План урока:
- Понятие вектора в пространстве
- Операции над векторами
- Компланарные векторы
- Разложение вектора на некомпланарные вектора
- Геометрия. 10 класс
- Презентация по геометрии в 10 классе на тему «Компланарные векторы. Правило параллелепипеда»
- Коммуникативный педагогический тренинг: способы взаимодействия с разными категориями учащихся
- Описание презентации по отдельным слайдам:
- Дистанционное обучение как современный формат преподавания
- Математика: теория и методика преподавания в образовательной организации
- Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Дистанционные курсы для педагогов
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Другие материалы
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Автор материала
- Дистанционные курсы для педагогов
- Подарочные сертификаты
- 💡 Видео
Видео:№76. Дан параллелепипед ABCDA1B1C1D1. Докажите, что AC||A1C1 и BD||B1D1.Скачать
Понятие вектора в пространстве
Напомним, что в курсе планиметрии мы уже подробно изучали вектора и действия с ними. При этом предполагалось, что все вектора располагаются в одной плоскости. Однако можно расширить понятие вектора так, чтобы они использовались и в стереометрии. В таком случае вектора уже могут располагаться в различных плоскостях.
Начнем с определения вектора:
Конец вектора обозначают с помощью стрелки. Посмотрим на рисунок:
Здесь показаны сразу три вектора:
У вектора АВ начало находится в точке А, а конец – в точке В. Аналогично у вектора С D точка С – это начало, а D – это конец. В обоих случаях начало и конец – это различные точки, поэтому АВ и CD именуют ненулевыми векторами. Если же начало и конец находятся в одной точке, например в Т, то получается нулевой вектор ТТ. Всякую точку в пространстве можно рассматривать как нулевой вектор:
Длина вектора АВ – это длина соответствующего ему отрезка АВ. Для обозначения длины используют квадратные скобки:
Естественно, что нулевой вектор имеет нулевую длину.
Далее напомним понятие коллинеарных векторов:
Коллинеарные вектора могут быть либо сонаправленными, либо противоположно направленными. Сонаправленные вектора находятся на сонаправленных лучах. Рассмотрим пример с кубом:
Здесь показаны вектора AD и ВС. Они сонаправленные, этот факт записывается так:
Вектора AD и FE располагаются на скрещивающихся прямых, поэтому они не коллинеарны. Их нельзя считать ни сонаправленными, ни противоположно направленными.
Сонаправленные вектора, имеющие одинаковую длину, именуются равными.
Рассмотрим несколько простейших задач.
Задание. В прямоугольном параллелепипеде АВС DA 1 B 1 C 1 D 1 известны три его измерения:
Решение. Для нахождения длин этих векторов достаточно вычислить длину отрезков СВ, DB и DB 1. Проще всего вычислить СВ, ведь отрезки СВ и AD одинаковы как стороны прямоугольника АВ CD :
Задание. На рисунке показан правильный тетраэдр АВС D . Точки M , N , P и Q являются серединами тех сторон, на которых они располагаются. Какие вектора из отмеченных на рисунке равны между собой?
Решение. Легко заметить, что вектора DP и PC находятся на одной прямой DC и сонаправлены, при этом их длина одинакова, ведь Р – середина DC . Тогда эти вектора по определению равны:
Вектора АМ и МВ также коллинеарны и имеют одинаковую длину, но они противоположно направлены, а потому равными не являются.
Теперь заметим, что отрезки MN , MQ , PQ и NP – это средние линии в ∆ ABD , ∆ АВС, ∆ BCD и ∆ ACD соответственно. По свойству средней линии получаем, что MN || BD , PQ || BD , MQ ||АС и NP ||АС. Отсюда по свойству транзитивности параллельности получаем, что MN || PQ и MQ || NP . Это значит, что четырехугольник MQPN – это параллелограмм, а у него противоположные стороны одинаковы:
Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Операции над векторами
Правила сложения векторов в стереометрии не отличаются от правил в планиметрии. Пусть надо сложить два вектора, а и b . Для этого отложим вектор а от какой-нибудь точки А, тогда его конец окажется в некоторой точке В. Далее от В отложим вектор b , его конец попадет в какую-то точку С. Тогда вектор АС как раз и будет суммой a и b :
Такой метод сложения векторов именуется правилом треугольника. Если нужно сложить больше двух векторов, то используют правило многоугольника. В этом случае необходимо каждый следующий вектор откладывать от конца предыдущего. При этом в стереометрии вектора могут располагаться в различных плоскостях, то есть они на самом деле многоугольник не образуют:
Напомним, что в планиметрии существовали так называемые противоположные вектора. Есть они и в стереометрии:
Главное свойство противоположных векторов заключается в том, что в сумме они дают нулевой вектор:
Заметим, что для получения противоположного вектора достаточно поменять его начало и конец, то есть в записи вектора обозначающие его буквы надо просто записать в обратном порядке:
C помощью противоположного вектора легко определить операцию вычитания векторов. Чтобы из вектора а вычесть вектор b , надо всего лишь прибавить к a вектор, противоположный b :
Далее рассмотрим умножение вектора на число. Пусть вектор а умножается на число k . В результате получается новый вектор b , причем
1) b и a будут коллинеарными векторами;
2) b будет в k раз длиннее, чем вектор a .
Если k – положительное число, то вектора a и b будут сонаправленными. Если же k a и b будут направлены противоположно.
Уточним, что если | k | b будет не длиннее, а короче вектора a . Наконец, если k = 0, то и b будет иметь нулевую длину, то есть b окажется нулевым вектором.
Задание. Дан параллелепипед АВС D А1В1С1 D 1. Постройте вектор, который будет являться суммой векторов:
Решение. В каждом случае необходимо заменить один из векторов в сумме на другой равный ему вектор так, чтобы можно было применить правило треугольника.
В задании а) вектор А1 D 1 заменить равным ему вектором ВС. В итоге получится вектор АС.
В задании б) заменяем А D 1 на вектор ВС1. Также можно было бы заменить АВ на D 1 C 1. В обоих случаях сумма окажется равной АС1.
В задании в) удобно DA заменить на C 1В1, тогда искомой суммой будет вектор С1В.
В задании г) производим замену DD 1 на равный ему вектор BB 1. Тогда сумма DB и BB 1– это вектор DB 1.
В задании д) необходимо заменить ВС на В1С1. В итоге получаем вектор DC :
Задание. В пространстве отмечены точки А, В, С и D . Выразите вектор АВ через вектора:
Решение. В случае а) сначала запишем очевидное равенство векторов, вытекающее из правило многоугольника:
Обратите внимание, что здесь у каждого следующего слагаемого начальная точка совпадает с конечной точкой предыдущего слагаемого, поэтому равенство и справедливо:
Однако по условию а) нам надо использовать другие вектора для выражения АВ. Мы можем просто заменить вектора CD и DB на противоположные:
Теперь можно составить и выражение для АВ:
Аналогично решаем и задания б) и в):
Задание. Р – вершина правильной шестиугольной пирамиды. Докажите, что сумма векторов, совпадающих с ребрами этой пирамиды и начинающихся в точке Р, в точности равна сумме векторов, которые совпадают с апофемами пирамиды и при этом также начинаются в точке Р.
Решение. Обозначим вершины буквами А1, А2, … А6, а середины сторон шестиугольника, лежащего в основании, буквами Н1, Н2, … Н6, как это показано на рисунке:
Нам надо показать, что сумма красных векторов равна сумме черных векторов:
Теперь отдельно построим правильный шестиугольник, лежащий, в основании пирамиды:
Ясно, что вектора, образованные сторонами этого шестиугольника, в сумме дают нулевой вектор (по правилу многоугольника):
Так как точки Н1, Н2, … Н6 – середины сторона, то вектора Н6А6, Н5А5,…Н1А1 будут вдвое короче векторов А1А6, А6А5, … А2А1. При этом они находятся на одних прямых, поэтому справедливы равенства:
Таким образом нам удалось из верного равенства (3) доказать (2), из которого в свою очередь следует справедливость и (1), ч. т. д.
Задание. Упростите выражения:
Решение. Здесь надо просто применить законы сложения и умножения векторов, как это делалось и в курсе планиметрии. Сначала раскрываем скобки, а потом приводим подобные слагаемые:
Видео:№359. Дан параллелепипед ABCDA1B1C1D1. а) Разложите вектор BD1 по векторам ВА, ВС и ВВ1.Скачать
Компланарные векторы
Если мы отложим несколько векторов от одной точки, то они либо будут находиться в одной плос-ти, либо располагаться в различных плос-тях. В первом случае их именуют компланарными векторами, а во втором – некомпланарными.
Любые два вектора будут компланарны, ведь при их откладывании от одной точки мы получаем две пересекающихся прямых, а через них всегда можно провести плос-ть. Однако если векторов более двух, то они могут быть как компланарны, так и некомпланарны.
Рассмотрим для примера параллелепипед:
Здесь вектора АС, АВ и АD компланарны, так как все они принадлежат одной грани (то есть плос-ти) АВСD. А вектора АВ, АD и АА1 некомпланарны, ведь через них нельзя провести одну плос-ть.
Очевидно, что если из трех векторов любые два коллинеарны, то вся тройка векторов компланарна, ведь при откладывании векторов от одной точки коллинеарные вектора окажутся на одной прямой.
Существует признак компланарности векторов:
Напомним, что подразумевается под разложением вектора. Пусть есть вектора а, b и c. Если существуют такие числах и y, при которых выполняется равенство
то говорят, что вектор с разложен по векторам а и b, причем числа xи y называются коэффициентами разложения.
Докажем сформулированный признак. Пусть есть три вектора а, b и c, а также числа xи y, такие, что
Эти вектора находятся в одной плос-ти ОАВ. Теперь от той же точки О отложим вектора ха и уb, концы которых окажутся в точках А1 и В1:
Естественно, что вектора ОА1 и ОВ1 также окажутся в плос-ти ОАВ. Тогда и их сумма будет принадлежать этой плос-ти, а эта сумма как раз и есть вектор с:
В итоге получили, что а, b и с располагаются в одной плос-ти, то есть они компланарны.
Справедливо и обратное утверждение. Если вектора а, b и с компланарны, но а и b неколлинеарны, то вектор с можно разложить на вектора a и b. Это утверждение прямо следует из изученной в 9 классе теоремы о разложении векторов. Важно отметить, что коэффициенты такого разложения определяются однозначно.
Для сложения тройки некомпланарных векторов можно применить так называемое правило параллелепипеда. Если есть три некомпланарных вектора, то можно отложить их от одной точки О и далее построить параллелепипед, в котором эти вектора будут ребрами. Тогда диагональ этого параллелепипеда, выходящая из точки О, и будет суммой этих трех векторов:
Видео:№329. Назовите все векторы, образованные ребрами параллелепипедаСкачать
Разложение вектора на некомпланарные вектора
Иногда вектор можно разложить не на два, а на три вектора. Выглядит такое разложение так:
Для доказательства рассмотрим три некомпланарных вектора а, bи c, а также произвольный вектор р. Отложим их от одной точки О. Обозначим концы этих векторов большими буквами А, В, С и Р:
Через ОВ и ОА можно провести некоторую плос-ть α. Точка С ей принадлежать не может, ведь ОА, ОВ и ОС – некомпланарные вектора. Проведем через Р прямую, параллельную ОС. Так как ОС пересекает α, то и параллельная ей прямая также пересечет α в некоторой точке Р1. (Примечание. Если Р принадлежит α, то точки Р и Р1 совпадут, то есть вектор Р1Р будет нулевым).
Далее через точку Р1 в плос-ти α проведем прямую, параллельную ОВ, которая пересечет ОА в точке Р2. Заметим, что вектор ОР2 находится на той же прямой, что и вектор ОА, то есть они коллинеарны, поэтому существует такое число х, что
Итак, мы показали, что у произвольного вектора p есть разложение на заранее заданные некомпланарные вектора. Осталось показать, что существует только одно такое разложение. Докажем это методом от противного. Пусть есть второе разложение с другими коэффициентами х1, у1 и z1:
В правой части находятся три вектора, которые в сумме нулевой вектор. По правилу сложения векторов это означает, что эти вектора образуют треугольник, то есть находятся в одной плос-ти:
Значит, они компланарны. Тогда компланарны и вектора a, b и с, что противоречит условию теоремы. Значит, второго разложения р на заданные некомпланарные векторы не существует, ч. т. д.
Задание. АВСD и А1В1С1D1 – параллелограммы, располагающиеся в разных плос-тях. Докажите, что тройка векторов ВВ1, СС1 и DD1 компланарна.
Решение. Сначала построим рисунок по условию задачи:
Для доказательства используем признак компланарности векторов. Для этого надо один из векторов, отмеченных на рисунке красным, разложить на два других вектора.
В результате нам удалось разложить СС1 на вектора BB1 и CC1. Значит, эти три вектора коллинеарны.
Задание. В параллелепипеде АВСDA1B1C1D1 запишите разложение вектора BD1 по векторам ВА, ВС и ВВ1.
Решение. Сначала представим вектор BD1 как сумму трех векторов:
Теперь заметим, что вектора С1D1 и ВА соответствуют ребрам параллелепипеда. Эти ребра одинаковы по длине и параллельны, поэтому и вектора будут равными. Аналогично равны вектора СС1 и ВВ1:
Задание. АВСD – тетраэдр, а точка К делит его ребро ВС пополам. Разложите вектор DK по векторам DA, AB и AC.
Решение. Сначала запишем очевидное выражение для вектора DK:
Задание. В точке М пересекаются медианы треугольника АВС, а О – произвольная точка в пространстве. Разложите вектор ОМ по векторам ОА, ОВ и ОС.
Решение. Медиану, проходящую через точку А, мы обозначим как АА1, то есть А1 – это середина отрезка ВС. Также буквой К обозначим середину ОВ:
Сначала разложим вектор ОА1 на ОВ и ОС. Это можно сделать, ведь они компланарны. КА1 – это средняя линия ∆ОСВ, поэтому КА1||ОС и КА1 вдвое короче ОС. Это значит, что
Так как АА1 – медиана, то точка М делит ее в отношении 2:1. Отсюда вытекает следующее соотношение:
Только что решенная задача может быть использована и при решении другого, более сложного задания.
Задание. Докажите, что в параллелепипеде АВСDА1В1С1D1 плос-ти А1ВD и СB1D1 делят диагональ АС1 на три равных отрезка.
Решение. Обозначим точкой K точку пересечения медиан ∆А1ВD. Тогда по формуле, выведенной в предыдущей задаче, мы получаем, что
Это соотношение означает, что вектора АК и АС1 коллинеарны, поэтому они располагаются на одной прямой (они не могут находиться на параллельных прямых, ведь у них есть общая точка А). Значит, точка K принадлежит диагонали АС1, и отрезок АК втрое короче диагонали.
Аналогично можно показать, что и
Из этого также вытекает, что М принадлежит диагонали АС1, и МС1 втрое короче АС1. Значит, точки М и К делят диагональ на три равных отрезка, ч. т. д.
Сегодня мы расширили понятие векторов и научились их применять не только в планиметрических, но и в стереометрических задачах. При сохраняются все правила, по которым выполняются действия над векторами. Также в стереометрии появляется новое понятие компланарных и некомпланарых векторов.
Видео:№358. Дан параллелепипед ABCDA1B1C1D1. Назовите вектор, начало и конец которого являются вершинамиСкачать
Геометрия. 10 класс
Сумма векторов
В кубе назовите вектор, равный сумме $overrightarrow+overrightarrow <B_C_>+overrightarrow<DD_> $
Вектор в пространстве
Установите соответствие между выражением и вектором $Х$
Длина вектора
Дано: АВ = 3 ВС = 4 СС1 = 12
Длина вектора АС1 =
Длина вектора
Диагонали параллелепипеда пересекаются в точке О.
Варианты ответа (введите порядковый номер):
Вектор в пространстве
Упростите выражение и выберите правильный результат преобразования:
Вектор в пространстве
В тетраэдре ABCD точка Е — середина АD.
Докажите, что $overrightarrow=frac(overrightarrow+overrightarrow)$
Так как $overrightarrow+overrightarrow=0$, то $overrightarrow+overrightarrow=2overrightarrow$, значит $overrightarrow=frac(overrightarrow+overrightarrow)$
Сложим полученные равенства $overrightarrow+overrightarrow+overrightarrow+overrightarrow=2overrightarrow$
Видео:№748. Диагонали параллелограмма ABCD пересекаются в точке O. Равны ли векторы?Скачать
Презентация по геометрии в 10 классе на тему «Компланарные векторы. Правило параллелепипеда»
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Видео:Угол между векторами. 9 класс.Скачать
Коммуникативный педагогический тренинг: способы взаимодействия с разными категориями учащихся
Сертификат и скидка на обучение каждому участнику
Описание презентации по отдельным слайдам:
Компланарные векторы. Правило параллелепипеда
Векторы называются компланарными, если при откладывании их от одной и той же точки они будут лежать в одной плоскости. Другими словами, векторы называются компланарными, если имеются равные им векторы, лежащие в одной плоскости. Любые два вектора компланарны. *
Три вектора, среди которых имеются два коллинеарных, также компланарны. *
Три произвольных вектора могут быть как компланарными, так и не компланарными. На рисунке изображен параллелепипед. А О Е D C В B1 *
Три произвольных вектора могут быть как компланарными, так и не компланарными. На рисунке изображен параллелепипед. А О Е D C В B1 *
B C A1 B1 C1 D1 A D *
A B C A1 B1 C1 D1 D Любые два вектора компланарны. *
№355 Дан параллелепипед АВСA1B1C1D1. Компланарны ли векторы? В А В1 С1 D1 D С А1 Три вектора, среди которых имеются два коллинеарных, компланарны. *
№355 Дан параллелепипед АВСA1B1C1D1. Компланарны ли векторы? В А В1 С1 D1 D С А1 *
№355 Дан параллелепипед АВСA1B1C1D1. Компланарны ли векторы? В А В1 С1 D1 D С А1 Три вектора, среди которых имеются два коллинеарных, компланарны. *
№355 Дан параллелепипед АВСA1B1C1D1. Компланарны ли векторы? В А В1 С1 D1 D С А1
Любые два вектора компланарны. Три вектора, среди которых имеются два коллинеарных, также компланарны. Признак компланарности *
Докажем, что векторы компланарны. В1 *
Сложение векторов. Правило треугольника. b П О В Т О Р И М *
Сложение векторов. Правило параллелограмма. А В D C П О В Т О Р И М *
Сложение векторов. Правило многоугольника. П О В Т О Р И М *
Правило параллелепипеда. b
Теорема о разложении вектора по трем некомпланарным векорам. Любой вектор можно разложить по трем данным некомпланарным векторам, причем коэффициенты разложения определяются единственным образом. *
Докажем теперь, что коэффициенты разложения определяются единственным образом. Допустим, что это не так и существует другое разложение вектора – Это равенство выполняется только тогда, когда o o o *
В A С B1 C1 D1 №358 Дан параллелепипед АВСA1B1C1D1. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов: АВ + АD + АА1 A1 *
В A С C1 D1 №358 Дан параллелепипед АВСA1B1C1D1. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов: DА + DC + DD1 A1 B1 *
В A С C1 D1 №358 Дан параллелепипед АВСA1B1C1D1. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов: A1 B1 A1B1 + C1B1 + BB1 *
В A С C1 D1 №358 Дан параллелепипед АВСA1B1C1D1. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов: A1 B1 *
В A С C1 D1 №358 Дан параллелепипед АВСA1B1C1D1. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов: A1 B1 *
В A С C1 D1 №359 Дан параллелепипед АВСA1B1C1D1. Разложите вектор BD1 по векторам BA, ВС и ВВ1. A1 B1 *
В A С C1 D1 №359 Дан параллелепипед АВСA1B1C1D1. Разложите вектор B1D1 по векторам А1A, А1В и А1D1. A1 B1 = = =
Правило параллелепипеда a Пусть даны некоторые некомпланарные векторы c a , b, c b
Правило параллелепипеда С Отложим от некоторой точки О пространства векторы ОА=a , ОВ=b, ОС=c и построим паралле- c лепипед так, чтобы В отрезки ОА,ОВ,ОС были его рёбрами. О А b a
Правило параллелепипеда D С Диагональ OD этого параллелепипеда изобра- жает сумму векторов a , b , и c c О А b a
Правило параллелепипеда D С OD=a + b +c . Действительно, OD=OE + ED=(OA +AE)+ + ED= OA+ 0B + OC = = a +b +c В Е О А
Решение задач № 379 Дан тетраэдр АВСD. Найдите сумму векторов: а) АВ+ВD+DC
Решение задач № 379 Дан тетраэдр АВСD. Найдите сумму векторов: а) АВ+ВD+DC A D B C
Решение задач № 379 Дан тетраэдр АВСD. Найдите сумму векторов: а) АВ+ВD+DC A Решение. AB+BD= AD, AD+DC=AC D Ответ: АС B C
Решение задач № 379 Дан тетраэдр АВСD. Найдите сумму векторов: б) АD+CВ+DC
Решение задач № 379 Дан тетраэдр АВСD. Найдите сумму векторов: б) АD+CВ+DC A D B C
Решение задач № 379 Дан тетраэдр АВСD. Найдите сумму векторов: б) АD+CВ+DC A Решение. AD+DC= AC, AC+CB=AB D Ответ: АB B C
Решение задач № 379 Дан тетраэдр АВСD. Найдите сумму векторов: в) АB+CD+BC+DA
Решение задач № 379 Дан тетраэдр АВСD. Найдите сумму векторов: в) АB+CD+BC+DA A D B C
Решение задач № 379 Дан тетраэдр АВСD. Найдите сумму векторов: в) АB+CD+BC+DA A Решение. AB+BC= AC, AC+CD=AD, AD+DA=0 D Ответ: 0 B C
Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : а) AB+AD+A А1
Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : а) AB+AD+A А1 B1 С1 А1 D1 B С А D
Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : а) AB+AD+A А1 B1 С1 А1 D1 Решение AB+AD = АС АС + A А1 = АС1 B С Ответ : АС1 А D
Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : б) DA+DC+D D1
Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : б) DA+DC+D D1 B1 С1 А1 D1 B С А D
Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : б) DA+DC+D D1 B1 С1 А1 D1 Решение DA+DC = DB DB + DD1 = DB1 B С Ответ : DB1 А D
Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : в) А1B1+С1B1 +ВВ1
Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : в) А1B1+С1B1 +ВВ1 B1 С1 А1 D1 B С А D
Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : в) А1B1+С1B1 +ВВ1 B1 С1 А1 D1 Решение А1B1+С1B1= D1 А1+ А1B1 = D1В1 D1В1 + ВВ1 = DВ + ВВ1 = DB1 B С Ответ : DB1 А D
Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : г) A1 A+A1D1 +AВ
Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : г) А1А+A1D1 +AВ B1 С1 А1 D1 B С А D
Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : г) А1А+A1D1 +AВ B1 С1 А1 D1 Решение А1A+A1D1= A1D1+ D1D = A1D A1D + AВ = A1D + DC = A1C B С Ответ : A1C А D
Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : в) B1A1+BB1 +ВC
Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : д) B1А 1 +BB1 +BC B1 С1 А1 D1 B С А D
Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : д) B1А 1 +BB1 +BC B1 С1 А1 D1 Решение B1A 1 +BB1= BA1 BA1 + ВC = BA1 + A1D 1 = BD1 B С Ответ : BD1 А D
Решение задач № 358. Дан параллелепипед ABCDА1B1С1D1.. Назовите вектор, начало и конец которого являются вершинами параллелепипеда, равный сумме векторов : в) B1A1+BB1 +ВC
Решение задач № 380. Дан параллелепипед ABCDА1B1С1D1.. Найдите сумму векторов : а) АB +B1C1 +DD1+CD B1 С1 А1 D1 B С А D
Решение задач № 380. Дан параллелепипед ABCDА1B1С1D1.. Найдите сумму векторов : а) АB +B1C1 +DD1+CD B1 С1 А1 D1 Решение AB +B1C1 = AB +BC = AC AC + CD + DD1 = AD1 B С Ответ : AD1 А D
Решение задач № 380. Дан параллелепипед ABCDА1B1С1D1.. Найдите сумму векторов : б) B1C1 + АB + DD1+CB1+ BC + AA1 B1 С1 А1 D1 B С А D
Решение задач № 380. Дан параллелепипед ABCDА1B1С1D1.. Найдите сумму векторов : б) B1C1 + АB + DD1+CB1+ BC + AA1 B1 С1 А1 D1 Решение AB +B1C1 = AB +BC = AC AC + CB1 = AB1 BC + AA1 = BA1 ; AB1 + BA1 = AC1 B С Ответ : AС1 А D
Решение задач № 380. Дан параллелепипед ABCDА1B1С1D1.. Найдите сумму векторов : в) BА + АC + CB+DC + DA B1 С1 А1 D1 B С А D
Решение задач № 380. Дан параллелепипед ABCDА1B1С1D1.. Найдите сумму векторов : в) BА + АC + CB+DC + DA B1 С1 А1 D1 Решение DC+DA+BA +AC + CB = DB B С Ответ : DB А D
Решение задач № 384 Точки А1, B1, С1 – середины сторон ВС, АС и АВ треугольника АВС, точка О- произвольная точка пространства. Докажите , что ОА1+ОВ1+ОС1=ОА+ОВ+ОС
Решение задач № 384 Точки А1, B1, С1 – середины сторон ВС, АС и АВ треугольника АВС, точка О- произвольная точка пространства. Докажите , что ОА1 +ОВ1+ОС1=ОА+ОВ+ОС В С1 А1 А В1 С
Решение задач № 384 Точки А1, B1, С1 – середины сторон ВС, АС и АВ треугольника АВС, точка О- произвольная точка пространства. Докажите , что ОА1 +ОВ1+ОС1=ОА+ОВ+ОС В Доказательство ОС+СА1 =ОА1 ; ОА1 +А1В=ОВ; СА1+А1В=1/2СВ, значит ОС — ОА1=ОА1-ОВ отсюда следует, что ОС+ОВ=2ОА1 Аналогично, ОС+ОА=2ОВ1 и ОВ+ОА=2ОС1 С1 А1 Складывая почленно три полученные равенства, получим равенство, которое необходимо доказать. А В1 С
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 945 человек из 80 регионов
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 679 человек из 75 регионов
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
- Сейчас обучается 302 человека из 66 регионов
Ищем педагогов в команду «Инфоурок»
Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать
Дистанционные курсы для педагогов
Развитие управляющих функций мозга ребёнка: полезные советы и упражнения для педагогов
Сертификат и скидка на обучение каждому участнику
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 508 397 материалов в базе
Другие материалы
- 13.04.2020
- 4175
- 746
- 13.04.2020
- 188
- 6
- 13.04.2020
- 167
- 8
- 13.04.2020
- 128
- 2
- 13.04.2020
- 773
- 68
- 13.04.2020
- 381
- 5
- 13.04.2020
- 1882
- 249
- 13.04.2020
- 131
- 0
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 13.04.2020 1916
- PPTX 2.9 мбайт
- 211 скачиваний
- Оцените материал:
Настоящий материал опубликован пользователем Филиппова Татьяна Александровна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 5 лет и 4 месяца
- Подписчики: 0
- Всего просмотров: 132995
- Всего материалов: 293
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Видео:Геометрия - 9 класс (Урок№1 - Понятие вектора. Равенство векторов)Скачать
Дистанционные курсы
для педагогов
663 курса от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
В Петербурге открыли памятник работавшим во время блокады учителям
Время чтения: 1 минута
В Сыктывкаре школьников переведут на дистанционное обучение
Время чтения: 1 минута
В Тюменской области школы и колледжи перевели на дистанционное обучение
Время чтения: 1 минута
Орловские школы переведут на дистанционное обучение с 24 января
Время чтения: 1 минута
Минобрнауки запускает конкурс студенческих научных обществ
Время чтения: 1 минута
Все школы Оренбурга переводят на дистанционное обучение с 28 января
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
💡 Видео
Выразить векторы. Разложить векторы. Задачи по рисункам. ГеометрияСкачать
ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэСкачать
ПРОСТОЙ СПОСОБ, как запомнить Векторы за 10 минут! (вы будете в шоке)Скачать
№330. Нарисуйте параллелепипед ABCDA1B1C1D1 и обозначьте векторы C1D1, BA1Скачать
10 класс, 44 урок, Правило параллелепипедаСкачать
№356. Точки E и F - середины середины ребер AC и BD тетраэдра ABCD. Докажите, что 2FE = ВА + DCСкачать
10 класс, 43 урок, Компланарные векторыСкачать
Понятие вектора. Коллинеарные вектора. 9 класс.Скачать
№355. Дан параллелепипед ABCDA1B1C1D1. Какие из следующих трех векторов компланарныСкачать
Коллинеарность векторовСкачать