Как сложить точки векторов

Операции с векторами

Как сложить и перемножить векторы (и зачем).

Мы постепенно показываем вам математику за пределами школьной программы. Начинали со знакомства с векторами, теперь сделаем следующий шаг.

Напомним основные мысли:

  • Вектор — это абстрактное понятие, которое представляет собой организованную последовательность каких-то чисел.
  • В виде вектора можно представить координаты предмета в каком-то пространстве; площадь квартиры и её стоимость; цифровые данные анкеты какого-то человека и динамику цен на нефть.
  • Если по-простому, то векторы нужны, чтобы обрабатывать большое количество организованных чисел. Представьте, что вектор — это коробка с конфетами, только вместо конфет — числа. Каждое число стоит в своей ячейке.
  • Машинное обучение основано на перемножении матриц, которые, в свою очередь, можно представить как наборы векторов. Так что векторы лежат в глубине всех модных и молодёжных технологий ИИ.

С векторами можно совершать некоторые математические операции. Вот о них и поговорим.

Содержание
  1. Правильно — векторы
  2. Сложение
  3. Интуитивное изображение сложения
  4. Вычитание
  5. Длина вектора
  6. Умножение и деление вектора на число
  7. Да вроде несложно!
  8. Что дальше
  9. Как складывать векторы
  10. Складываем параллельные векторы
  11. Складываем не параллельные векторы
  12. Правило треугольника
  13. Правило параллелограмма
  14. Как вычитать векторы
  15. Складываем и вычитаем векторы, используя их координаты
  16. Примеры сложения векторов в физике
  17. Сложение и вычитание векторов
  18. Формулы сложения и вычитания векторов
  19. Формулы сложения и вычитания векторов для плоских задач
  20. Формулы сложения и вычитания векторов для пространчтвенных задач
  21. Формулы сложения и вычитания n -мерных векторов
  22. Примеры задач на сложение и вычитание векторов
  23. Примеры плоских задач на сложение и вычитание векторов
  24. Примеры пространственных задач на сложение и вычитание векторов
  25. Примеры задач на сложение и вычитание векторов с размерностью большей 3
  26. 🎬 Видео

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Правильно — векторы

Математики часто говорят во множественном числе «вектора», но по словарю правильно «векторы». Это такой профессиональный жаргон, как «договора», «бухгалтера» и «сервера». Мы будем использовать «векторы», но если вы окажетесь в постковидном математическом баре, лучше говорите «вектора».

Видео:Сложение векторов. 9 класс.Скачать

Сложение векторов. 9 класс.

Сложение

Представим четыре вектора, которые лежат в двухмерном пространстве и пока что не связаны между собой. Нарисуем эти векторы и обозначим их буквами X, Y, Z, K.

Поскольку векторы находятся в одном пространстве, координаты каждого состоят из одинакового количества чисел. У нас пример с двухмерным пространством и два числа. Выглядеть это будет так: X = (6, 4); Y = (3, −2); Z = (−7, −5); K = (−10, 4).

Как сложить точки векторовВекторы X, Y, Z, K в двухмерном пространстве

Если у нас несколько векторов с одинаковым количеством чисел, то эти числа можно поэлементно складывать. Для этого мы берём первое число одного вектора, складываем его с первым числом другого вектора и так далее.

Предположим, нам нужно сложить векторы X и Y.

X = (6, 4)
Y = (3, −2)
X + Y = (9, 2)

Вроде просто: складываешь последовательно все координаты, результаты сложения складываешь в исходные коробочки. Так можно делать с любым количеством координат. Помните, что вектор — это необязательно стрелка в двумерном пространстве. Она может быть и в десятимерном пространстве — с точки зрения математики это неважно.

Например, вот сложение векторов с пятью координатами:

X = (6, 4, 11, 14, 99)
Y = (3, -2, 10, -10, 1)
X + Y = (9, 2, 21, 4, 100)

Видео:Вычитание векторов. 9 класс.Скачать

Вычитание векторов. 9 класс.

Интуитивное изображение сложения

Для интуитивного восприятия удобно использовать векторы с двумя координатами. Их удобно рисовать на координатной плоскости и таким образом смотреть на геометрию.

Например, можно на плоскости показать, как будет работать сложение двух векторов. Для этого есть два метода: метод треугольника и метод параллелограмма.

Метод треугольника: ставим векторы Х и Y в очередь друг за другом. Для этого берём вектор Х, ставим за ним вектор Y и получаем новый вектор. Новый вектор начинается в хвосте вектора Х и заканчивается на стрелке вектора Y. Этот вектор — результат сложения. Представьте, что это ребёночек двух векторов.

Как сложить точки векторовСложение векторов по методу треугольника: X = (6, 4); Y = (3, −2); Х + Y = (9, 2)

Чтобы воспользоваться методом параллелограмма, нам нужно поставить векторы Х и Y в одну исходную точку. Дальше мы дублируем векторы Х и Y, формируем параллелограмм и получаем новый вектор. В новом векторе соединяем исходную точку с исходной точкой дублирующих векторов — стрелка проходит посередине параллелограмма. Длина нового вектора — это сумма векторов Х и Y.

Сложение по методу параллелограмма и треугольника даёт одинаковый результат. Поэтому выбирайте вариант, который больше подходит под задачу.

Как сложить точки векторовСложение векторов по методу параллелограмма: X = (6, 4); Y = (3, -2); Х + Y = (9, 2)

Видео:Сложение векторов. Правило параллелограмма. 9 класс.Скачать

Сложение векторов. Правило параллелограмма. 9 класс.

Вычитание

Вычитание векторов немного сложнее. Чтобы вычесть векторы, нужно «развернуть» вычитаемый вектор и сложить его с исходным. «Развернуть» — то есть направить в обратную сторону, «перевернув» знаки координат. Получится конструкция вроде такой: Х + (−Y)

Дальше используются правила сложения. Пошагово это выглядит так:

  1. У нас есть X = (6, 4) и Y = (3, −2).
  2. Превращаем формулу Х − Y в формулу Х + (−Y).
  3. Разворачиваем вектор Y. Было: Y = (3, −2). Стало: −Y = (−3, 2).
  4. Считаем: X + (−Y) = (3, 6).

Теперь посмотрим, как выглядит вычитание векторов на графике:

Как сложить точки векторовВычитание векторов по методу треугольника: X = (6, 4); −Y = (−3, 2); X + (−Y) = (3, 6) Как сложить точки векторовВычитание векторов по методу параллелограмма: X = (6, 4); −Y = (−3, 2); X + (−Y) = (3, 6)

Видео:10 класс, 40 урок, Сложение и вычитание векторовСкачать

10 класс, 40 урок, Сложение и вычитание векторов

Длина вектора

Длина вектора — это одно число, которое измеряется расстоянием от кончика до стрелки вектора. Длину вектора нельзя путать с координатами. Координаты — это несколько чисел, которые указывают на расположение стрелки вектора. По координатам можно определить только конечную точку вектора. Например, если X = (6, 2), то стрелка будет находиться в точке 6 по оси Х. Или другой пример: если Y = (6, 5), то стрелка этого вектора будет находиться в точке 5 по оси Y.

Предположим, нам известны начальные точки векторов X и Y. Пусть это будет точка 2 по оси X и точка 2 по оси Y. Так мы можем легко посчитать длину отрезков:

X = 6 − 2 = 4
Y = 5 − 2 = 3

Иногда приходится рассчитывать длину третьего вектора, который привязан к двум другим векторам. Это легко сделать с помощью теоремы Пифагора — это когда квадрат гипотенузы равен сумме квадратов катетов. В нашем случае катетами будут длины векторов X и Y. Вспоминаем школьную формулу и считаем:

|C|2 = 42 + 32 = 25
|C| = √25 = 5 Как сложить точки векторовДлина вектора считается по формуле прямоугольного треугольника. Чтобы было проще представить — перенесите векторы на систему координат

Это формула для двумерного пространства. В трёхмерном пространстве формула похожая: нужно сложить квадраты трёх координат и вычислить квадратный корень из суммы.

Как сложить точки векторов

В пространстве с большим числом измерений формула выглядит сложнее, но по сути то же: складываем все квадраты координат и получаем квадратный корень из этой суммы.

Как сложить точки векторов

Видео:Сложение, вычитание, умножение на число векторов через координату. 9 класс.Скачать

Сложение, вычитание, умножение на число векторов через координату. 9 класс.

Умножение и деление вектора на число

Умножение и деление позволяют изменить длину и направление вектора. Если мы умножим вектор Х на три, то увеличим его длину в три раза. Если умножим на минус три — увеличим длину и изменим его направление на противоположное.

Как сложить точки векторовУмножение вектора на число

Для деления сохраняются аналогичные правила. Делим вектор Х на три и сокращаем длину в три раза. Делим на минус три — сокращаем и разворачиваем.

Как сложить точки векторовДеление вектора на число

Видео:Координаты точки и координаты вектора 1.Скачать

Координаты точки и координаты вектора 1.

Да вроде несложно!

Пока ничего сложного. Но если углубляться, вы узнаете, что:

  • векторы можно умножать на векторы тремя способами в зависимости от задачи и от того, что мы понимаем под умножением;
  • если от векторов перейти к матрицам, то перемножение матриц имеет несколько более сложную и довольно неинтуитивную математику;
  • а перемножение матриц — это и есть машинное обучение.

Видео:сложение ВЕКТОРОВ вычитание ВЕКТОРОВ 9 класс геометрия АтанасянСкачать

сложение ВЕКТОРОВ вычитание ВЕКТОРОВ 9 класс геометрия Атанасян

Что дальше

В следующей статье рассмотрим линейную зависимость векторов. Чтобы не скучать — посмотрите интервью с Анастасией Никулиной. Анастасия сеньор-дата-сайентист в Росбанке и по совместительству блогер с интересной историей.

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Как складывать векторы

Сложив два вектора, в результате получим новый вектор.
Векторы могут располагаться один относительно другого:

Видео:Координаты вектора в пространстве. 11 класс.Скачать

Координаты вектора  в пространстве. 11 класс.

Складываем параллельные векторы

Если векторы параллельны, складывать так:

  • А) К концу первого вектора приложить начало второго вектора
  • Б) из начала первого вектора к концу второго вектора провести новый вектор

Как сложить точки векторов

Примечание:

В этом уравнении над буквами используются значки векторов. Эти значки указывают на то, что действия выполняются с помощью геометрии. То есть, учитывается направление векторов.

Важно! Любое выражение, записанное в векторном виде, учитывает направление векторов.

Это можно пояснить так:

  • сложив два числа 3 и 4 получим только одно решение (3 + 4 = 7).
  • складывая два вектора с длинами 3 и 4, можно в результате получить вектор, длина которого лежит в диапазоне от «1» до «7».
  1. Если векторы, которые складываем, были направлены в противоположные стороны, получим вектор, длина которого равняется единице.
  2. А если векторы были сонаправленными – то длина результирующего вектора будет равна семи.
  3. Ну а, если векторы были препендикулярными, то конечный вектор будет иметь длину, равную пяти.

Если векторы направлены в противоположные стороны, то результат сложения будет сонаправлен с более длинным вектором.

Как сложить точки векторов

Видео:Координаты вектора. 9 класс.Скачать

Координаты вектора. 9 класс.

Складываем не параллельные векторы

Если векторы не параллельны (см. рис. ), для их сложения пользуются одним из двух правил:

  1. правило треугольника;
  2. правило параллелограмма;

Как сложить точки векторов

Примечание:

Правило параллелограмма удобно применять к векторам, выходящим из одной общей точки (начала векторов совмещены).

Правило треугольника

К концу первого вектора приложить начало второго вектора

Как сложить точки векторов

Из свободного начала к свободному концу провести вектор

Как сложить точки векторов

Правило параллелограмма

Совместить начала векторов

Как сложить точки векторов

Провести пунктиры, чтобы получить параллелограмм

Как сложить точки векторов

Из точки, в которой находятся начала провести диагональ

Как сложить точки векторов

Видео:➡️ КАК ВЫЧИТАТЬ ВЕКТОРЫ?Скачать

➡️ КАК ВЫЧИТАТЬ ВЕКТОРЫ?

Как вычитать векторы

Вычтем один вектор из второго вектора. В результате получим новый вектор.

Вектор «( -vec )» — это вектор «( vec )», развернутый в противоположную сторону.

Как сложить точки векторов

Вычитание заменяют сложением. Складывают вектор с противоположно направленным вектором.

Как сложить точки векторов

Видео:Сложение и вычитание векторов. Практическая часть. 11 класс.Скачать

Сложение и вычитание векторов. Практическая часть. 11 класс.

Складываем и вычитаем векторы, используя их координаты

Когда известны координаты двух векторов, сложение или вычитание провести достаточно легко. Для этого нужно сложить или вычесть соответствующие координаты векторов.

Для удобства обычно выписывают один вектор под другим.

Видео:9 класс, 2 урок, Координаты вектораСкачать

9 класс, 2 урок, Координаты вектора

Примеры сложения векторов в физике

Напоминание:
Складывать и вычитать можно только те векторы, которые имеют одинаковую размерность. То есть, длина которых измеряется в одинаковых единицах.

Рассмотрим формулу связи между начальной и конечной скоростями при равноускоренном движении
( vec = vec<v_> + vec cdot t )

Примечания:
— Скорость всегда направлена в ту сторону, в которую тело движется (в направлении движения тела).
— Ускорение направлено в сторону действия силы (из второго закона Ньютона).

Обратите внимание: Направление силы не всегда будет совпадать с направлением, в котором тело двигалось изначально.

Силу можно направить в любую сторону. Она будет толкать или тянуть тело в ту сторону, в которую она направлена. Поэтому, конечная скорость ( vec ), начальная скорость ( vec<v_> ) и ускорение ( vec ) могут иметь различные направления.

Векторы складывают с помощью геометрии, то есть, учитывают их направления.
Поэтому, формула ( vec = vec<v_> + vec cdot t ) записана в векторном виде.

Видео:ТОПОВЫЙ СПОСОБ СЛОЖЕНИЯ ВЕКТОРОВСкачать

ТОПОВЫЙ СПОСОБ СЛОЖЕНИЯ ВЕКТОРОВ

Сложение и вычитание векторов

Видео:Как построить точки в системе координат OXYZСкачать

Как построить точки в системе координат OXYZ

Формулы сложения и вычитания векторов

Формулы сложения и вычитания векторов для плоских задач

В случае плоской задачи сумму и разность векторов a = < ax ; ay > и b = < bx ; by > можно найти, воспользовавшись следующими формулами:

Формулы сложения и вычитания векторов для пространчтвенных задач

В случае пространственной задачи сумму и разность векторов a = < ax ; ay ; az > и b = < bx ; by ; bz > можно найти, воспользовавшись следующими формулами:

Формулы сложения и вычитания n -мерных векторов

В случае n -мерного пространства сумму и разность векторов a = < a 1 ; a 2 ; . ; an > и b = < b 1 ; b 2 ; . ; bn > можно найти, воспользовавшись следующими формулами:

Видео:Физика | Ликбез по векторамСкачать

Физика | Ликбез по векторам

Примеры задач на сложение и вычитание векторов

Примеры плоских задач на сложение и вычитание векторов

Примеры пространственных задач на сложение и вычитание векторов

Примеры задач на сложение и вычитание векторов с размерностью большей 3

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

🎬 Видео

Сложение и вычитание векторов через координаты. Практическая часть. 11 класс.Скачать

Сложение и вычитание векторов через координаты. Практическая часть. 11 класс.

81. Откладывание вектора от данной точкиСкачать

81. Откладывание вектора от данной точки
Поделиться или сохранить к себе: