Какие прямые называют параллельными

Параллельность прямых

Какие прямые называют параллельными

О чем эта статья:

10 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Геометрия 7 класс (Урок№18 - Параллельные прямые.)Скачать

Геометрия 7 класс (Урок№18 - Параллельные прямые.)

Определение параллельности прямых

Начнем с главного — определимся, какие прямые параллельны согласно евклидовой геометрии. Мы недаром упомянули Евклида, ведь именно в его трудах, написанных за 300 лет до н. э., до нас дошли первые упоминания о параллельности.

Параллельными называются прямые в одной плоскости, не имеющие точек пересечения, даже если их продолжать бесконечно долго. Обозначаются они следующим образом: a II b.

Казалось бы, здесь все просто, но со времен Евклида над определением параллельных прямых и признаками параллельности прямых бились лучшие умы. Особый интерес вызывал 5-й постулат древнегреческого математика: через точку, которая не относится к прямой, в той же плоскости можно провести только одну прямую, параллельную первой. В XIX веке российский математик Н. Лобачевский смог опровергнуть постулат и указать на условия, при которых возможно провести как минимум 2 параллельные прямые через одну точку.

Впрочем, поскольку школьная программа ограничена евклидовой геометрией, вышеуказанное утверждение мы принимаем как аксиому.

На плоскости через любую точку, не принадлежащую некой прямой, можно провести единственную прямую, которая была бы ей параллельна.

Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Видео:Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)

Свойства и признаки параллельных прямых

Есть ряд признаков, по которым можно определить, что одна прямая параллельна другой. К счастью, свойства и признаки параллельности прямых тесно связаны, поэтому не придется запоминать много информации.

Начнем со свойств. Для этого проведем третью прямую, пересекающую параллельные прямые — она будет называться секущей. В результате у нас образуется 8 углов.

Если секущая проходит через две параллельные прямые, то:

    два внутренних односторонних угла образуют в сумме 180°:

∠4 + ∠6 = 180°; ∠3 + ∠5 = 180°.

Какие прямые называют параллельными
два внутренних накрест лежащих угла равны между собой:

Какие прямые называют параллельными
два соответственных угла равны между собой:

∠1 = ∠5, ∠3 = ∠7, ∠4 = ∠8, ∠2 = ∠6.

Какие прямые называют параллельными

Если секущая образует перпендикуляр с одной из параллельных прямых, то она будет перпендикулярна и другой.

Какие прямые называют параллельными

Вышеуказанные свойства являются одновременно признаками, по которым мы можем сделать вывод о параллельности прямых. Причем достаточно установить и доказать лишь один признак — остальные будут к нему прилагаться.

А сейчас посмотрим, как все это помогает решать задачи и практиковаться в определении параллельности двух прямых.

Задача 1

Прямые MN и KP пересекают две другие прямые, образуя несколько углов. Известно, что ∠1 = 73°; ∠3 = 92°; ∠2 = 73°. Требуется найти величину ∠4.

Решение

Поскольку ∠1 и ∠2 являются соответственными, их равенство говорит о том, что MN II KP. Следовательно, ∠3 = ∠MPK = 92°.

Согласно другому свойству параллельных прямых ∠4 + ∠MPK = 180°.

Какие прямые называют параллельными

Задача 2

Две параллельные прямые а и b удалены друг от друга на расстояние 27 см. Секущая к этим прямым образует с одной из них угол в 150°. Требуется найти величину отрезка секущей, расположенного между а и b.

Решение

Поскольку а II b, значит ∠MKD + ∠KDN = 180°.

Соответственно, ∠MKD = 180° — ∠KDN = 180° — 150° = 30°.

Теперь рассмотрим треугольник KDM. Мы знаем, что отрезок DM представляет собой расстояние между прямыми а и b, а значит, DM ┴ b и наш треугольник является прямоугольным.

Поскольку катет, противолежащий углу в 30°, равен ½ гипотенузы, DM = 1/2DK.

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Параллельные прямые

Определение


Параллельными прямыми
называются две прямые,
которые не пересекаются.

Параллельность прямых обозначают знаком: . Например
параллельность прямых a и b обозначается так: a ∥ b.

Какие прямые называют параллельными

На рисунке 1 изображены три прямые. Прямая а параллельна
прямой b, прямая c не параллельна ни одной из прямых.

Также, как и параллельные прямые, существуют параллельные
отрезки. Два отрезка называются параллельными, если они
лежат на параллельных прямых.

Признаки

Параллельность двух прямых можно доказать по трем признакам.

Какие прямые называют параллельными

На рисунке 2 изображены 8 углов, при помощи которых можно
доказать все три признака параллельности. Это накрест лежащие
углы: 3 и 5, 4 и 6; односторонние углы: 4 и 5, 3 и 6;
соответственные углы: 1 и 5, 4 и 8, 2 и 6, 3 и 7.

Прямая называется секущей по отношению к двум другим прямым,
если она пересекает их в двух точках.

  1. Если при пересечении двух прямых секущей
    накрест лежащие углы равны, то прямые параллельны.
  2. Если при пересечении двух прямых секущей
    соответственные углы равны, то прямые параллельны.
  3. Если при пересечении двух прямых секущей
    сумма односторонних углов равна 180°, то прямые параллельны.

Видео:6 .7 кл Построение параллельных прямых.Как построить параллельные прямыеСкачать

6 .7 кл Построение параллельных прямых.Как построить параллельные прямые

Прямая линия. Параллельные прямые. Основные понятия.

Две прямые называются параллельными, если, находясь в одной плоскости, они не пересекаются, сколько бы их ни продолжали. Параллельность прямых на письме обозначают так: AB || СE

Возможность существования таких прямых доказывается теоремой.

Теорема.

Через всякую точку, взятую вне данной прямой, можно провести параллельную этой прямой.

Какие прямые называют параллельными

Пусть AB данная прямая и С какая-нибудь точка, взятая вне ее. Требуется доказать, что через С можно провести прямую, параллельную AB. Опустим на AB из точки С перпендикуляр СD и затем проведем СE ^ СD, что возможно. Прямая CE параллельна AB.

Для доказательства допустим противное, т.е., что CE пересекается с AB в некоторой точке M. Тогда из точки M к прямой СD мы имели бы два различных перпендикуляра MD и , что невозможно. Значит, CE не может пересечься с AB, т.е. СE параллельна AB.

Следствие.

Аксиома параллельных линий.

Через одну и ту же точку нельзя провести двух различных прямых, параллельных одной и той же прямой.

Какие прямые называют параллельными

Так, если прямая СD, проведенная через точку С параллельна прямой AB, то всякая другая прямая СE, проведенная через ту же точку С, не может быть параллельна AB, т.е. она при продолжении пересечется с AB.

Доказательство этой не вполне очевидной истины оказывается невозможным. Ее принимают без доказательства, как необходимое допущение (postulatum).

Следствия.

1. Если прямая (СE) пересекается с одной из параллельных (СВ), то она пересекается и с другой (AB), потому что в противном случае через одну и ту же точку С проходили бы две различные прямые, параллельные AB, что невозможно.

2. Если каждая из двух прямых (A и B) параллельны одной и той же третьей прямой (С), то они параллельны между собой.

Действительно, если предположить, что A и B пересекаются в некоторой точке M, то тогда через эту точку проходили бы две различные прямые, параллельные С, что невозможно.

Теорема.

Если прямая перпендикулярна к одной из параллельных прямых, то она перпендикулярна и к другой параллельной.

Какие прямые называют параллельными

Перпендикуляр EF, пересекаясь с AB, непременно пересечет и СD. Пусть точка пересечения будет H.

Предположим теперь, что СD не перпендикулярна к EH. Тогда какая-нибудь другая прямая, например HK, будет перпендикулярна к EH и, следовательно через одну и ту же точку H будут проходить две прямые параллельные AB: одна СD, по условию, а другая HK по доказанному раньше. Так как это невозможно, то нельзя допустить, что СВ была не перпендикулярна к EH.

🔍 Видео

Параллельные прямые. 6 класс.Скачать

Параллельные прямые. 6 класс.

Параллельность прямых. 10 класс.Скачать

Параллельность прямых. 10 класс.

Перпендикулярные и параллельные прямые. Математика 6 классСкачать

Перпендикулярные и параллельные прямые. Математика 6 класс

Геометрия 7 класс (Урок№33 - Повторение. Параллельные и перпендикулярные прямые.)Скачать

Геометрия 7 класс (Урок№33 - Повторение. Параллельные и перпендикулярные прямые.)

Перпендикулярные прямые. 6 класс.Скачать

Перпендикулярные прямые. 6 класс.

Свойства параллельных прямых - 7 класс геометрияСкачать

Свойства параллельных прямых - 7 класс геометрия

Параллельные прямые. Математика. 6 класс.Скачать

Параллельные прямые. Математика. 6 класс.

Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)Скачать

Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)

Параллельные прямые, 6 классСкачать

Параллельные прямые, 6 класс

Урок ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕСкачать

Урок ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ

7 класс, 12 урок, Перпендикулярные прямыеСкачать

7 класс, 12 урок, Перпендикулярные прямые

7 класс, 24 урок, Определение параллельных прямыхСкачать

7 класс, 24 урок, Определение параллельных прямых

УВБ-76. Как взломали самую секретную радиостанцию в миреСкачать

УВБ-76. Как взломали самую секретную радиостанцию в мире

ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ. §13 геометрия 7 классСкачать

ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ. §13 геометрия 7 класс

ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ. Математика 6 класс.Скачать

ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ. Математика 6 класс.
Поделиться или сохранить к себе: