Перенос треугольника на вектор

Параллельный перенос

Параллельный перенос — это преобразование плоскости, при котором точки смещаются в одном и том же направлении на одно и то же расстояние.

Строгое определение параллельного переноса даётся либо через декартовы координаты, либо через вектор.

1) Введём на плоскости декартовы координаты x, y.

Параллельный перенос — это такое преобразование фигуры F, при котором её произвольная точка (x;y) переходит в точку (x+a; y+b), где a и b — некоторые числа, одинаковые для всех точек (x;y) фигуры F.

Формулы параллельного переноса

Перенос треугольника на векторЕсли при параллельном переносе точка A(x;y) переходит в точку A1(x1;y1)

Перенос треугольника на вектор

то параллельный перенос задаётся формулами:

Перенос треугольника на вектор

Говорят также, что A1 является образом точки A при параллельном переносе на вектор (a; b). Точка A называется прообразом.

2) Параллельный перенос на данный вектор ā называется отображение плоскости на себя, при котором каждая точка A отображается в такую точку A1, то вектор AA1 равен вектору ā:

Перенос треугольника на вектор

Свойства параллельного переноса

1) Параллельный перенос есть движение (то есть параллельный перенос сохраняет расстояние).

2) При параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние.

3) При параллельном переносе каждая прямая переходит в параллельную ей прямую (или в себя).

4) Каковы бы ни были точки A и A1, существует единственный параллельный перенос, при котором точка A переходит в точку A1.

В алгебре параллельный перенос широко используется для построения графиков функций.

Видео:Перенос треугольника по векторуСкачать

Перенос треугольника по вектору

Параллельный перенос и поворот

Вы будете перенаправлены на Автор24

Видео:Геометрия 9 класс (Урок№29 - Параллельный перенос.)Скачать

Геометрия 9 класс (Урок№29 - Параллельный перенос.)

Параллельный перенос

Введем определение параллельного переноса на вектор. Пусть нам дан вектор $overrightarrow$.

Перенос треугольника на вектор

Рисунок 1. Параллельный перенос

Введем следующую теорему.

Параллельный перенос является движением.

Доказательство.

Пусть нам даны точки $M и N$. Пусть при их параллельном переносе на вектор $overrightarrow$ эти точки отображаются в точки $M_1$ и $N_1$, соответственно (рис. 2).

Перенос треугольника на вектор

Рисунок 2. Иллюстрация теоремы 1

Значит четырехугольник $_1N_1N$ — параллелограмм и, следовательно, $MN=M_1N_1$. То есть параллельный перенос сохраняет расстояние между точками. Следовательно, параллельный перенос является движением.

Теорема доказана.

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Поворот

Введем определение поворота вокруг точки $O$ на угол $alpha $.

Поворот вокруг точки $O$ на угол $alpha $ — отображение плоскости на себя, при котором любая точка $M$ отображается на точку $M_1$ такую, что $_1=OM, angle M_1=angle alpha $ (Рис. 3).

Перенос треугольника на вектор

Рисунок 3. Поворот

Готовые работы на аналогичную тему

Введем следующую теорему.

Поворот является движением.

Доказательство.

Пусть нам даны точки $M и N$. Пусть при их повороте вокруг точки $O$ на угол $alpha $ они отображаются в точки $M_1$ и $N_1$, соответственно (рис. 4).

Перенос треугольника на вектор

Рисунок 4. Иллюстрация теоремы 2

Так как, по определению 2, $_1=OM, _1=ON$ и $overrightarrow<_1>=overrightarrow$, а ,$angle MON=angle M_1ON_1$, то

Следовательно, $MN=M_1N_1$. То есть поворот сохраняет расстояние между точками. Следовательно, поворот является движением.

Теорема доказана.

Видео:Скалярное произведение векторов. 9 класс.Скачать

Скалярное произведение векторов. 9 класс.

Примеры задач на параллельный перенос и поворот

Построить треугольник $A_1B_1C_1$,образованный поворотом вокруг точки $B$ на угол $^0$ равнобедренного прямоугольного (с прямым углом $B)$ треугольника $ABC$.

Решение.

Очевидно, что точка $B$ перейдет сама в себя, то есть $B_1=B$. Так как поворот производится на угол, равный $^0$, а треугольник $ABC$ равнобедренный, то прямая $BA_1$ проходит через точку $L$ — середины стороны $AC$. По определению, отрезок $BA_1=BA$. Построим его (Рис. 5).

Перенос треугольника на вектор

Построим теперь вершину $C_1$ по определению 2:

[angle CBC_1=^0, BC=BC_1]

Соединим все вершины треугольника $A_1B_1C_1$ (Рис. 6).

Перенос треугольника на вектор

Решение закончено.

Построить параллельный перенос треугольника $ABC$ на вектор $overrightarrow$.

Решение.

Перенесем каждую вершину треугольника на вектор $overrightarrow$. Получаем треугольник $CA_1C_1$ (рис. 7).

Перенос треугольника на вектор

Решение закончено.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 15 04 2021

Видео:#192 ПОВОРОТ И ПЕРЕНОС // ТРЕУГОЛЬНИКСкачать

#192 ПОВОРОТ И ПЕРЕНОС // ТРЕУГОЛЬНИК

§ 2. Параллельный перенос и поворот

Параллельный перенос

Пусть Перенос треугольника на вектор— данный вектор. Параллельным переносом на вектор Перенос треугольника на векторназывается отображение плоскости на себя, при котором каждая точка М отображается в такую точку М1, что вектор Перенос треугольника на векторравен вектору Перенос треугольника на вектор(рис. 329).

Перенос треугольника на вектор

Параллельный перенос является движением, т. е. отображением плоскости на себя, сохраняющим расстояния. Докажем это. Пусть при параллельном переносе на вектор Перенос треугольника на векторточки М и N отображаются в точки М1 и N1 (см. рис. 329). Так как Перенос треугольника на вектор, то Перенос треугольника на вектор. Отсюда следует, что ММ1 || NN1 и MM1 = NN1, поэтому четырёхугольник MM1N1N — параллелограмм. Следовательно, MN = M1N1, т. е. расстояние между точками М и N равно расстоянию между точками М1 и N1 (случаи, когда точки М и N расположены на прямой, параллельной вектору Перенос треугольника на вектор, рассмотрите самостоятельно). Таким образом, параллельный перенос сохраняет расстояния между точками и поэтому представляет собой движение. Наглядно это движение можно представить себе как сдвиг всей плоскости в направлении данного вектора Перенос треугольника на векторна его длину.

Поворот

Отметим на плоскости точку О (центр поворота) и зададим угол а (угол поворота). Поворотом плоскости вокруг точки О на угол α называется отображение плоскости на себя, при котором каждая точка М отображается в такую точку М1, что ОМ = ОМ1 и угол МОМ1 равен α (рис. 330). При этом точка О остаётся на месте, т. е. отображается сама в себя, а все остальные точки поворачиваются вокруг точки О в одном и том же направлении — по часовой стрелке или против часовой стрелки. На рисунке 330 изображён поворот против часовой стрелки.

Перенос треугольника на вектор

Поворот является движением, т. е. отображением плоскости на себя, сохраняющим расстояния.

Докажем это. Пусть О — центр поворота, α — угол поворота против часовой стрелки (случай поворота по часовой стрелке рассматривается аналогично). Допустим, что при этом повороте точки М и N отображаются в точки М1 и N1 (рис. 331). Треугольники OMN и ОМ1N1 равны по двум сторонам и углу между ними: ОМ = ОМ1, ON = ON1 и ∠MON = ∠M1ON1 (для случая, изображённого на рисунке 331, каждый из этих углов равен сумме угла α и угла M1ON). Из равенства этих треугольников следует, что MN = M1N1, т. е. расстояние между точками М и N равно расстоянию между точками М, и N, (случай, когда точки О, М и N расположены на одной прямой, рассмотрите самостоятельно). Итак, поворот сохраняет расстояния между точками и поэтому представляет собой движение. Это движение можно представить себе как поворот всей плоскости вокруг данной точки О на данный угол α.

Перенос треугольника на вектор

Задачи

1162. Начертите отрезок АВ и вектор Перенос треугольника на вектор. Постройте отрезок А1В1, который получается из отрезка АВ параллельным переносом на вектор Перенос треугольника на вектор.

1163. Начертите треугольник АВС, вектор Перенос треугольника на вектор, который не параллелен ни одной из сторон треугольника, и вектор Перенос треугольника на вектор, паралдельный стороне АС. Постройте треугольник А1В1С1, который получается из треугольника АВС параллельным переносом: а) на вектор Перенос треугольника на вектор; б) на вектор Перенос треугольника на вектор.

1164. Даны равнобедренный треугольник АВС с основанием АС и такая точка D на прямой АС, что точка С лежит на отрезке AD. а) Постройте отрезок BlD, который получается из отрезка ВС параллельным переносом на вектор Перенос треугольника на вектор. б) Докажите, что четырёхугольник ABB1D — равнобедренная трапеция.

1165. Даны треугольник, трапеция и окружность. Постройте фигуры, которые получаются из этих фигур параллельным переносом на данный вектор Перенос треугольника на вектор.

1166. Постройте отрезок А1В1, который получается из данного отрезка АВ поворотом вокруг данного центра О: а) на 120° по часовой стрелке; б) на 75° против часовой стрелки; в) на 180°.

1167. Постройте треугольник, который получается из данного треугольника АВС поворотом вокруг точки А на угол 150° против часовой стрелки.

1168. Точка D является точкой пересечения биссектрис равностороннего треугольника АВС. Докажите, что при повороте вокруг точки D на угол 120° треугольник АВС отображается на себя.

1169. Докажите, что при повороте квадрата вокруг точки пересечения его диагоналей на угол 90° квадрат отображается на себя.

1170. Постройте окружность, которая получается из данной окружности с центром С поворотом вокруг точки О на угол 60° против часовой стрелки, если: а) точки О и С не совпадают; б) точки О и С совпадают.

1171. Постройте прямую а1, которая получается из данной прямой а поворотом вокруг точки О на угол 60° по часовой стрелке, если прямая а: а) не проходит через точку О; б) проходит через точку О.

а) Построим окружность с центром О, которая касается прямой а (объясните, как это сделать). Пусть М — точка касания. При повороте вокруг точки О эта окружность отображается на себя, а касательная а отображается на некоторую касательную а1 (объясните почему). Для построения прямой ах построим сначала точку М1, в которую отображается точка М при повороте вокруг точки О на угол 60° по часовой стрелке, а затем проведём касательную а1 к окружности в точке М1.

📺 Видео

9 класс, 32 урок, Параллельный переносСкачать

9 класс, 32 урок, Параллельный перенос

Координаты вектора. 9 класс.Скачать

Координаты вектора. 9 класс.

11 класс, 12 урок, Параллельный переносСкачать

11 класс, 12 урок, Параллельный перенос

Угол между векторами. 9 класс.Скачать

Угол между векторами. 9 класс.

Вычитание векторов. 9 класс.Скачать

Вычитание векторов. 9 класс.

Сложение векторов. 9 класс.Скачать

Сложение векторов. 9 класс.

Выразить векторы. Разложить векторы. Задачи по рисункам. ГеометрияСкачать

Выразить векторы. Разложить векторы. Задачи по рисункам. Геометрия

Площадь треугольника, построенного на векторахСкачать

Площадь треугольника, построенного на векторах

Как выражать вектор? Как решать задачу с вектором? | TutorOnlineСкачать

Как выражать вектор? Как решать задачу с вектором?  |  TutorOnline

Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.

Параллельный перенос. Симметрия. Поворот | МатематикаСкачать

Параллельный перенос. Симметрия. Поворот | Математика

СУММА ВЕКТОРОВ правило треугольникаСкачать

СУММА ВЕКТОРОВ правило треугольника

Геометрия и группы. Алексей Савватеев. Лекция 2.3. Параллельный переносСкачать

Геометрия и группы. Алексей Савватеев. Лекция 2.3. Параллельный перенос

ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | УмскулСкачать

ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | Умскул

Понятие вектора. Коллинеарные вектора. 9 класс.Скачать

Понятие вектора. Коллинеарные вектора. 9 класс.
Поделиться или сохранить к себе: