В данной публикации мы рассмотрим, какие векторы называются коллинеарными и перечислим условия, при которых они являются таковыми. Также разберем примеры решения задач по этой теме.
- Условия коллинеарности векторов
- Примеры задач
- Условие коллинеарности векторов
- Координатная форма условия коллинеарности векторов
- Разработка урока по теме «Применение векторов к решению задач. Средняя линия трапеции».
- «Управление общеобразовательной организацией: новые тенденции и современные технологии»
- 📸 Видео
Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Условия коллинеарности векторов
Векторы, лежащие на одной или нескольких параллельных прямых, называются коллинеарными.
Два вектора коллинеарны, если выполняется одно из условий ниже:
1. Существует такое число n, при котором .
2. Отношения координат векторов равны. Но данное условие не может применяться, если одна из координат равняется нулю.
3. Векторное произведение равно нулевому вектору (применимо только для трехмерных задач).
Видео:Коллинеарность векторовСкачать
Примеры задач
Задание 1
Даны векторы , и . Определим, есть ли среди них коллинеарные.
Решение:
У заданных векторов нет нулевых координат, значит мы можем применить второе условие коллинеарности.
Следовательно, коллинеарными являются только векторы a и c .
Задание 2
Выясним, при каком значении n векторы и коллинеарны.
Решение:
Т.к. среди координат нет нулей, согласно второму условию мы можем составить их соотношение, чтобы рассчитать недостающий элемент.
Видео:Понятие вектора. Коллинеарные вектора. 9 класс.Скачать
Условие коллинеарности векторов
В статье ниже рассмотрим условия, при которых векторы считаются коллинеарными, а также разберем тему на конкретных примерах. И, прежде чем приступить к обсуждению, напомним некоторые определения.
Коллинеарные векторы – ненулевые векторы, лежащие на одной прямой или на параллельных прямых. Нулевой вектор считается коллинеарным любому другому.
Данное определение дает возможность убедиться в коллинеарности векторов в их геометрическом отображении, однако точность такого способа может иметь погрешности, например, в зависимости, от качества самого чертежа. Поэтому обратимся к алгебраическому толкованию: сформируем условие, которое будет явным признаком коллинеарности.
Согласно схемам операций над векторами умножение вектора на некоторое заданное число приводит к соответствующему сжатию или растяжению вектора при сохранении или смене направления. Тогда вектор b → = λ · a → коллинеарен вектору a → , где λ – некоторое действительное число. Справедливым будет и обратное утверждение: если вектор b → коллинеарен вектору a → , его можно представить в виде λ · a → . Это является необходимым и достаточным условием коллинеарности двух ненулевых векторов.
Для коллинеарности двух векторов необходимо и достаточно, чтобы они были связаны равенствами: b → = λ · a → или a → = μ · b → , μ ∈ R
Видео:№747. Выпишите пары коллинеарных векторов, которые определяются сторонами: а) параллелограмма MNPQСкачать
Координатная форма условия коллинеарности векторов
Исходные данные: вектор a → задан в некоторой прямоугольной системе координат на плоскости и имеет координаты ( a x , a y ) , тогда, согласно полученному выше условию, вектор b → = λ · a → имеет координаты ( λ · a x , λ · a y ) .
По аналогии: если вектор a → задан в трехмерном пространстве, то он будет представлен в виде координат a = ( a x , a y , a z ) , а вектор b → = λ · a → имеет координаты ( λ · a x , λ · a y , λ · a z ) . Из полученных утверждений следуют условия коллинеарности двух векторов в координатном толковании.
- Для коллинеарности двух ненулевых векторов на плоскости необходимо и достаточно, чтобы их координаты были связаны соотношениями: b x = λ · a x b y = λ · a y или a x = μ · b x a y = μ · b y
- Для коллинеарности двух ненулевых векторов в пространстве необходимо и достаточно, чтобы их координаты были связаны соотношениями: b x = λ · a x b y = λ · a y b z = λ · a z или a x = μ · b x a y = μ · b y a z = μ · b z
Мы можем также получить еще одно условие коллинеарности векторов, опираясь на понятие их произведения.
Если ненулевые векторы a → = ( a x , a y , a z ) и b → = ( b x , b y , b z ) коллинеарны, то согласно векторному определению произведения a → × b → = 0 → . И это также соответствует равенству: i → j → k → a x a y a z b x b y b z = 0 → , что, в свою очередь, возможно только тогда, когда заданные векторы связаны соотношениями b → = λ · a → и a → = μ · b → , где μ — произвольное действительное число (на основании теоремы о ранге матрицы), что указывает на факт коллинеарности векторов.
Два ненулевых вектора коллинеарны тогда и только тогда, когда их векторное произведение равно нулевому вектору.
Рассмотрим применение условия коллинеарности на конкретных примерах.
Исходные данные: векторы a → = ( 3 — 2 2 , 1 ) и b → = ( 1 2 + 1 , 2 + 1 ) . Необходимо определить, коллинеарны ли они.
Решение
Выполним задачу, опираясь на условие коллинеарности векторов на плоскости в координатах: b x = λ · a x b y = λ · a y Подставив заданные значения координат, получим: b x = λ · a x ⇔ 1 2 + 1 = λ · ( 3 — 2 2 ) ⇒ λ = 1 ( 2 + 1 ) · ( 3 — 2 2 ) = 1 3 2 — 4 + 3 — 2 2 = 1 2 — 1 b y = λ · a y ⇔ 2 + 1 = 1 2 — 1 · 1 ⇔ ( 2 + 1 ) · ( 2 — 1 ) = 1 ⇔ 1 ≡ 1
Т.е. b → = 1 2 — 1 · a → , следовательно, заданные векторы коллинеарны.
Ответ: заданные векторы коллинеарны.
Исходные данные: векторы a → = ( 1 , 0 , — 2 ) и b → = ( — 3 , 0 , 6 ) . Необходимо убедиться в их коллинеарности.
Решение
Т.к. b x = λ · a x b y = λ · a y b z = λ · a z ⇔ — 3 = — 3 · 1 0 = — 3 · 0 6 = — 3 · ( — 2 ) , то верным будет равенство: b → = — 3 · a → , что является необходимым и достаточным условием коллинеарности. Таким образом, заданные векторы коллинеарны.
Найдем также векторное произведение заданных векторов и убедимся, что оно равно нулевому вектору: a → × b → = i → j → k → a x a y a z b x b y b z = i → j → k → 1 0 — 2 — 3 0 6 = i → · 0 · 6 + j → · ( — 2 ) · ( — 3 ) + k → · 1 · 0 — k → · 0 · ( — 3 ) — j → · 1 · 6 — i → · ( — 2 ) · 0 = 0 → Ответ: заданные векторы коллинеарны.
Исходные данные: векторы a → = ( 2 , 7 ) и b → = ( p , 3 ) . Необходимо определить, при каком значении p заданные векторы будут коллинеарны.
Решение
Согласно выведенному выше условию, векторы коллинеарны, если
b → = λ · a → ⇔ b x = λ · a x b y = λ · a y ⇔ p = λ · 2 3 = λ · 7
тогда λ = 3 7 , а p = λ · 2 ⇔ p = 6 7 .
Ответ: при p = 6 7 заданные векторы коллинеарны.
Также распространены задачи на нахождения вектора, коллинеарного заданному. Решаются они без затруднений, основываясь на условии коллинеарности: : достаточным будет взять произвольное действительное число λ и определить вектор, коллинеарный данному.
Исходные данные: вектор a → = ( 2 , — 6 ) . Необходимо найти любой ненулевой вектор, коллинеарный заданному.
Решение
Ответом может послужить, например, 1 2 · a → = ( 1 , — 3 ) или вектор 3 · a → = ( 6 , — 18 ) .
Ответ: вектор, коллинеарный заданному имеет координаты ( 1 , — 3 ) .
Исходные данные: вектор a → = ( 3 , 4 , — 5 ) . Необходимо определить координаты вектора единичной длины, коллинеарного заданному.
Решение
Вычислим длину заданного вектора по его координатам: a → = a x 2 + b x 2 + c x 2 = 3 2 + 4 2 + ( — 5 ) 2 = 5 2 Разделим каждую из заданных координат на полученную длину и получим единичный вектор, коллинеарный данному: 1 a → · a → = ( 3 5 2 , 4 5 2 , — 1 2 )
Видео:Коллинеарные векторы.Скачать
Разработка урока по теме «Применение векторов к решению задач. Средняя линия трапеции».
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Видео:§15 Коллинеарность векторовСкачать
«Управление общеобразовательной организацией:
новые тенденции и современные технологии»
Свидетельство и скидка на обучение каждому участнику
Г – 9 класс Урок № 7
Тема: «Применение векторов к решению задач. Средняя линия трапеции».
Дидактическая: на конкретных примерах показать применение векторов при решении геометрических задач; ввести понятия средней линии трапеции; доказать теорему о средней линии трапеции с помощью векторов.
Развивающая: развивать логическое мышление учащихся, учить решать задачи; развивать воображение – репродуктивное, творческое, образное; абстрактное мышление, умение обобщать.
Воспитательная: нравственное воздействие, воспитание культуры умственного труда, культуры общения.
Знать, действия производимые с векторами, понятие средней линии трапеции, теорему о средней линии трапеции.
Уметь вычислять среднюю линию трапеции, решать задачи с помощью векторов.
Сообщение темы и целей урока.
Актуализация знаний и умений обучающихся.
Проверка выполнения домашнего задания. Разбор нерешенных заданий.
Повторение изученного материала.
1. Ответить на вопросы на с. 213–214.
2. Проверка усвоения учащимися материала.
1. Устно ответить на вопросы:
1) Какие векторы называются коллинеарными? Изобразите на рисунке сонаправленные векторы и и противоположно направленные векторы и .
2) Какой вектор называется произведением данного вектора на данное число?
3) Могут ли векторы и быть неколлинеарными?
4) Сформулируйте основные свойства умножения вектора на число.
2. Решить задачу на доске и в тетрадях по готовому чертежу:
Точки M и N лежат соответственно на сторонах AD и BC четырехугольника ABCD, причем AM : MD = BN : NC = 3 : 4.
Докажите, что середины отрезков AB, MN и CD лежат на одной прямой.
Пусть K1 – середина AB, K2 – середина MN, K3 – середина CD. Согласно задаче 2 из п. 84 имеем . Из условия следует, что , поэтому .
Таким образом, векторы и коллинеарные, и, значит, точки K1, K2 и K3 лежат на одной прямой.
Изучение нового материала.
1. Определение трапеции. Виды трапеций.
2. Определение средней линии трапеции.
3. Доказательство теоремы о средней линии трапеции.
Доказательство оформить на доске и в тетрадях в виде следующей краткой записи:
Дано: ABCD – трапеция, AD || BC, M – середина стороны AB; N – середина стороны CD (рис. 266 учебника).
Доказать: MN || AD, MN = .
1) Согласно рассмотренной в классе задаче 1 .
2) Так как , то и, значит, MN || AD.
3) Так как , то = AD + BC, поэтому MN = (AD + BC).
Формирование умений и навыков.
Работа по учебнику.
1. Векторы могут использоваться для решения геометрических задач. Рассмотрим вспомогательную задачу.
2. Разобрать решение задачи 1 на с. 208 учебника по рис. 264.
3. Решить задачу 2. Точки M и N – середины сторон AB и CD четырехугольника ABCD. Докажите, что
Пусть О – произвольная точка. Согласно задаче 1 из п. 84 имеем поэтому .
Примечание. Результат задачи 2 можно использовать при доказательстве теоремы о средней линии трапеции на следующем уроке.
4. 1. Решить на доске и в тетрадях задачу № 793.
Пусть a и b – основания трапеции, тогда а + b = 48 – (13 + 15) = 20 (см); средняя линия MN = = 10 (см).
2. Решить задачу № 795.
3. Решить задачу № 799 на доске и в тетрадях.
Пусть BK – перпендикуляр, проведенный к основанию AD данной трапеции.
Тогда KD = AD – AK.
Но AK = , поэтому KD = AD – , то есть отрезок KD равен средней линии трапеции. Значит, средняя линия трапеции равна 7 см.
5. Решить задачу 3. Точка С лежит на отрезке AB, причем АС : СВ = 2 : 3. Докажите, что для любой точки О справедливо равенство
По условию AC:CB=2 : 3,поэтому Но Следовательно, откуда получается
Примечание. Задача 3 является частным случаем более общей задачи 806.
6. Решить задачу № 786 на доске и в тетрадях.
Так как точка А1 – середина стороны ВС, то .
Далее
7. При наличии времени решить задачу 4.
Точки K, L, M, N – середины сторон AB, BC, CD, DE пятиугольника ABCDE, а точки P и Q – середины отрезков KM и LN. Докажите, что PQ || AE и PQ = 1/4 AE.
Пусть О – произвольная точка. Согласно задаче 1 из п. 84 . Аналогично, .
Из этих равенств следует, что Отсюда следует, что PQ || AE и PQ = AE.
Подвести итоги урока, выставить отметки обучающимся за урок.
В результате изучения параграфа обучающиеся должны знать, какой вектор называется произведением вектора на число; уметь формулировать свойства умножения вектора на число; знать, какой отрезок называется средней линией трапеции; уметь формулировать и доказывать теорему о средней линии трапеции; уметь решать задачи типа №№ 782–787; 793–799.
Домашнее задание: изучить материал п. 87, 88; ответить на вопросы 18–20, с. 214 учебника; решить задачи №№ 787, 794, 796.
📸 Видео
18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать
ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | УмскулСкачать
Понятие вектора. Коллинеарные векторы.Скачать
Равные и противоположные векторы в параллелограмме, трапеции, треугольнике и отрезкеСкачать
Геометрия 9 класс. Средняя линия трапецииСкачать
Вектор. Определение. Коллинеарные векторы. Равные векторы.Скачать
умножение ВЕКТОРА на число + теорема о средней линии ТРАПЕЦИИСкачать
Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?Скачать
Компланарные векторы. Видеоурок 18. Геометрия 10 классСкачать
8 класс, 49 урок, Средняя линия трапецииСкачать
9 класс, 1 урок, Разложение вектора по двум неколлинеарным векторамСкачать
10 класс, 43 урок, Компланарные векторыСкачать
Выразить векторы. Разложить векторы. Задачи по рисункам. ГеометрияСкачать
Как выражать вектор? Как решать задачу с вектором? | TutorOnlineСкачать