Определение . Медианой треугольника называют отрезок, соединяющий вершину треугольника с серединой противоположной стороны (рис 1).
Поскольку в каждом треугольнике имеется три вершины, то в каждом треугольнике можно провести три медианы.
На рисунке 1 медианой является отрезок BD .
Утверждение 1 . Медиана треугольника делит его на два треугольника равной площади ( равновеликих треугольника).
Доказательство . Проведем из вершины B треугольника ABC медиану BD и высоту BE (рис. 2),
и заметим, что (см. раздел нашего справочника «Площадь треугольника»)
Поскольку отрезок BD является медианой, то
что и требовалось доказать.
Утверждение 2 . Точка пересечения двух любых медиан треугольника делит каждую из этих медиан в отношении 2 : 1 , считая от вершины треугольника.
Доказательство . Рассмотрим две любых медианы треугольника, например, медианы AD и CE , и обозначим точку их пересечения буквой O (рис. 3).
Обозначим середины отрезков AO и CO буквами F и G соответственно (рис. 4).
Теперь рассмотрим четырёхугольник FEDG (рис. 5).
Сторона ED этого четырёхугольника является средней линией в треугольнике ABC . Следовательно,
Сторона FG четырёхугольника FEDG является средней линией в треугольнике AOC . Следовательно,
Отсюда вытекает, что точка O делит каждую из медиан AD и CE в отношении 2 : 1 , считая от вершины треугольника.
Следствие . Все три медианы треугольника пересекаются в одной точке.
Доказательство . Рассмотрим медиану AD треугольника ABC и точку O , которая делит эту медиану в отношении 2 : 1 , считая от вершины A (рис.7).
Поскольку точка, делящая отрезок в заданном отношении, является единственной, то и другие медианы треугольника будут проходить через эту точку, что и требовалось доказать.
Определение . Точку пересечения медиан треугольника называют центроидом треугольника.
Утверждение 3 . Медианы треугольника делят треугольник на 6 равновеликих треугольников (рис. 8).
Доказательство . Докажем, что площадь каждого из шести треугольников, на которые медианы разбивают треугольник ABC , равна площади треугольника ABC. Для этого рассмотрим, например, треугольник AOF и опустим из вершины A перпендикуляр AK на прямую BF (рис. 9).
Видео:Длина медианы треугольникаСкачать
Please wait.
Видео:Как найти длину биссектрисы, медианы и высоты? | Ботай со мной #031 | Борис ТрушинСкачать
We are checking your browser. mathvox.ru
Видео:Длина медианы. Вывод формулыСкачать
Why do I have to complete a CAPTCHA?
Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.
Видео:Формула медианы треугольникаСкачать
What can I do to prevent this in the future?
If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.
If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.
Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.
Cloudflare Ray ID: 6dcb6e214fcd498d • Your IP : 85.95.188.35 • Performance & security by Cloudflare
Видео:Формула для биссектрисы треугольникаСкачать
Элементы треугольника. Медиана
Видео:Формулы для медианы треугольникаСкачать
Определение
Медианой треугольника называют отрезок, соединяющий вершину треугольника с серединой противоположной стороны
Видео:Теорема о точке пересечения медиан треугольника. Доказательство. 8 класс.Скачать
Свойства
1. Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины . Эта точка называется центром тяжести треугольника.
2. Медиана треугольника делит его на два треугольника равной площади (равновеликих треугольника)
3. Медианы треугольника делят треугольник на 6 равновеликих треугольников
4. Медиана, проведенная к гипотенузе прямоугольного треугольника, равна половине гипотенузы
5. Длина медианы треугольника вычисляется по формуле:
, где где — медиана к стороне ; — стороны треугольника
6. Длина стороны треугольника через медианы вычисляется по формуле:
, где – медианы к соответствующим сторонам треугольника, — стороны треугольника.
Чтобы не потерять страничку, вы можете сохранить ее у себя:
💡 Видео
Теорема Стюарта | формулы для биссектрисы треугольника и медианыСкачать
длина медианы #SHORTSСкачать
8. Медиана треугольника и её свойства.Скачать
Высота, биссектриса, медиана. 7 класс.Скачать
Все факты о медиане треугольника для ЕГЭСкачать
Геометрия 7 класс (Урок№12 - Медианы треугольника. Биссектрисы треугольника. Высоты треугольника.)Скачать
Свойство биссектрисы треугольника с доказательствомСкачать
Формула нахождения медианы треугольника по известным сторонам треугольника.Скачать
Вычисление длины медианы треугольникаСкачать
Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||Скачать
7 класс, 17 урок, Медианы, биссектрисы и высоты треугольникаСкачать
Построение медианы в треугольникеСкачать
ГЕОМЕТРИЯ 7 класс. Медиана прямоугольного треугольника. Свойство. Доказательство для 7 класса.Скачать