Какие между собой две прямые перпендикулярные к одной плоскости параллельны

Видео:Перпендикулярность прямой и плоскости. 10 класс.Скачать

Перпендикулярность прямой и плоскости. 10 класс.

Перпендикулярность прямых и плоскостей

Видео:ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ перпендикулярные к плоскости 10 классСкачать

ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ перпендикулярные к плоскости 10 класс

Перпендикулярные прямые

Две прямые в пространстве называются перпендикулярными , если угол между ними составляет Какие между собой две прямые перпендикулярные к одной плоскости параллельны.

При этом прямые могут пересекаться,

Какие между собой две прямые перпендикулярные к одной плоскости параллельны

а могут быть скрещивающимися:Какие между собой две прямые перпендикулярные к одной плоскости параллельны

Видео:10 класс, 16 урок, Параллельные прямые, перпендикулярные к плоскостиСкачать

10 класс, 16 урок, Параллельные прямые, перпендикулярные к плоскости

Перпендикулярность прямой и плоскости

Прямая называется перпендикулярной к плоскости , если она перпендикулярна любой прямой, лежащей в этой плоскости.

Признак перпендикулярности прямой и плоскости

Если прямая перпендикулярна каждой из двух пересекающихся прямых плоскости, то она перпендикулярна этой плоскости.

Какие между собой две прямые перпендикулярные к одной плоскости параллельны

Свойства перпендикулярных прямой и плоскости

1). Две прямые, перпендикулярные одной и той же плоскости, параллельны.

Какие между собой две прямые перпендикулярные к одной плоскости параллельны

Какие между собой две прямые перпендикулярные к одной плоскости параллельны

2). Прямая, перпендикулярная одной из двух параллельных плоскостей, перпендикулярна и другой плоскости.

3). Две плоскости, перпендикулярные одной и той же прямой, параллельны между собой

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Перпендикулярность плоскостей

Пересекающиеся плоскости называются перпендикулярными , если третья плоскость, перпендикулярная прямой пересечения этих плоскостей, пересекает их по перпендикулярным прямым.

Какие между собой две прямые перпендикулярные к одной плоскости параллельны

Признак перпендикулярности плоскостей

Если плоскость проходит через прямую перпендикулярную другой плоскости, то эти плоскости перпендикулярны.

Какие между собой две прямые перпендикулярные к одной плоскости параллельны

Свойство перпендикулярных плоскостей

Если прямая лежит в одной из двух взаимно перпендикулярных плоскостей и перпендикулярна линии их пересечения, то эта прямая перпендикулярна второй плоскости.

Какие между собой две прямые перпендикулярные к одной плоскости параллельны

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Видео:Параллельность прямой и плоскости. 10 класс.Скачать

Параллельность прямой и плоскости. 10 класс.

Геометрия. 10 класс

Конспект урока

Геометрия, 10 класс

Урок № 8 Перпендикулярность прямой и плоскости

Перечень вопросов, рассматриваемых по теме

  1. Ввести понятие перпендикулярных прямых в пространстве;
  2. Доказать лемму о перпендикулярности двух параллельных прямых;
  3. Решать задачи по теме.

Глоссарий по теме

Две прямые в пространстве называются перпендикулярными, если угол между ними равен 90Какие между собой две прямые перпендикулярные к одной плоскости параллельны. Перпендикулярные прямые могут пересекаться и могут быть скрещивающимися.

Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости.

Лемма о перпендикулярности двух параллельных прямых к третьей прямой. Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

Признак перпендикулярности прямой и плоскости. Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости

Теорема о прямой перпендикулярной к плоскости. Через любую точку пространства проходит плоскость, перпендикулярная к данной прямой.

Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Геометрия 10-11 кл. Базовый и профильный уровень. М.: Просвещение, 2015. С.1-10.

Глазков Ю. А., Юдина И. И., Бутузов В. Ф. Рабочая тетрадь по геометрии для 9 класса. Базовый и профильный уровень

Зив Б.Г. Геометрия. Дидактические материалы. 10-11 класс М.: Просвещение, 2015.

Открытые электронные ресурсы:

Перпендикулярность прямой и плоскости. http://school-collection.edu.ru // Единая коллекция цифровых образовательных ресурсов.

Перпендикулярность прямой и плоскости. https://www.yaklass.ru // Я-класс. Образовательный портал Сколково.

Теоретический материал для самостоятельного изучения

Лемма о перпендикулярности двух параллельных прямых к третьей прямой. Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой..

Какие между собой две прямые перпендикулярные к одной плоскости параллельны

Через точку М пространства, не лежащую на данных прямых, проведем прямые МА и МС, параллельные соответственно прямым а и с. Так как ас, то ∠АМС=90 о .

Итак, прямые b и с параллельны соответственно прямым МА и МС, угол между ними равен 90 о , т.е. b ‖ МА, с ‖ МС, угол между МА и МС равен 90 о

Это означает, что угол между прямыми b и с также равен 90 о , то есть b ⊥ с.

Теорема. Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.

Какие между собой две прямые перпендикулярные к одной плоскости параллельны

Проведем какую-нибудь прямую x в плоскости α, т.е. x ∊ α.Так как а ⊥ α, то аx.

По лемме о перпендикулярности двух параллельных прямых к третьей а1 ⊥ x.

Таким образом, прямая а1 перпендикулярна к любой прямой, лежащей в плоскости α, т. е. а1 ⊥ α

Теорема. Ели две прямые перпендикулярны плоскости, то они параллельны.

Какие между собой две прямые перпендикулярные к одной плоскости параллельны

Через какую-нибудь точку М прямой b проведем прямую b1, параллельную прямой а.

Докажем, что прямая b1 совпадает с прямой b. Тем самым будем доказано, что аb. Допустим, что прямые b1 и b не совпадают. Тогда в плоскости β, содержащей прямые b и b1, через точку М проходят две прямые, перпендикулярные к прямой с, по которой пересекаются плоскости α и β. Но это невозможно, следовательно, аb, т.е. b ∊ β, b1 ∊ β, α Какие между собой две прямые перпендикулярные к одной плоскости параллельныβ = c (невозможно)→ аb

Признак перпендикулярности прямой и плоскости. Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости.

Какие между собой две прямые перпендикулярные к одной плоскости параллельны

Теорема. Через любую точку пространства проходит прямая, перпендикулярная к данной плоскости, и притом только одна.

Какие между собой две прямые перпендикулярные к одной плоскости параллельны

Пусть дана плоскость α и точка М (см. рис. 2). Нужно доказать, что через точку М проходит единственная прямая с, перпендикулярная плоскости α.

Проведем прямую а в плоскости α (см. рис. 3). Согласно доказанному выше утверждению, через точку М можно провести плоскость γ перпендикулярную прямой а. Пусть прямая b – линия пересечения плоскостей α и γ.

Какие между собой две прямые перпендикулярные к одной плоскости параллельны

В плоскости γ через точку М проведем прямую с, перпендикулярную прямой b.

Прямая с перпендикулярна b по построению, прямая с перпендикулярна а (так как прямая а перпендикулярна плоскости γ, а значит, и прямой с, лежащей в плоскости γ). Получаем, что прямая с перпендикулярна двум пересекающимся прямым из плоскости α. Значит, по признаку перпендикулярности прямой и плоскости, прямая с перпендикулярна плоскости α. Докажем, что такая прямая с единственная.

Предположим, что существует прямая с1, проходящая через точку М и перпендикулярная плоскости α. Получаем, что прямые с и с1 перпендикулярны плоскости α. Значит, прямые с и с1 параллельны. Но по построению прямые с и с1пересекаются в точке М. Получили противоречие. Значит, существует единственная прямая, проходящая через точку М и перпендикулярная плоскости α, что и требовалось доказать.

Теоретический материал для углубленного изучения

Теорема о прямой перпендикулярной к плоскости. Через любую точку пространства проходит плоскость, перпендикулярная к данной прямой.

Какие между собой две прямые перпендикулярные к одной плоскости параллельны

Доказательство (см. рис. 1)

Пусть нам дана прямая а и точка М. Докажем, что существует плоскость γ, которая проходит через точку М и которая перпендикулярна прямой а.

Через прямую а проведем плоскости α и β так, что точка М принадлежит плоскости α. Плоскости α и β пересекаются по прямой а. В плоскости α через точку М проведем перпендикуляр MN (или р) к прямой а, Какие между собой две прямые перпендикулярные к одной плоскости параллельны. В плоскости β из точки N восстановим перпендикуляр q к прямой а. Прямые р и q пересекаются, пусть через них проходит плоскость γ. Получаем, что прямая а перпендикулярна двум пересекающимся прямым р и q из плоскости γ. Значит, по признаку перпендикулярности прямой и плоскости, прямая а перпендикулярна плоскости γ.

Примеры и разборы решения заданий тренировочного модуля

Выбор элемента из выпадающего списка

Какие между собой две прямые перпендикулярные к одной плоскости параллельны

Выпишите ребра, перпендикулярные плоскости (DCКакие между собой две прямые перпендикулярные к одной плоскости параллельны).

Правильный вариант/варианты (или правильные комбинации вариантов):

Неправильный вариант/варианты (или комбинации):

Подсказка: в кубе все углы по Какие между собой две прямые перпендикулярные к одной плоскости параллельны. Плоскость (DCКакие между собой две прямые перпендикулярные к одной плоскости параллельны), проходит через грань куба DCКакие между собой две прямые перпендикулярные к одной плоскости параллельны.

  • Разбор задания: Куб – это геометрическая фигура у которой все углы прямые, следовательно нужно увидеть ребра которые перпендикулярны к плоскости (DCКакие между собой две прямые перпендикулярные к одной плоскости параллельны), к грани куба (DDCКакие между собой две прямые перпендикулярные к одной плоскости параллельны).Эти ребра — AD, A1D1, BC, B1C1

Закончите предложение, чтобы получилось верное утверждение.

  • Две прямые называются перпендикулярными, если …..
  • Если плоскости перпендикулярна одной из двух параллельных прямых, то она ……

  • Какие между собой две прямые перпендикулярные к одной плоскости параллельны
  • Какие между собой две прямые перпендикулярные к одной плоскости параллельны
  • параллельны
  • один
  • она перпендикулярна к любой прямой, лежай в этой плоскости.
  • перпендикулярна плоскости.

Правильный вариант/варианты (или правильные комбинации вариантов):

Две прямые называются перпендикулярными, если …

угол между ними равен 90Какие между собой две прямые перпендикулярные к одной плоскости параллельны

Если плоскость перпендикулярна одной из двух параллельных прямых, то она …

перпендикулярна и другой

Неправильный вариант/варианты (или комбинации):

Лемма: Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к третьей прямой.

Теорема: если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

Видео:16. Параллельные прямые, перпендикулярные к плоскостиСкачать

16. Параллельные прямые, перпендикулярные к плоскости

Параллельные прямые, признаки и условия параллельности прямых

В этой статье мы расскажем о параллельных прямых, дадим определения, обозначим признаки и условия параллельности. Для наглядности теоретического материала будем использовать иллюстрации и решение типовых примеров.

Видео:Перпендикулярные прямые. 6 класс.Скачать

Перпендикулярные прямые. 6 класс.

Параллельные прямые: основные сведения

Параллельные прямые на плоскости – две прямые на плоскости, не имеющие общих точек.

Какие между собой две прямые перпендикулярные к одной плоскости параллельны

Параллельные прямые в трехмерном пространстве – две прямые в трехмерном пространстве, лежащие в одной плоскости и не имеющие общих точек.

Какие между собой две прямые перпендикулярные к одной плоскости параллельны

Необходимо обратить внимание, что для определения параллельных прямых в пространстве крайне важно уточнение «лежащие в одной плоскости»: две прямые в трехмерном пространстве, не имеющие общих точек и не лежащие в одной плоскости, являются не параллельными, а скрещивающимися.

Чтобы обозначить параллельность прямых, общепринято использовать символ ∥ . Т.е., если заданные прямые a и b параллельны, кратко записать это условие нужно так: a ‖ b . Словесно параллельность прямых обозначается следующим образом: прямые a и b параллельны, или прямая а параллельна прямой b , или прямая b параллельна прямой а .

Сформулируем утверждение, играющее важную роль в изучаемой теме.

Через точку, не принадлежащую заданной прямой проходит единственная прямая, параллельная заданной. Это утверждение невозможно доказать на базе известных аксиом планиметрии.

В случае, когда речь идет о пространстве, верна теорема:

Через любую точку пространства, не принадлежащую заданной прямой, будет проходить единственная прямая, параллельная заданной.

Эту теорему просто доказать на базе вышеуказанной аксиомы (программа геометрии 10 — 11 классов).

Видео:Перпендикулярные прямыеСкачать

Перпендикулярные прямые

Параллельность прямых: признаки и условия параллельности

Признак параллельности есть достаточное условие, при выполнении которого гарантирована параллельность прямых. Иначе говоря, выполнения этого условия достаточно, чтобы подтвердить факт параллельности.

В том числе, имеют место необходимые и достаточные условия параллельности прямых на плоскости и в пространстве. Поясним: необходимое – значит то условие, выполнение которого необходимо для параллельности прямых; если оно не выполнено – прямые не являются параллельными.

Резюмируя, необходимое и достаточное условие параллельности прямых – такое условие, соблюдение которого необходимо и достаточно, чтобы прямые были параллельны между собой. С одной стороны, это признак параллельности, с другой – свойство, присущее параллельным прямым.

Перед тем, как дать точную формулировку необходимого и достаточного условия, напомним еще несколько дополнительных понятий.

Секущая прямая – прямая, пересекающая каждую из двух заданных несовпадающих прямых.

Пересекая две прямые, секущая образует восемь неразвернутых углов. Чтобы сформулировать необходимое и достаточное условие, будем использовать такие типы углов, как накрест лежащие, соответственные и односторонние. Продемонстрируем их на иллюстрации:

Какие между собой две прямые перпендикулярные к одной плоскости параллельны

Если две прямые на плоскости пересекаются секущей, то для параллельности заданных прямых необходимо и достаточно, чтобы накрест лежащие углы были равными, либо были равными соответственные углы, либо сумма односторонних углов была равна 180 градусам.

Проиллюстрируем графически необходимое и достаточное условие параллельности прямых на плоскости:

Какие между собой две прямые перпендикулярные к одной плоскости параллельны

Доказательство указанных условий присутствует в программе геометрии за 7 — 9 классы.

В общем, эти условия применимы и для трехмерного пространства при том, что две прямые и секущая принадлежат одной плоскости.

Укажем еще несколько теорем, часто используемых при доказательстве факта параллельности прямых.

На плоскости две прямые, параллельные третьей, параллельны между собой. Этот признак доказывается на основе аксиомы параллельности, указанной выше.

В трехмерном пространстве две прямые, параллельные третьей, параллельны между собой.

Доказательство признака изучается в программе геометрии 10 класса.

Дадим иллюстрацию указанных теорем:

Какие между собой две прямые перпендикулярные к одной плоскости параллельны

Укажем еще одну пару теорем, являющихся доказательством параллельности прямых.

На плоскости две прямые, перпендикулярные третьей, параллельны между собой.

Сформулируем аналогичное для трехмерного пространства.

В трехмерном пространстве две прямые, перпендикулярные третьей, параллельны между собой.

Какие между собой две прямые перпендикулярные к одной плоскости параллельны

Все указанные выше теоремы, признаки и условия позволяют удобно доказать параллельность прямых методами геометрии. Т.е., чтобы привести доказательство параллельности прямых, можно показать, что равны соответственные углы, или продемонстрировать факт, что две заданные прямые перпендикулярны третьей и т.д. Но отметим, что зачастую для доказательства параллельности прямых на плоскости или в трехмерном пространстве удобнее использовать метод координат.

Видео:10 класс, 15 урок, Перпендикулярные прямые в пространствеСкачать

10 класс, 15 урок, Перпендикулярные прямые в пространстве

Параллельность прямых в прямоугольной системе координат

В заданной прямоугольной системе координат прямая определяется уравнением прямой на плоскости одного из возможных видов. Так и прямой линии, заданной в прямоугольной системе координат в трехмерном пространстве, соответствуют некоторые уравнения прямой в пространстве.

Запишем необходимые и достаточные условия параллельности прямых в прямоугольной системе координат в зависимости от типа уравнения, описывающего заданные прямые.

Начнем с условия параллельности прямых на плоскости. Оно базируется на определениях направляющего вектора прямой и нормального вектора прямой на плоскости.

Чтобы на плоскости две несовпадающие прямые были параллельны, необходимо и достаточно, чтобы направляющие векторы заданных прямых были коллинеарными, или были коллинеарными нормальные векторы заданных прямых, или направляющий вектор одной прямой был перпендикулярен нормальному вектору другой прямой.

Становится очевидно, что условие параллельности прямых на плоскости базируется на условии коллинеарности векторов или условию перпендикулярности двух векторов. Т.е., если a → = ( a x , a y ) и b → = ( b x , b y ) являются направляющими векторами прямых a и b ;

и n b → = ( n b x , n b y ) являются нормальными векторами прямых a и b , то указанное выше необходимое и достаточное условие запишем так: a → = t · b → ⇔ a x = t · b x a y = t · b y или n a → = t · n b → ⇔ n a x = t · n b x n a y = t · n b y или a → , n b → = 0 ⇔ a x · n b x + a y · n b y = 0 , где t – некоторое действительное число. Координаты направляющих или прямых векторов определяются по заданным уравнениям прямых. Рассмотрим основные примеры.

  1. Прямая a в прямоугольной системе координат определяется общим уравнением прямой: A 1 x + B 1 y + C 1 = 0 ; прямая b — A 2 x + B 2 y + C 2 = 0 . Тогда нормальные векторы заданных прямых будут иметь координаты ( А 1 , В 1 ) и ( А 2 , В 2 ) соответственно. Условие параллельности запишем так:

A 1 = t · A 2 B 1 = t · B 2

  1. Прямая a описывается уравнением прямой с угловым коэффициентом вида y = k 1 x + b 1 . Прямая b — y = k 2 x + b 2 . Тогда нормальные векторы заданных прямых будут иметь координаты ( k 1 , — 1 ) и ( k 2 , — 1 ) соответственно, а условие параллельности запишем так:

k 1 = t · k 2 — 1 = t · ( — 1 ) ⇔ k 1 = t · k 2 t = 1 ⇔ k 1 = k 2

Таким образом, если параллельные прямые на плоскости в прямоугольной системе координат задаются уравнениями с угловыми коэффициентами, то угловые коэффициенты заданных прямых будут равны. И верно обратное утверждение: если несовпадающие прямые на плоскости в прямоугольной системе координат определяются уравнениями прямой с одинаковыми угловыми коэффициентами, то эти заданные прямые параллельны.

  1. Прямые a и b в прямоугольной системе координат заданы каноническими уравнениями прямой на плоскости: x — x 1 a x = y — y 1 a y и x — x 2 b x = y — y 2 b y или параметрическими уравнениями прямой на плоскости: x = x 1 + λ · a x y = y 1 + λ · a y и x = x 2 + λ · b x y = y 2 + λ · b y .

Тогда направляющие векторы заданных прямых будут: a x , a y и b x , b y соответственно, а условие параллельности запишем так:

a x = t · b x a y = t · b y

Заданы две прямые: 2 x — 3 y + 1 = 0 и x 1 2 + y 5 = 1 . Необходимо определить, параллельны ли они.

Решение

Запишем уравнение прямой в отрезках в виде общего уравнения:

x 1 2 + y 5 = 1 ⇔ 2 x + 1 5 y — 1 = 0

Мы видим, что n a → = ( 2 , — 3 ) — нормальный вектор прямой 2 x — 3 y + 1 = 0 , а n b → = 2 , 1 5 — нормальный вектор прямой x 1 2 + y 5 = 1 .

Полученные векторы не являются коллинеарными, т.к. не существует такого значения t , при котором будет верно равенство:

2 = t · 2 — 3 = t · 1 5 ⇔ t = 1 — 3 = t · 1 5 ⇔ t = 1 — 3 = 1 5

Таким образом, не выполняется необходимое и достаточное условие параллельности прямых на плоскости, а значит заданные прямые не параллельны.

Ответ: заданные прямые не параллельны.

Заданы прямые y = 2 x + 1 и x 1 = y — 4 2 . Параллельны ли они?

Решение

Преобразуем каноническое уравнение прямой x 1 = y — 4 2 к уравнению прямой с угловым коэффициентом:

x 1 = y — 4 2 ⇔ 1 · ( y — 4 ) = 2 x ⇔ y = 2 x + 4

Мы видим, что уравнения прямых y = 2 x + 1 и y = 2 x + 4 не являются одинаковыми (если бы было иначе, прямые были бы совпадающими) и угловые коэффициенты прямых равны, а значит заданные прямые являются параллельными.

Попробуем решить задачу иначе. Сначала проверим, совпадают ли заданные прямые. Используем любую точку прямой y = 2 x + 1 , например, ( 0 , 1 ) , координаты этой точки не отвечают уравнению прямой x 1 = y — 4 2 , а значит прямые не совпадают.

Следующим шагом определим выполнение условия параллельности заданных прямых.

Нормальный вектор прямой y = 2 x + 1 это вектор n a → = ( 2 , — 1 ) , а направляющий вектором второй заданной прямой является b → = ( 1 , 2 ) . Скалярное произведение этих векторов равно нулю:

n a → , b → = 2 · 1 + ( — 1 ) · 2 = 0

Таким образом, векторы перпендикулярны: это демонстрирует нам выполнение необходимого и достаточного условия параллельности исходных прямых. Т.е. заданные прямые параллельны.

Ответ: данные прямые параллельны.

Для доказательства параллельности прямых в прямоугольной системе координат трехмерного пространства используется следующее необходимое и достаточное условие.

Чтобы две несовпадающие прямые в трехмерном пространстве были параллельны, необходимо и достаточно, чтобы направляюще векторы этих прямых были коллинеарными.

Т.е. при заданных уравнениях прямых в трехмерном пространстве ответ на вопрос: параллельны они или нет, находится при помощи определения координат направляющих векторов заданных прямых, а также проверки условия их коллинеарности. Иначе говоря, если a → = ( a x , a y , a z ) и b → = ( b x , b y , b z ) являются направляющими векторами прямых a и b соответственно, то для того, чтобы они были параллельны, необходимо существование такого действительного числа t , чтобы выполнялось равенство:

a → = t · b → ⇔ a x = t · b x a y = t · b y a z = t · b z

Заданы прямые x 1 = y — 2 0 = z + 1 — 3 и x = 2 + 2 λ y = 1 z = — 3 — 6 λ . Необходимо доказать параллельность этих прямых.

Решение

Условиями задачи заданы канонические уравнения одной прямой в пространстве и параметрические уравнения другой прямой в пространстве. Направляющие векторы a → и b → заданных прямых имеют координаты: ( 1 , 0 , — 3 ) и ( 2 , 0 , — 6 ) .

1 = t · 2 0 = t · 0 — 3 = t · — 6 ⇔ t = 1 2 , то a → = 1 2 · b → .

Следовательно, необходимое и достаточное условие параллельности прямых в пространстве выполнено.

Ответ: параллельность заданных прямых доказана.

📸 Видео

Теорема 13.1. Две прямые, перпендикулярные третьей прямой, параллельны || Геометрия 7 класс ||Скачать

Теорема 13.1. Две прямые, перпендикулярные третьей прямой, параллельны || Геометрия 7 класс ||

7 класс, 12 урок, Перпендикулярные прямыеСкачать

7 класс, 12 урок, Перпендикулярные прямые

Геометрия 10 класс (Урок№8 - Перпендикулярность прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№8 - Перпендикулярность прямой и плоскости.)

Двугранный угол. Признак перпендикулярности плоскостей. Видеоурок 10. Геометрия 10 классСкачать

Двугранный угол. Признак перпендикулярности плоскостей. Видеоурок 10. Геометрия 10 класс

10 класс, 17 урок, Признак перпендикулярности прямой и плоскостиСкачать

10 класс, 17 урок, Признак перпендикулярности прямой и плоскости

10 класс, 10 урок, Параллельные плоскостиСкачать

10 класс, 10 урок, Параллельные плоскости

Параллельность прямых. 10 класс.Скачать

Параллельность прямых. 10 класс.

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)

Геометрия 7 класс (Урок№33 - Повторение. Параллельные и перпендикулярные прямые.)Скачать

Геометрия 7 класс (Урок№33 - Повторение. Параллельные и перпендикулярные прямые.)

ПЕРПЕНДИКУЛЯРНЫЕ ПРЯМЫЕ В ПРОСТРАНСТВЕ 10 классСкачать

ПЕРПЕНДИКУЛЯРНЫЕ ПРЯМЫЕ В ПРОСТРАНСТВЕ 10 класс

Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика
Поделиться или сохранить к себе: