Как построить плоскость параллельную прямой в параллелепипеде

10 класс. Геометрия. Параллельные плоскости.

10 класс. Геометрия. Параллельные плоскости.

  • Оглавление
  • Занятия
  • Обсуждение
  • О курсе

Вопросы

Поделись с друзьями

Комментарии преподавателя

Видео:Как строить сечения параллелепипедаСкачать

Как строить сечения параллелепипеда

1. Тема урока

На этом уроке мы дадим определение параллелепипеда, обсудим его строение, свойства и его элементы (стороны, диагонали).

Видео:Построение параллельной плоскости на расстояние 30 мм.Скачать

Построение параллельной плоскости на расстояние 30 мм.

2. Параллелепипед

Параллелепипед образован с помощью двух равных параллелограммов АВСD и А1B1C1D1, которые находятся в параллельных плоскостях. Обозначение: АВСDА1B1C1D1 или АD1 (рис. 1.).

Как построить плоскость параллельную прямой в параллелепипеде

Рис. 1. Параллелепипед

Видео:№14 из профильного ЕГЭ по математике. Как строить сечения на изи. Серия-1Скачать

№14 из профильного ЕГЭ по математике. Как строить сечения на изи. Серия-1

3. Свойства параллелепипеда

1) Все грани параллелепипеда – параллелограммы.

Так как плоскости АВС и А1B1C1 параллельны, а плоскость АА1В1 пересекает их соответственно по прямым АВ и А1В1, то из свойств параллельных плоскостей следует, что прямые АВ и А1B1 параллельны. А так как и прямые АА1 и ВВ1 параллельны по условию, то АВВ1А1 параллелограмм. Аналогично, можно рассмотреть и другие грани.

2) Ребра АА1, ВВ1, СС1, DD1 равны.

Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны. Значит, отрезки параллельных прямых АА1, ВВ1, СС1, DD1, которые заключены между параллельными плоскостями АВС и А1B1C1, равны.

3) Имеются три четверки равных и параллельных ребер: 1 – АВ, А1В1, D1C1, DC, 2 — AD, A1D1, B1C1, BC, 3 — АА1, ВВ1, СС1, DD1.

4) Имеются равные углы (с сонаправленными сторонами). Например, углы А1АВ и D1DC.

Видео:Параллельность прямой к плоскостиСкачать

Параллельность прямой к плоскости

4. Свойство 1 (Грани параллелепипеда)

Противоположные грани параллелепипеда параллельны и равны.

Например, плоскости параллелограммов АА1В1В и DD1C1C параллельны, так как пересекающиеся прямые АВ и АА1 плоскости АА1В1 соответственно параллельны двум пересекающимся прямым DC и DD1 плоскости DD1C1. Параллелограммы АА1В1В и DD1C1C равны (т. е. их можно совместить наложением), так как равны стороны АВ и DС, АА1 и DD1, и равны углы А1АВ и D1DC.

Видео:Стереометрия 10 класс. Часть 1 | МатематикаСкачать

Стереометрия 10 класс. Часть 1 | Математика

5. Свойство 2 (Ребра параллелепипеда)

Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.

Как построить плоскость параллельную прямой в параллелепипеде

Рис. 2. Диагонали параллелепипеда

Рассмотрим диагонали параллелепипеда А1C и D1B (рис. 2). Они также являются диагоналями четырехугольника A1D1CB. В этом четырехугольнике стороны A1D1 и BC параллельны и равны, а значит, A1D1CB – параллелограмм (по признаку параллелограмма). А в параллелограмме диагонали А1C и D1B пересекаются в одной точке О и делятся этой точкой пополам.

Как построить плоскость параллельную прямой в параллелепипеде

Рассмотрим теперь четырехугольник АВС1D1 (рис. 3). В этом четырехугольнике стороны С1D1 и АВ параллельны и равны, а значит, АВС1D1 – параллелограмм (по признаку параллелограмма). А в параллелограмме диагонали С1А и D1В пересекаются в одной точке и делятся этой точкой пополам. Эти диагонали также пересекаются в точке О, так как мы уже выяснили, что середина диагонали D1В – это точка О. Следовательно, все диагонали параллелепипеда А1C, С1А и D1В, DВ1 пересекаются в одной точке и делятся этой точкой пополам.

Видео:Построение сечения параллельно прямойСкачать

Построение сечения параллельно прямой

6. Задача 1

В параллелепипеде АВСDА1B1C1D1 постройте сечение плоскостью AD1M, где М – середина ребра ВС. Определите вид полученного сечения.

Как построить плоскость параллельную прямой в параллелепипеде

Соединим точки А и D1. Точки А и D1 лежат и в плоскости сечения и в плоскости АА1D1. Значит, АD1– линия пересечения этих плоскостей.

Проведем прямую МN параллельно прямой АD1. Плоскости АА1D1 и ВСС1 параллельны, значит, плоскость АМN рассекает их по параллельным прямым МN и АD1. Итак, АМND1 – искомое сечение.

Четырехугольник АМND1 — трапеция с основаниями АD1 и МN, так как АD1 и МN лежат на параллельных прямых.

Заметим, что средняя линия М1N1 в треугольнике АDD1 равна отрезку МN. Этот факт понадобится нам дальше для решения задач на нахождения периметра.

Видео:СЕЧЕНИЯ. СТРАШНЫЙ УРОК | Математика | TutorOnlineСкачать

СЕЧЕНИЯ. СТРАШНЫЙ УРОК | Математика | TutorOnline

7. Итоги урока по теме «Параллелепипед», «Стороны параллелепипеда, диагонали», свойства

Итак, мы рассмотрели параллелепипед и его свойства. На следующих уроках мы продолжим рассмотрение тетраэдра и параллелепипеда.

Видео:Как строить сеченияСкачать

Как строить сечения

Практическое занятие:» Построение сечений параллелепипеда»

Видео:ВСЕ О СЕЧЕНИЯХ В СТЕРЕОМЕТРИИСкачать

ВСЕ О СЕЧЕНИЯХ В СТЕРЕОМЕТРИИ

«Управление общеобразовательной организацией:
новые тенденции и современные технологии»

Свидетельство и скидка на обучение каждому участнику

Практическое занятие : «Параллелепипед. Построение сечений параллелепипеда ».

1. Цель практической работы : . Закрепить знания теоретического материала о многогранниках, навыки решения задач на построение сечений, умения анализировать чертеж.

2.Дидактическое оснащение практической работы : АРМ, модели и развёртки многогранников, измерительные инструменты, ножницы, клей, плотная бумага.

Задания к работе:

Построить сечение параллелепипеда ABCDA 1 B 1 C 1 D 1 плоскостью, проходящей через точки M, N, P, лежащие, на прямых, соответственно, A 1 B 1, А D , DC

Образец и последовательность решения задачи:

1.Точки N и P лежат в плоскости сечения и в плоскости нижнего основания параллелепипеда. Построим прямую, проходящую через эти точки. Эта прямая является следом секущей плоскости на плоскость основания параллелепипеда.

2.Продолжим прямую, на которой лежит сторона AB параллелепипеда. Прямые AB и NP пересекутся в некоторой точке S. Эта точка принадлежит плоскости сечения.

3.Так как точка M также принадлежит плоскости сечения и пересекает прямую АА 1 в некоторой точке Х.

4.Точки X и N лежат в одной плоскости грани АА 1 D 1 D, соединим их и получим прямую XN.

5.Так как плоскости граней параллелепипеда параллельны, то через точку M можно провести прямую в грани A 1 B 1 C 1 D 1 , параллельную прямой NP. Эта прямая пересечет сторону В 1 С 1 в точке Y.

6.Аналогично проводим прямую YZ, параллельно прямой XN. Соединяем Z с P и получаем искомое сечение – MYZPNX.

Вариант1. Построить сечение параллелепипеда АВСDА1В1С1D1 плоскостью, заданной следующими точками M , N и P

1 Уровень: Все три точки лежит на рёбрах, выходящих из вершиныА

2 Уровень. M лежит в грани AA1D1D, N лежит в грани АА1В1В, P лежит в грани СС1D1D.

3 Уровень. M лежит на диагонали B1D, N лежит на диагонали АС1, P лежит на ребре С1D1.

Вариант2. Построить сечение параллелепипеда АВСDА1В1С1D1 плоскостью, проходящей через прямую DQ, где точка Q лежит на ребре СС1 и точку Р, заданную следующим образом

1 Уровень: Все три точки лежит на рёбрах, выходящих из вершиныС

2 Уровень: М лежит на продолжении ребра А1В1, причем точка А1 находится между точками В1 и Р.

3 Уровень: Р лежит на диагонали В1D

Порядок выполнения работы:

1.Изучите теоретический материал по темам:

Противолежащие грани параллелепипеда.

Свойства диагоналей параллелепипеда.

П онятие секущей плоскости и правила её построения.

Какие виды многоугольников получаются в сечении куба и параллелепипеда.

2. Постройте параллелепипед ABCDA 1 B 1 C 1 D 1

3.Разберите решение задачи № 1

4.Последовательно постройте сечение параллелепипеда ABCDA 1 B 1 C 1 D 1 плоскостью, проходящей через точки P, Q, R задачи № 1.

5.Постройте ещё три параллелепипеда и выделите на них сечения к задачам 1, 2, и 3 уровней

Литература: Атанасян Л.С. Геометрия: Учебник для 10-11 кл. общеобразоват. учреждений. Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кодомцев и др. — М.: Просвещение, 2010г Зив Б.Г. Задачи по геометрии: Пособие для учащихся 7-11 кл. общеобразоват. учреждений. / Б.Г. Зив, В.М. Мейлер, А.Г. Баханский. — М.: Просвещение, 2010. В. Н. ЛитвиненкоЗадачи на развитие пространственных представлений. Книга для учителя. — М.: Просвещение, 2010г

Дидактический материал к заданию практического занятия

Как построить плоскость параллельную прямой в параллелепипеде

Некоторые возможные сечения: Как построить плоскость параллельную прямой в параллелепипеде

Построить сечения параллелепипеда плоскостью, проходящей через данные точки

Видео:10 класс, 14 урок, Задачи на построение сеченийСкачать

10 класс, 14 урок, Задачи на построение сечений

Методы построения сечений многогранников

Разделы: Математика

Метод сечений многогранников в стереометрии используется в задачах на построение. В его основе лежит умение строить сечение многогранника и определять вид сечения.

Данный материал характеризуется следующим особенностями:

  1. Метод сечений применяется только для многогранников, так как различные сложные (наклонные) виды сечений тел вращения не входят в программу средней школы.
  2. В задачах используются в основном простейшие многогранники.
  3. Задачи представлены в основном без числовых данных, чтобы создать возможность их многовариантного использования.

Чтобы решить задачу построения сечения многогранника ученик должен знать:

  • что значит построить сечение многогранника плоскостью;
  • как могут располагаться относительно друг друга многогранник и плоскость;
  • как задается плоскость;
  • когда задача на построение сечения многогранника плоскостью считается решенной.

Поскольку плоскость определяется:

  • тремя точками;
  • прямой и точкой;
  • двумя параллельными прямыми;
  • двумя пересекающимися прямыми,

построение плоскости сечения проходит в зависимости от задания этой плоскости. Поэтому все способы построения сечений многогранников можно разделить на методы.

Существует три основных метода построения сечений многогранников:

  1. Метод следов.
  2. Метод вспомогательных сечений.
  3. Комбинированный метод.

Первые два метода являются разновидностями Аксиоматического метода построения сечений.

Можно также выделить следующие методы построения сечений многогранников:

  • построение сечения многогранника плоскостью, проходящей через заданную точку параллельно заданной плоскости;
  • построение сечения, проходящего через заданную прямую параллельно другой заданной прямой;
  • построение сечения, проходящего через заданную точку параллельно двум заданным скрещивающимся прямым;
  • построение сечения многогранника плоскостью, проходящей через заданную прямую перпендикулярно заданной плоскости;
  • построение сечения многогранника плоскостью, проходящей через заданную точку перпендикулярно заданной прямой.

В федеральный перечень учебников по геометрии для 10-11 класов входят учебники авторов:

  • Атанасяна Л.С., Бутузова В.Ф., Кадомцева С.Б. и др (Геометрия, 10-11);
  • Погорелова А.В. (Геометрия, 7-11);
  • Александрова А.Д., Вернера А.Л., Рыжик В.И. (Геометрия, 10-11);
  • Смирновой И.М. (Геометрия, 10-11);
  • Шарыгина И.Ф. (Геометрия, 10-11).

Рассмотрим подробнее учебники Л.С, Атанасяна и Погорелова А.В.

В учебнике Л.С. Атанасяна на тему “Построение сечений многогранников” выделено два часа. В 10 классе в теме “Параллельность прямых и плоскостей” после изучения тетраэдра и параллелепипеда отводится один час на изложение параграфа “Задачи на построение сечений”. Рассматриваются сечения тетраэдра и параллелепипеда. И тема “Параллельность прямых и плоскостей” завершается решением задач на одном или двух часах (всего задач на построение сечений в учебнике восемь).

В учебнике Погорелова А.В. на построение сечений отводится около трех часов в главе “Многогранники”: один – на изучение темы “Изображение призмы и построение ее сечений”, второй – на изучение темы “Построение пирамиды и ее плоских сечений” и третий – на решение задач. В списке задач, приведенных после темы, задач на сечение насчитывается всего около десяти.

Мы предлагаем систему уроков по теме “Построение сечений многогранников” для учебника Погорелова А.В.

Материал предлагается расположить в той последовательности, в какой он может применяться для обучения учащихся. Из изложения темы “Многогранники” предлагается исключить следующие параграфы: “Построение сечений призмы” и “Построение сечений пирамиды” с тем, чтобы систематизировать данный материал в конце этой темы “Многогранники”. Классифицировать его по тематике задач с примерным соблюдением принципа “от простого к сложному” можно весьма условно следующим образом:

  1. Определение сечения многогранников.
  2. Построение сечений призмы, параллелепипеда, пирамиды методом следов. (Как правило в школьном курсе стереометрии используются задачи на построение сечений многогранников, решаемые основными методами. Остальные методы, в связи с их более высоким уровнем сложности, учитель может оставить для рассмотрения на факультативных занятиях или на самостоятельное изучение. В задачах на построение основными методами требуется построить плоскость сечения, проходящую через три точки).
  3. Нахождение площади сечений в многогранниках (без использования теоремы о площади ортогональной проекции многоугольника).
  4. Нахождение площади сечений в многогранниках (с применением теоремы о площади ортогональной проекции многоугольника).

СТЕРЕОМЕТРИЧЕСКИЕ ЗАДАЧИ НА ПОСТРОЕНИЕ СЕЧЕНИЙ МНОГОГРАННИКОВ И МЕТОДИКА ИХ ИСПОЛЬЗОВАНИЯ НА УРОКАХ В 10-11 КЛАССАХ.

(система уроков и факультативных занятий по теме “Построение сечений многогранников”)

Тема урока: “Построение сечений многогранников”.

Цель урока: ознакомление с методами построений сечений многогранников.

🔍 Видео

Построение сечения параллелепипеда через три точкиСкачать

Построение сечения параллелепипеда через три точки

№110. Докажите, что в параллелепипеде ABCDA1B1C1D1 плоскость A1DB параллельна плоскости D1CB1.Скачать

№110. Докажите, что в параллелепипеде ABCDA1B1C1D1 плоскость A1DB параллельна плоскости D1CB1.

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)Скачать

Геометрия 10 класс (Урок№4 - Параллельность прямых, прямой и плоскости.)

Пересечение прямой и плоскостиСкачать

Пересечение прямой и плоскости

Как строить сечение куба? Стереометрия. 10-11 класс | Математика | TutorOnlineСкачать

Как строить сечение куба? Стереометрия. 10-11 класс | Математика | TutorOnline

Как строить сечения в стереометрии? Задача 13Скачать

Как строить сечения в стереометрии? Задача 13

Как строить сечения тетраэдра и пирамидыСкачать

Как строить сечения тетраэдра и пирамиды

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

🔥Как строить сечения куба, параллелепипеда через заданные точки?Скачать

🔥Как строить сечения куба, параллелепипеда через заданные точки?

Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.Скачать

Параллельность прямых и плоскостей в пространстве. Практическая часть - решение задачи. 10 класс.
Поделиться или сохранить к себе: