Как найти векторы конечного потребления и валового выпуска

Межотраслевой баланс

С помощью сервиса в онлайн режиме можно:

  • найти коэффициенты полных материальных затрат, определить вектор валовой продукции;
  • составить межотраслевой баланс, составить схему межотраслевого баланса труда;
  • проверить продуктивность матрицы.
  • Шаг №1
  • Шаг №2
  • Видеоинструкция
  • Оформление Word

Межотраслевой баланс отражает производство и распределение валового национального продукта в отраслевом разрезе, межотраслевые производственные связи, использование материальных и трудовых ресурсов, создание и распределение национального дохода.

Система уравнений X = AX + Y называется экономико-математической моделью межотраслевого баланса (МОБ) или моделью «затраты — выпуск». C помощью нее можно выполнить следующие расчеты:

  1. подставив в модель объемы валовой продукции каждой отрасли Xi, можно определить объем конечной продукции отрасли Yj: Y = (E — A)X
  2. задав величины конечной продукции всех отраслей Yj, можно определить величины валовой продукции каждой отрасли Xi: X = (E — A) -1 Y
  3. установив для ряда отраслей величины валовой продукции, а для всех остальных отраслей задав объемы конечной продукции, можно найти объемы конечной продукции первых отраслей и объемы валовой продукции вторых.

Здесь A – матрица прямых затрат, коэффициенты которой, aij показывают затраты i-й отрасли на производство единицы продукции j-й отрасли. Введем обозначение B = (E — A) -1 . Матрица B называется матрицей полных материальных затрат, коэффициенты которой, bij показывают полный объем продукции i-й отрасли, используемой для производства единицы продукции j-й отрасли. С учетом линейности соотношений эффект распространения спроса ΔX, вызванный изменением конечного спроса на величину ΔY рассчитывается как: ΔX = B·ΔY
Через C=A-B обозначают матрицу косвенных затрат.

Пример №1 . Для трехотраслевой экономической системы заданы матрица коэффициентов прямых материальных затрат A и вектор конечной продукции Y .

Пример №2 . Дан межотраслевой баланс трехотраслевой модели хозяйства:

№ отрасли потребления123Конечный продуктВаловый продуктY’
№ отрасли1202060100200150
отрасли220406080200100
производства32001070100100

Определить:
1) технологическую матрицу;
2) матрицу коэффициентов полных затрат;
3) дать экономический анализ каждого столбца матрицы коэффициентов полных затрат;
4) определить валовый выпуск X’ на новый ассортимент конечной продукции Y’;

Решение.
Находим валовой объем продукции xi;
x1 = 20 + 20 + 60 + 100 = 200
x2 = 20 + 40 + 60 + 80 = 200
x3 = 20 + 0 + 10 + 70 = 100

ОтрасльПотреблениеКонечный продуктВаловой выпуск
Производство

202060100200
20406080200
2001070100

По формуле aij = xij / xj находим коэффициенты прямых затрат:
a11 = 20/200 = 0.1; a12 = 20/200 = 0.1; a13 = 60/100 = 0.6; a21 = 20/200 = 0.1; a22 = 40/200 = 0.2; a23 = 60/100 = 0.6; a31 = 20/200 = 0.1; a32 = 0/200 = 0; a33 = 10/100 = 0.1;

0.10.10.6
0.10.20.6
0.100.1

Определим матрицу коэффициентов полных затрат с помощью формул обращения невырожденных матриц.
а) Находим матрицу (E-A):

(E-A) =
0,9-0,1-0,6
-0,10,8-0,6
-0,100,9

б) Вычисляем обратную матрицу (E-A) -1 :

0,9-0,1-0,6
-0,10,8-0,6
-0,100,9

Найдем величины валовой продукции трех отраслей

X’ = (B -1 *Y’) =
1,230,150,92
0,261,281,03
0,140,01711,21
*
150
100
100
=
292
270
144

Пример №3 . В модели межотраслевого баланса

ПроизводствоПотреблениеКонечная продукцияВаловая продукция
123
11051570100
220
330
Оплата труда30
Прибыль DD

прибыль D равна:
D = Валовая продукция – Затраты на производство – Оплата труда = 100 – (10+20+30) – 30 = 10.

Видео:Модель межотраслевого баланса. Часть 2 ПрактикаСкачать

Модель межотраслевого баланса. Часть 2 Практика

16.3.2. Продуктивные модели Леонтьева

Матрица А, все элементы которой неотрицательны, на­зывается продуктивной, если для любого вектора Как найти векторы конечного потребления и валового выпуска с неот­рицательными компонентами существует решение уравнения (16.6) — вектор Как найти векторы конечного потребления и валового выпуска, все элементы которого неотрицательны. В таком случае и модель Леонтьева называется продуктивной.

Для уравнения типа (16.6) разработана соответствующая математическая теория исследования решения и его особеннос­тей. Укажем некоторые ее основные моменты. Приведем без доказательства важную теорему, позволяющую устанавливать продуктивность матрицы.

ТЕОРЕМА 16.1. Если для матрицы А с неотрицательными элементами и некоторого вектора Как найти векторы конечного потребления и валового выпускас неотрицательными компонентами уравнение (16.6) имеет решение Как найти векторы конечного потребления и валового выпускас неотри­цательными компонентами, то матрица А продуктивна.

Иными словами, достаточно установить наличие положи­тельного решения системы (16.6) хотя бы для одного положи­тельного вектора Как найти векторы конечного потребления и валового выпуска, чтобы матрица А была продуктивной. Пе­репишем систему (16.6) с использованием единичной матрицы Е в виде

Как найти векторы конечного потребления и валового выпуска

Если существует обратная матрица (EА)-1 , то существует и единственное решение уравнения (16.7):

Как найти векторы конечного потребления и валового выпуска

Матрица (Е — А)-1 называется Матрицей полных затрат.

Существует несколько критериев продуктивности матри­цы А. Приведем два из них.

Первый критерий продуктивности. Матрица А продукти­вна тогда и только тогда, когда матрица (Е — А)-1 сущест­вует и ее элементы неотрицательны.

Второй критерий продуктивности. Матрица А с неотри­цательными элементами продуктивна, если сумма элемен­тов по любому ее столбцу (строке) не превосходит единицы:

Как найти векторы конечного потребления и валового выпуска

Причем хотя бы для одного столбца (строки) эта сумма строго меньше единицы.

Рассмотрим применение модели Леонтьева на несложных примерах.

Пример 1. В табл. 16.4 приведены данные по балансу за не­который период времени между пятью отраслями промышлен­ности. Найти векторы конечного потребления и валового вы­пуска, а также матрицу коэффициентов прямых затрат и опре­делить, является ли она продуктивной в соответствии с при­веденными выше критериями.

Как найти векторы конечного потребления и валового выпуска

Решение. В данной таблице приведены составляющие ба­ланса в соответствии с соотношениями (16.2): Xij — первые пять столбцов, Уi — шестой столбец, Xi — последний столбец (I,J = 1, 2, 3, 4, 5). Согласно формулам (16.3) и (16.4), имеем

Как найти векторы конечного потребления и валового выпуска

Все элементы матрицы А положительны, однако нетрудно видеть, что их сумма в третьем и четвертом столбцах боль­ше единицы. Следовательно, условия второго критерия продук­тивности не соблюдены и матрица А не является продуктив­ной. Экономическая причина этой непродуктивности заключа­ется в том, что внутреннее потребление отраслей 3 и 4 слиш­ком велико в соотношении с их валовыми выпусками.

Пример 2. Табл. 16.5 содержит данные баланса трех отрас­лей промышленности за некоторый период времени. Требуется найти объем валового выпуска каждого вида продукции, если конечное потребление по отраслям увеличить соответственно до 60, 70 и 30 условных денежных единиц.

Как найти векторы конечного потребления и валового выпуска

Решение. Выпишем векторы валового выпуска и конеч­ного потребления и матрицу коэффициентов прямых затрат. Согласно формулам (16.3) и (16.4), имеем

Как найти векторы конечного потребления и валового выпуска

Матрица А удовлетворяет обоим критериям продуктивности. В случае заданного увеличения конечного потребления новый вектор конечного продукта будет иметь вид

Как найти векторы конечного потребления и валового выпуска

Требуется найти новый вектор валового выпуска Как найти векторы конечного потребления и валового выпуска*, удов­летворяющий соотношениям баланса в предположении, что матрица А не изменяется. В таком случае компоненты X1, X2, х3 неизвестного вектора Как найти векторы конечного потребления и валового выпуска* находятся из системы уравнений, которая согласно (16.4) имеет в данном случае вид

Как найти векторы конечного потребления и валового выпуска

В матричной форме эта система выглядит следующим об­разом:

Как найти векторы конечного потребления и валового выпуска

Как найти векторы конечного потребления и валового выпуска

Где матрица (Е — А) имеет вид

Как найти векторы конечного потребления и валового выпуска

Решение системы линейных уравнений (16.11) при заданном векторе правой части (16.9) (например, методом Гаусса) да­ет новый вектор Как найти векторы конечного потребления и валового выпуска* как решение системы уравнений баланса (16.10):

Как найти векторы конечного потребления и валового выпуска

Таким образом, для того чтобы обеспечить заданное уве­личение компонент вектора конечного продукта, необходимо увеличить соответствующие валовые выпуски: добычу и пе­реработку углеводородов на 52,2%, уровень энергетики — на 35,8% и выпуск продукции машиностроения — на 85% по срав­нению с исходными величинами, указанными в табл. 16.5.

Видео:Модель Леонтьева. Теория и решение задачи.Скачать

Модель Леонтьева. Теория и решение задачи.

Как найти векторы конечного потребления и валового выпуска

Каждая отрасль многоотраслевого хозяйства с одной стороны является производите-лем определенной продукции, а с другой – потребителем продукции, выпускаемой другими отраслями. Макроэкономика функционирования многоотраслевого хозяйства требует, чтобы соблюдался баланс по производству и потреблению между отдельными отраслями. Балансовый принцип связи различных отраслей состоит в том, что валовой выпуск i-й отрасли должен быть равен сумме объемов потребления. В простейшей форме балансовые соотношения имеют вид xi=xi1 + xi2 + … + xin + yi , i=1, 2, …, n. где xi – общий объем выпускаемой продукции i–й отрасли; xij – объем продукции i–й отрасли, потребляемый j –й отраслью при производстве объема продукции xj; yi – объем продукции i–й отрасли конечного потребления (для реализации а непро-изводственной сфере). Для производства продукции j –й отрасли объемом xi нужно использовать продукцию i –й отрасли объемом aijxi , где аij – постоянное число, характеризующее прямые затраты. Это допущение позволяет представить модель многоотраслевой экономики в виде системы линейных уравнений, которая в матричной форме имеет вид Как найти векторы конечного потребления и валового выпуска,

где x- вектор валового выпуска;

y- вектор объема продукции конечного потребления;

A — матрица коэффициентов прямых затрат. Приведенная система уравнений может быть представлена в виде Как найти векторы конечного потребления и валового выпуска, где E – единичная матрица. Если существует обратная матрица Как найти векторы конечного потребления и валового выпуска(матрица полных затрат), то существует единственное решение системы Как найти векторы конечного потребления и валового выпуска. Из экономической теории известно несколько критериев продуктивности матрицы А:

1) матрица А продуктивна тогда и только тогда, когда матрица Как найти векторы конечного потребления и валового выпускасуществует и ее элементы неотрицательны;

2) матрица А с неотрицательными элементами продуктивна, если сумма элементов по любому ее столбцу (строке) не больше единицы, при чем хотя бы для одного столбца (строки) строго меньше единицы.

Рассмотрим пример решения задачи на применение модели Леонтьева.

Пример 7. В таблице приведены данные по балансу за некоторый период времени между пятью отраслями.

📸 Видео

Модель межотраслевого баланса. Часть 1 ТеорияСкачать

Модель межотраслевого баланса. Часть 1 Теория

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Координаты вектора. 9 класс.Скачать

Координаты вектора. 9 класс.

Собственные векторы и собственные числа линейного оператораСкачать

Собственные векторы и собственные числа линейного оператора

ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | УмскулСкачать

ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | Умскул

Собственные векторы и собственные значения матрицыСкачать

Собственные векторы и собственные значения матрицы

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисе

Собственные значения и собственные векторы матрицы (4)Скачать

Собственные значения и собственные векторы матрицы (4)

Как разложить вектор по базису - bezbotvyСкачать

Как разложить вектор по базису - bezbotvy

Модель Леонтьева "затраты-выпуск" в MS ExcelСкачать

Модель Леонтьева "затраты-выпуск" в MS Excel

Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnlineСкачать

Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnline

Векторы. Метод координат. Вебинар | МатематикаСкачать

Векторы. Метод координат. Вебинар | Математика

Координаты вектора в пространстве. 11 класс.Скачать

Координаты вектора  в пространстве. 11 класс.

Угол между векторами. 9 класс.Скачать

Угол между векторами. 9 класс.

Орт вектора. Нормировать вектор. Найти единичный векторСкачать

Орт вектора.  Нормировать вектор.  Найти единичный вектор

Нахождение координат вектора. Практическая часть. 9 класс.Скачать

Нахождение координат вектора. Практическая часть. 9 класс.

Понятие вектора. Коллинеарные вектора. 9 класс.Скачать

Понятие вектора. Коллинеарные вектора. 9 класс.

Единичный векторСкачать

Единичный вектор
Поделиться или сохранить к себе: