ДЛИНУ ОКРУЖНОСТИ, ОПИСАННОЙ ОКОЛО ПРАВИЛЬНОГО ТРЕУГОЛЬНИКА? Примеры | ГЕОМЕТРИЯ 9 классСкачать

КАК НАЙТИ ДЛИНУ ОКРУЖНОСТИ, ОПИСАННОЙ ОКОЛО ПРАВИЛЬНОГО ТРЕУГОЛЬНИКА? Примеры | ГЕОМЕТРИЯ 9 класс

Как найти длину окружности через диаметр

Хорда — это отрезок, который соединяет две точки окружности.

Диаметр — хорда, которая проходит через центр окружности. Формула длины окружности через диаметр:

π— число пи — математическая константа, примерно равная 3,14

d — диаметр окружности

Видео:Радиус и диаметрСкачать

Радиус и диаметр

Как найти длину окружности через радиус

Радиус окружности — отрезок, который соединяет центр окружности с точкой на окружности. Формула длины окружности через радиус:

π — число пи, примерно равное 3,14

r — радиус окружности

Это две основные формулы для вычисления длины окружности. Ниже мы покажем еще несколько формул, которые вы сможете доказать самостоятельно, пользуясь основными формулами и свойствами геометрических фигур.

Видео:Геометрия, номера 45.1, 46.1 (радиус вписанной окружности)Скачать

Геометрия, номера 45.1, 46.1 (радиус вписанной окружности)

Как вычислить длину окружности через площадь круга

Если вам известна площадь круга, вы также можете узнать длину окружности:

Найти длину окружности вписанной в ромб если

π — число пи, примерно равное 3,14

S — площадь круга

Видео:Площадь ромба. Легче понять...Скачать

Площадь ромба. Легче понять...

Как найти длину окружности через диагональ вписанного прямоугольника

Как измерить окружность, если в нее вписан прямоугольник:

π — число пи, примерно равное 3,14

d — диагональ прямоугольника

Видео:Длина окружности. 9 класс.Скачать

Длина окружности. 9 класс.

Как вычислить длину окружности через сторону описанного квадрата

Давайте рассмотрим, как найти длину окружности, если она вписана в квадрат и нам известна сторона квадрата:

π — математическая константа, примерно равная 3,14

a — сторона квадрата

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Как найти длину окружности через стороны и площадь вписанного треугольника

Можно найти, чему равна длина окружности, если в нее вписан треугольник и известны все три его стороны, а также известна его площадь:

Найти длину окружности вписанной в ромб если

π — математическая константа, она примерно равна 3,14

a — первая сторона треугольника

b — вторая сторона треугольника

c — третья сторона треугольника

S — площадь треугольника

Видео:ДЛИНА ДУГИ окружности 9 класс Атанасян 1111 1112 длина окружностиСкачать

ДЛИНА ДУГИ окружности 9 класс Атанасян 1111 1112 длина окружности

Как найти длину окружности через площадь и полупериметр описанного треугольника

Можно определить, чему равна длина окружности, если круг вписан в треугольник, и известны следующие параметры: площадь треугольника и его полупериметр.

Периметр — это сумма всех сторон треугольника. Полупериметр равен половине этой суммы, то есть чтобы его найти, вам нужно рассчитать периметр и поделить его на два.

Найти длину окружности вписанной в ромб если

π — математическая константа, примерно равная 3,14

S — площадь треугольника

p — полупериметр треугольника

Видео:Задание 3 (№27717) ЕГЭ по математике. Урок 80Скачать

Задание 3 (№27717) ЕГЭ по математике. Урок 80

Как вычислить длину окружности через сторону вписанного правильного многоугольника

Разбираемся, как в этом случае измерить окружность. Для этого необходимо посчитать, сколько сторон у многоугольника, а также знать длину стороны многоугольника. Напомним, что у правильного многоугольника все стороны равны, как у квадрата.

Формула вычисления длины окружности:
Найти длину окружности вписанной в ромб если

π — математическая константа, примерно равная 3,14

a — сторона многоугольника

N — количество сторон многоугольника

Задачи для решения

Давайте тренироваться! Двигаемся от простого к сложному:

Задача 1. Найти длину окружности, диаметр которой равен 5 см.

Решение. Итак, нам известен диаметр окружности, значит для вычисления длины заданной окружности берем формулу:

Подставляем туда известные переменные и получается, что длина окружности равна

Задача 2. Чему равна длина окружности, описанной около правильного треугольника со стороною a = 4√3 дм

Решение. Радиус окружности равен Найти длину окружности вписанной в ромб еслиПодставим туда наши переменные и получим Найти длину окружности вписанной в ромб если

Теперь, когда нам известен радиус окружности и есть формула длины окружности через радиус l=2πr, мы можем подставить наши данные и получить решение задачи.

Обучение на курсах по математике поможет закрепить полученные знания на практике.

Нахождение радиуса вписанной в ромб окружности

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, вписанной в ромб. Также разберем примеры решения задач для закрепления изложенного материала.

Формулы вычисления радиуса вписанной в ромб окружности

Найти длину окружности вписанной в ромб если

Через диагонали и сторону

Радиус r вписанной в ромб окружности равняется произведению его диагоналей, деленному на сторону, умноженную на 4.

Найти длину окружности вписанной в ромб если

  • d1 и d2 – диагонали ромба;
  • a – сторона ромба.

Через диагонали

Радиус r вписанной в ромб окружности можно найти, зная только длины его обеих диагоналей:

Найти длину окружности вписанной в ромб если

Эту формулу можно получить, если сторону a в формуле выше выразить через диагонали (согласно одному из свойств ромба):

Найти длину окружности вписанной в ромб если

Через сторону и угол

Найти длину окружности вписанной в ромб если

Радиус окружности r, вписанной в ромб, равняется половине произведения его стороны и синуса любого угла.

Найти длину окружности вписанной в ромб если

Через высоту

Найти длину окружности вписанной в ромб если

Радиус вписанного в ромб круга равняется половине его высоты.

Примеры задач

Задание 1
Известно, что диагонали ромба равны 6 и 8 см. Найдите радиус окружности, вписанной в него.

Решение
Применим соответствующую формулу, подставив в нее известные значения:

Найти длину окружности вписанной в ромб если

Задание 2
Вычислите радиус вписанного в ромб круга, если его сторона равна 11 см, а один из углов – 30°.

Решение
В данном случае мы можем воспользоваться последней из рассмотренных выше формул:

Вписанная в ромб окружность

Какими свойствами обладает вписанная в ромб окружность? Как найти её радиус?

Найти длину окружности вписанной в ромб еслиЦентр вписанной в ромб окружности — точка пересечения его диагоналей.

Радиус вписанной в ромб окружности можно найти по общей формуле

Найти длину окружности вписанной в ромб если

где S — площадь ромба, p — его полупериметр.

Так как полупериметр ромба равен p=2a, где a — сторона ромба, эту формулу можно записать как

Найти длину окружности вписанной в ромб если

С учётом формул для нахождения площади ромба:

Найти длину окружности вписанной в ромб если

где α — угол ромба (причем α может быть как острым, так и тупым).

Найти длину окружности вписанной в ромб если

где d1и d2 — диагонали ромба.

Таким образом, еще две формулы радиуса вписанной в ромб окружности:

Найти длину окружности вписанной в ромб если

Найти длину окружности вписанной в ромб если

Так как диаметр вписанной окружности равен высоте ромба, радиус равен половине высоты ромба:

Найти длину окружности вписанной в ромб если

Найти длину окружности вписанной в ромб еслиЕсли известно, что точка касания вписанной окружности делит сторону ромба на отрезки, то радиус можно выразить через длины этих отрезков.

Так как диагонали ромба взаимно перпендикулярны и радиус, проведённый в точку касания, перпендикулярен стороне, то по свойству высоты прямоугольного треугольника из треугольника AOD имеем

Найти длину окружности вписанной в ромб если

Следовательно, радиус вписанной в ромб окружности есть среднее пропорциональное между отрезками, на которые делит сторону точка касания:

Поделиться или сохранить к себе: