Найдите косинус альфа где альфа угол между векторами

Онлайн калькулятор. Вычисление угла между векторами

Этот онлайн калькулятор позволит вам очень просто найти угол между двумя векторами (косинус угла между векторами) для плоских и пространственных задач.

Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на вычисление угла между векторами и закрепить пройденный материал.

Видео:Угол между векторами | МатематикаСкачать

Угол между векторами | Математика

Калькулятор для вычисления угла между векторами

Инструкция использования калькулятора для вычисления угла между векторами

Ввод даных в калькулятор для вычисления угла между векторами

В онлайн калькулятор можно вводить числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора для вычисления угла между векторами

  • Между полями для ввода можно перемещаться нажимая клавиши «влево» и «вправо» на клавиатуре.

Видео:Угол между векторами. 9 класс.Скачать

Угол между векторами. 9 класс.

Теория. Вычисление угла между векторами

Найдите косинус альфа где альфа угол между векторами

Угол между двумя векторами a и b можно найти использовав следующую формулу:

cos α =a · b
| a || b |

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Как находить угол между векторамиСкачать

Как находить угол между векторами

Нахождение угла между векторами

Длина вектора, угол между векторами – эти понятия являются естественно-применимыми и интуитивно понятными при определении вектора как отрезка определенного направления. Ниже научимся определять угол между векторами в трехмерном пространстве, его косинус и рассмотрим теорию на примерах.

Для рассмотрения понятия угла между векторами обратимся к графической иллюстрации: зададим на плоскости или в трехмерном пространстве два вектора a → и b → , являющиеся ненулевыми. Зададим также произвольную точку O и отложим от нее векторы O A → = b → и O B → = b →

Углом между векторами a → и b → называется угол между лучами О А и О В .

Полученный угол будем обозначать следующим образом: a → , b → ^

Найдите косинус альфа где альфа угол между векторами

Очевидно, что угол имеет возможность принимать значения от 0 до π или от 0 до 180 градусов.

a → , b → ^ = 0 , когда векторы являются сонаправленными и a → , b → ^ = π , когда векторы противоположнонаправлены.

Векторы называются перпендикулярными, если угол между ними равен 90 градусов или π 2 радиан.

Если хотя бы один из векторов является нулевым, то угол a → , b → ^ не определен.

Видео:100 тренировочных задач #135 Угол между векторамиСкачать

100 тренировочных задач #135 Угол между векторами

Нахождение угла между векторами

Косинус угла между двумя векторами, а значит и собственно угол, обычно может быть определен или при помощи скалярного произведения векторов, или посредством теоремы косинусов для треугольника, построенного на основе двух данных векторов.

Согласно определению скалярное произведение есть a → , b → = a → · b → · cos a → , b → ^ .

Если заданные векторы a → и b → ненулевые, то можем разделить правую и левую части равенства на произведение длин этих векторов, получая, таким образом, формулу для нахождения косинуса угла между ненулевыми векторами:

cos a → , b → ^ = a → , b → a → · b →

Данная формула используется, когда в числе исходных данных есть длины векторов и их скалярное произведение.

Исходные данные: векторы a → и b → . Длины их равны 3 и 6 соответственно, а их скалярное произведение равно — 9 . Необходимо вычислить косинус угла между векторами и найти сам угол.

Решение

Исходных данных достаточно, чтобы применить полученную выше формулу, тогда cos a → , b → ^ = — 9 3 · 6 = — 1 2 ,

Теперь определим угол между векторами: a → , b → ^ = a r c cos ( — 1 2 ) = 3 π 4

Ответ: cos a → , b → ^ = — 1 2 , a → , b → ^ = 3 π 4

Чаще встречаются задачи, где векторы задаются координатами в прямоугольной системе координат. Для таких случаев необходимо вывести ту же формулу, но в координатной форме.

Длина вектора определяется как корень квадратный из суммы квадратов его координат, а скалярное произведение векторов равно сумме произведений соответствующих координат. Тогда формула для нахождения косинуса угла между векторами на плоскости a → = ( a x , a y ) , b → = ( b x , b y ) выглядит так:

cos a → , b → ^ = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2

А формула для нахождения косинуса угла между векторами в трехмерном пространстве a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) будет иметь вид: cos a → , b → ^ = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

Исходные данные: векторы a → = ( 2 , 0 , — 1 ) , b → = ( 1 , 2 , 3 ) в прямоугольной системе координат. Необходимо определить угол между ними.

Решение

  1. Для решения задачи можем сразу применить формулу:

cos a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 2 2 + 0 2 + ( — 1 ) 2 · 1 2 + 2 2 + 3 2 = — 1 70 ⇒ a → , b → ^ = a r c cos ( — 1 70 ) = — a r c cos 1 70

  1. Также можно определить угол по формуле:

cos a → , b → ^ = ( a → , b → ) a → · b → ,

но предварительно рассчитать длины векторов и скалярное произведение по координатам: a → = 2 2 + 0 2 + ( — 1 ) 2 = 5 b → = 1 2 + 2 2 + 3 2 = 14 a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 = — 1 cos a → , b → ^ = a → , b → ^ a → · b → = — 1 5 · 14 = — 1 70 ⇒ a → , b → ^ = — a r c cos 1 70

Ответ: a → , b → ^ = — a r c cos 1 70

Также распространены задачи, когда заданы координаты трех точек в прямоугольной системе координат и необходимо определить какой-нибудь угол. И тогда, для того, чтобы определить угол между векторами с заданными координатами точек, необходимо вычислить координаты векторов в виде разности соответствующих точек начала и конца вектора.

Исходные данные: на плоскости в прямоугольной системе координат заданы точки A ( 2 , — 1 ) , B ( 3 , 2 ) , C ( 7 , — 2 ) . Необходимо определить косинус угла между векторами A C → и B C → .

Решение

Найдем координаты векторов по координатам заданных точек A C → = ( 7 — 2 , — 2 — ( — 1 ) ) = ( 5 , — 1 ) B C → = ( 7 — 3 , — 2 — 2 ) = ( 4 , — 4 )

Теперь используем формулу для определения косинуса угла между векторами на плоскости в координатах: cos A C → , B C → ^ = ( A C → , B C → ) A C → · B C → = 5 · 4 + ( — 1 ) · ( — 4 ) 5 2 + ( — 1 ) 2 · 4 2 + ( — 4 ) 2 = 24 26 · 32 = 3 13

Ответ: cos A C → , B C → ^ = 3 13

Угол между векторами можно определить по теореме косинусов. Отложим от точки O векторы O A → = a → и O B → = b → , тогда, согласно теореме косинусов в треугольнике О А В , будет верным равенство:

A B 2 = O A 2 + O B 2 — 2 · O A · O B · cos ( ∠ A O B ) ,

b → — a → 2 = a → + b → — 2 · a → · b → · cos ( a → , b → ) ^

и отсюда выведем формулу косинуса угла:

cos ( a → , b → ) ^ = 1 2 · a → 2 + b → 2 — b → — a → 2 a → · b →

Для применения полученной формулы нам нужны длины векторов, которые несложно определяются по их координатам.

Хотя указанный способ имеет место быть, все же чаще применяют формулу:

Видео:Косинус угла между векторами. Коллинеарность векторовСкачать

Косинус угла между векторами.  Коллинеарность векторов

Угол между двумя векторами

Пусть в n-мерном пространстве задан ортонормированный базис

Найдите косинус альфа где альфа угол между векторами

Как известно скалярное произведение ненулевых векторов x и y называется произведение

Найдите косинус альфа где альфа угол между векторами

Если x=0 или y=0, то скалярное произведение равно нулю.

Вариант 1. Начальные точки всех векторов совпадают с началом координат.

Так как рассматривается пространство с ортонормированным базисом, то скалярное произведение можно вычислить также из выражения

Найдите косинус альфа где альфа угол между векторамиНайдите косинус альфа где альфа угол между векторами

Найдите косинус альфа где альфа угол между векторамиНайдите косинус альфа где альфа угол между векторами

координаты векторов x и y соответственно.

Из выражений (1) и (2) следует, что косинус угла между двумя векторами равен

Найдите косинус альфа где альфа угол между векторамиНайдите косинус альфа где альфа угол между векторами

И, следовательно, угол между двумя векторами будет равен

Найдите косинус альфа где альфа угол между векторами

Вариант 2. Начальные точки векторов произвольные.

Пусть заданы векторы x= AB и y= CD, где Найдите косинус альфа где альфа угол между векторами,Найдите косинус альфа где альфа угол между векторами,Найдите косинус альфа где альфа угол между векторами,Найдите косинус альфа где альфа угол между векторами.

Переместим параллельно векторы x и y так, чтобы начальные точки векторов совпали с началом координат. Получим векторы x’ и y’ с координатами (т.е. с конечными точками):

Найдите косинус альфа где альфа угол между векторамиНайдите косинус альфа где альфа угол между векторами

Найдите косинус альфа где альфа угол между векторамиНайдите косинус альфа где альфа угол между векторами

Найдите косинус альфа где альфа угол между векторамиНайдите косинус альфа где альфа угол между векторами

При таком перемещении угол между векторами x и y равен углу между векторами x’ и y’. Следовательно косинус угла между двумя векторами равен:

Найдите косинус альфа где альфа угол между векторамиНайдите косинус альфа где альфа угол между векторами

Угол между двумя векторами будет равен:

Найдите косинус альфа где альфа угол между векторами

Видео:Нахождение угла между векторами через координаты. 9 класс.Скачать

Нахождение угла между векторами  через координаты. 9 класс.

Примеры вычисления угла между двумя векторами

Вариант 1. Начальные точки всех векторов совпадают с началом координат.

Пример . Найти угол между векторами x=(7,2) и y=(4,5).

Найдите косинус альфа где альфа угол между векторами

На рисунке Рис. 1 в двухмерном пространстве представлены векторы x=(7,2) и y=(4,5).

Для вычисления угла между векторами x и y, вычислим нормы векторов x и y:

Найдите косинус альфа где альфа угол между векторами

Косинус угла между векторами x и y, будет равен:

Найдите косинус альфа где альфа угол между векторамиНайдите косинус альфа где альфа угол между векторами

Из выражения (5) вычисляем угол φ:

Найдите косинус альфа где альфа угол между векторами

Вариант 2. Начальные точки векторов произвольные.

Пример . Найти угол между векторами x= AB и y= CD, где A(-1,1), B(3, 7), C(3,2), D(12,5).

На рисунке Рис. 2 в двухмерном пространстве представлены векторы x= AB и y= CD.

Найдите косинус альфа где альфа угол между векторами

Переместим параллельно векторы x и y так, чтобы начальные точки векторов совпали с началом координат. Получим векторы x’ и y’ с координатами (т.е. с конечными точками): x’=(3-(-1),7-1)=(4,6), y’=(12-3,5-2)=(9,3).

Угол φ между векторами x и y равен углу φ’ между векторами x’ и y’. Поэтому вычисляя угол φ’ , получим угол между векторами x и y.

Вычислим норму векторов x’ и y’:

Найдите косинус альфа где альфа угол между векторами

Косинус угла между векторами x’ и y’:

💡 Видео

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Задача 3. Найти косинус угла между векторами.Скачать

Задача 3. Найти косинус угла между векторами.

Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnlineСкачать

Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnline

11 класс, 5 урок, Угол между векторамиСкачать

11 класс, 5 урок, Угол между векторами

Геометрия 9 класс (Урок№18 - Угол между векторами. Скалярное произведение векторов.)Скачать

Геометрия 9 класс (Урок№18 - Угол между векторами. Скалярное произведение векторов.)

Математика без Ху!ни. Угол между векторами, применение скалярного произведения.Скачать

Математика без Ху!ни. Угол между векторами, применение скалярного произведения.

9 класс, 17 урок, Угол между векторамиСкачать

9 класс, 17 урок, Угол между векторами

Найти угол между векторами и площадь параллелограмма, построенного на этих векторахСкачать

Найти угол между векторами и площадь параллелограмма, построенного на этих векторах

Вычислить синус угла между векторамиСкачать

Вычислить синус угла между векторами

найти угол между единичными векторамиСкачать

найти угол между единичными векторами

Угол между векторамиСкачать

Угол между векторами

Задание 3 ЕГЭ профиль #121Скачать

Задание 3 ЕГЭ профиль #121

№1039. Диагонали квадрата ABCD пересекаются в точке О. Найдите угол между векторами: а) АВ и АССкачать

№1039. Диагонали квадрата ABCD пересекаются в точке О. Найдите угол между векторами: а) АВ и АС

Угол между векторамиСкачать

Угол между векторами
Поделиться или сохранить к себе: