Центр масс треугольника это

Центр тяжести треугольника

Этот онлайн калькулятор находит центроид, или барицентр (центр тяжести) треугольника по координатам его вершин

Центр тяжести (центр масс, барицентр) треугольника для треугольника с равномерно распределённой массой (или в вершинах которого находятся равные массы) находится в центроиде треугольника. Центроидом называется точка пересечения медиан треугольника. Центроид относится к так называемым замечательным точкам треугольника. Например, помимо того, что он является центром тяжести, он также делит каждую медиану в отношении 2:1, считая от вершины, а три отрезка прямых, соединяющих вершины треугольника с центроидом, разбивают данный треугольник на три равновеликих треугольника.

Чтобы вычислить положение центра тяжести по координатам вершин треугольника, достаточно вычислить среднее арифметическое координат вершин по оси x и по оси y, что и делает калькулятор ниже.

Видео:Урок 79. Центр масс тела и методы определения его положенияСкачать

Урок 79. Центр масс тела и методы определения его положения

Центры тяжести многоугольников и многогранников

Центром тяжести (или центром масс) некоторого тела называется точка, обладающая тем свойством, что если подвесить тело за эту точку, то оно будет сохранять свое положение.

Ниже рассмотрены двумерные и трёхмерные задачи, связанные с поиском различных центров масс — в основном с точки зрения вычислительной геометрии.

В рассмотренных ниже решениях можно выделить два основных факта. Первый — что центр масс системы материальных точек равен среднему их координат, взятых с коэффициентами, пропорциональными их массам. Второй факт — что если мы знаем центры масс двух непересекающихся фигур, то центр масс их объединения будет лежать на отрезке, соединяющем эти два центра, причём он будет делить его в то же отношении, как масса второй фигуры относится к массе первой.

Видео:Центр тяжести треугольникаСкачать

Центр тяжести треугольника

Двумерный случай: многоугольники

На самом деле, говоря о центре масс двумерной фигуры, можно иметь в виду одну из трёх следующих задач:

  • Центр масс системы точек — т.е. вся масса сосредоточена только в вершинах многоугольника.
  • Центр масс каркаса — т.е. масса многоугольника сосредоточена на его периметре.
  • Центр масс сплошной фигуры — т.е. масса многоугольника распределена по всей его площади.

Каждая из этих задач имеет самостоятельное решение, и будет рассмотрена ниже отдельно.

Центр масс системы точек

Это самая простая из трёх задач, и её решение — известная физическая формула центра масс системы материальных точек:

Центр масс треугольника это

где Центр масс треугольника это— массы точек, Центр масс треугольника это— их радиус-векторы (задающие их положение относительно начала координат), и Центр масс треугольника это— искомый радиус-вектор центра масс.

В частности, если все точки имеют одинаковую массу, то координаты центра масс есть среднее арифметическое координат точек. Для треугольника эта точка называется центроидом и совпадает с точкой пересечения медиан:

Центр масс треугольника это

Для доказательства этих формул достаточно вспомнить, что равновесие достигается в такой точке Центр масс треугольника это, в которой сумма моментов всех сил равна нулю. В данном случае это превращается в условие того, чтобы сумма радиус-векторов всех точек относительно точки Центр масс треугольника это, домноженных на массы соответствующих точек, равнялась нулю:

Центр масс треугольника это

и, выражая отсюда Центр масс треугольника это, мы и получаем требуемую формулу.

Центр масс каркаса

Будем считать для простоты, что каркас однороден, т.е. его плотность везде одна и та же.

Но тогда каждую сторону многоугольника можно заменить одной точкой — серединой этого отрезка (т.к. центр масс однородного отрезка есть середина этого отрезка), с массой, равной длине этого отрезка.

Теперь мы получили задачу о системе материальных точек, и применяя к ней решение из предыдущего пункта, мы находим:

Центр масс треугольника это

где Центр масс треугольника это— точка-середина Центр масс треугольника это-ой стороны многоугольника, Центр масс треугольника это— длина Центр масс треугольника это-ой стороны, Центр масс треугольника это— периметр, т.е. сумма длин сторон.

Для треугольника можно показать следующее утверждение: эта точка является точкой пересечения биссектрис треугольника, образованного серединами сторон исходного треугольника. (чтобы показать это, надо воспользоваться приведённой выше формулой, и затем заметить, что биссектрисы делят стороны получившегося треугольника в тех же соотношениях, что и центры масс этих сторон).

Центр масс сплошной фигуры

Мы считаем, что масса распределена по фигуре однородно, т.е. плотность в каждой точке фигуры равна одному и тому же числу.

Случай треугольника

Утверждается, что для треугольника ответом будет всё тот же центроид, т.е. точка, образованная средним арифметическим координат вершин:

Центр масс треугольника это

Случай треугольника: доказательство

Приведём здесь элементарное доказательство, не использующее теорию интегралов.

Первым подобное, чисто геометрическое, доказательство привёл Архимед, но оно было весьма сложным, с большим числом геометрических построений. Приведённое здесь доказательство взято из статьи Apostol, Mnatsakanian «Finding Centroids the Easy Way».

Доказательство сводится к тому, чтобы показать, что центр масс треугольника лежит на одной из медиан; повторяя этот процесс ещё дважды, мы тем самым покажем, что центр масс лежит в точке пересечения медиан, которая и есть центроид.

Разобьём данный треугольник Центр масс треугольника этона четыре, соединив середины сторон, как показано на рисунке:

Центр масс треугольника это

Четыре получившихся треугольника подобны треугольнику Центр масс треугольника этос коэффициентом Центр масс треугольника это.

Треугольники №1 и №2 вместе образуют параллелограмм, центр масс которого Центр масс треугольника этолежит в точке пересечения его диагоналей (поскольку это фигура, симметричная относительно обеих диагоналей, а, значит, её центр масс обязан лежать на каждой из двух диагоналей). Точка Центр масс треугольника этонаходится посередине общей стороны треугольников №1 и №2, а также лежит на медиане треугольника Центр масс треугольника это:

Центр масс треугольника это

Пусть теперь вектор Центр масс треугольника это— вектор, проведённый из вершины Центр масс треугольника эток центру масс Центр масс треугольника этотреугольника №1, и пусть вектор Центр масс треугольника это— вектор, проведённый из Центр масс треугольника эток точке Центр масс треугольника это(которая, напомним, является серединой стороны, на которой она лежит):

Центр масс треугольника это

Наша цель — показать, что вектора Центр масс треугольника этои Центр масс треугольника этоколлинеарны.

Обозначим через Центр масс треугольника этои Центр масс треугольника этоточки, являющиеся центрами масс треугольников №3 и №4. Тогда, очевидно, центром масс совокупности этих двух треугольников будет точка Центр масс треугольника это, являющаяся серединой отрезка Центр масс треугольника это. Более того, вектор от точки Центр масс треугольника эток точке Центр масс треугольника этосовпадает с вектором Центр масс треугольника это.

Искомый центр масс Центр масс треугольника этотреугольника Центр масс треугольника этолежит посередине отрезка, соединяющего точки Центр масс треугольника этои Центр масс треугольника это(поскольку мы разбили треугольник Центр масс треугольника этона две части равных площадей: №1-№2 и №3-№4):

Центр масс треугольника это

Таким образом, вектор от вершины Центр масс треугольника эток центроиду Центр масс треугольника эторавен Центр масс треугольника это. С другой стороны, т.к. треугольник №1 подобен треугольнику Центр масс треугольника этос коэффициентом Центр масс треугольника это, то этот же вектор равен Центр масс треугольника это. Отсюда получаем уравнение:

Центр масс треугольника это

Центр масс треугольника это

Таким образом, мы доказали, что вектора Центр масс треугольника этои Центр масс треугольника этоколлинеарны, что и означает, что искомый центроид Центр масс треугольника этолежит на медиане, исходящей из вершины Центр масс треугольника это.

Более того, попутно мы доказали, что центроид делит каждую медиану в отношении Центр масс треугольника это, считая от вершины.

Случай многоугольника

Перейдём теперь к общему случаю — т.е. к случаю мноугоугольника. Для него такие рассуждения уже неприменимы, поэтому сведём задачу к треугольной: а именно, разобьём многоугольник на треугольники (т.е. триангулируем его), найдём центр масс каждого треугольника, а затем найдём центр масс получившихся центров масс треугольников.

Окончательная формула получается следующей:

Центр масс треугольника это

где Центр масс треугольника это— центроид Центр масс треугольника это-го треугольника в триангуляции заданного многоугольника, Центр масс треугольника это— площадь Центр масс треугольника это-го треугольника триангуляции, Центр масс треугольника это— площадь всего многоугольника.

Триангуляция выпуклого многоугольника — тривиальная задача: для этого, например, можно взять треугольники Центр масс треугольника это, где Центр масс треугольника это.

Случай многоугольника: альтернативный способ

С другой стороны, применение приведённой формулы не очень удобно для невыпуклых многоугольников, поскольку произвести их триангуляцию — сама по себе непростая задача. Но для таких многоугольников можно придумать более простой подход. А именно, проведём аналогию с тем, как можно искать площадь произвольного многоугольника: выбирается произвольная точка Центр масс треугольника это, а затем суммируются знаковые площади треугольников, образованных этой точкой и точками многоугольника: Центр масс треугольника это. Аналогичный приём можно применить и для поиска центра масс: только теперь мы будем суммировать центры масс треугольников Центр масс треугольника это, взятых с коэффициентами, пропорциональными их площадям, т.е. итоговая формула для центра масс такова:

Центр масс треугольника это

где Центр масс треугольника это— произвольная точка, Центр масс треугольника это— точки многоугольника, Центр масс треугольника это— центроид треугольника Центр масс треугольника это, Центр масс треугольника это— знаковая площадь этого треугольника, Центр масс треугольника это— знаковая площадь всего многоугольника (т.е. Центр масс треугольника это).

Видео:Механика | динамика | центр масс треугольникаСкачать

Механика | динамика | центр масс треугольника

Трёхмерный случай: многогранники

Аналогично двумерному случаю, в 3D можно говорить сразу о четырёх возможных постановках задачи:

  • Центр масс системы точек — вершин многогранника.
  • Центр масс каркаса — рёбер многогранника.
  • Центр масс поверхности — т.е. масса распределена по площади поверхности многогранника.
  • Центр масс сплошного многогранника — т.е. масса распределена по всему многограннику.

Центр масс системы точек

Как и в двумерном случае, мы можем применить физическую формулу и получить тот же самый результат:

Центр масс треугольника это

который в случае равных масс превращается в среднее арифметическое координат всех точек.

Центр масс каркаса многогранника

Аналогично двумерному случаю, мы просто заменяем каждое ребро многогранника материальной точкой, расположенной посередине этого ребра, и с массой, равной длине этого ребра. Получив задачу о материальных точках, мы легко находим её решение как взвешенную сумму координат этих точек.

Центр масс поверхности многогранника

Каждая грань поверхности многогранника — двухмерная фигура, центр масс которой мы умеем искать. Найдя эти центры масс и заменив каждую грань её центром масс, мы получим задачу с материальными точками, которую уже легко решить.

Центр масс сплошного многогранника

Случай тетраэдра

Как и в двумерном случае, решим сначала простейшую задачу — задачу для тетраэдра.

Утверждается, что центр масс тетраэдра совпадает с точкой пересечения его медиан (медианой тетраэдра называется отрезок, проведённый из его вершины в центр масс противоположной грани; таким образом, медиана тетраэдра проходит через вершину и через точку пересечения медиан треугольной грани).

Почему это так? Здесь верны рассуждения, аналогичные двумерному случаю: если мы рассечём тетраэдр на два тетраэдра с помощью плоскости, проходящей через вершину тетраэдра и какую-нибудь медиану противоположной грани, то оба получившихся тетраэдра будут иметь одинаковый объём (т.к. треугольная грань разобьётся медианой на два треугольника равной площади, а высота двух тетраэдров не изменится). Повторяя эти рассуждения несколько раз, получаем, что центр масс лежит на точке пересечения медиан тетраэдра.

Эта точка — точка пересечения медиан тетраэдра — называется его центроидом. Можно показать, что она на самом деле имеет координаты, равные среднему арифметическому координат вершин тетраэдра:

Центр масс треугольника это

(это можно вывести из того факта, что центроид делит медианы в отношении Центр масс треугольника это)

Таким образом, между случаями тетраэдра и треугольника принципиальной разницы нет: точка, равная среднему арифметическому вершин, является центром масс сразу в двух постановках задачи: и когда массы находится только в вершинах, и когда массы распределены по всей площади/объёму. На самом деле, этот результат обобщается на произвольную размерность: центр масс произвольного симплекса (simplex) есть среднее арифметическое координат его вершин.

Случай произвольного многогранника

Перейдём теперь к общему случаю — случаю произвольного многогранника.

Снова, как и в двумерном случае, мы производим сведение этой задачи к уже решённой: разбиваем многогранник на тетраэдры (т.е. производим его тетраэдризацию), находим центр масс каждого из них, и получаем окончательный ответ на задачу в виде взвешенной суммы найденных центров масс.

Видео:Центр массСкачать

Центр масс

Центр треугольника

Треугольник — наиболее распространенная форма деталей в сферах машиностроения и строительства. Точка пересечения 3-х медиан считается центром треугольника. На эту точку приходится также центр тяжести и центр симметрии предметов треугольной формы. При разработке дизайнерских, инженерных проектов очень важно точно рассчитать центр тяжести элементов металлической или бетонной конструкции.

Существует несколько понятий центра для треугольника.

Инцентр — точка пересечения его биссектрис. Это — центр описанной около треугольника окружности.

Ортоцентр — точка пересечения его высот.

Центр тяжести,центр масс или центроид (обозн. М) — точка пересечения медиан треугольника.

Рассмотрим треугольник. Определим середины его сторон и соединим их с противолежащими углами. Точка пересечения медиан и будет центром тяжести тр-ка. Медиана делится этой точкой в пропорции 2:1 , (считая от вершины тр-ка).

Видео:Центр масс в математике (или механика помогает геометрии)Скачать

Центр масс в математике (или механика помогает геометрии)

Как найти центр треугольника

Если известны координаты его вершин, найдем сумму трех значений координат «х» и трех значений координат «у». Поделим каждую сумму на 3, получим среднее значение сумм координат «х» и «у», что и будет координатами центра тяжести.

Центром равностороннего треугольника является точка пересечения высот, биссектрис и медиан.

Центр равностороннего треугольника является также центром вписанной и описанной окружности.

Центроид расположен на отрезке, соединяющем ортоцентр и центр описанной окружности. Центроид делит отрезок 2:1.

Быстро найти центр треугольника G можно с помощью онлайн калькулятора. Для этого:

  • ввести в поле калькулятора координаты вершин треугольника;
  • нажать кнопку Вычислить. Калькулятор вычислит значение центра треугольника G.

🎦 Видео

Центр тяжестиСкачать

Центр тяжести

координаты центра тяжести треугольникаСкачать

координаты центра тяжести треугольника

97 Медианы и центр тяжести треугольникаСкачать

97 Медианы и центр тяжести треугольника

Определение центра тяжести сложной фигуры. СопроматСкачать

Определение центра тяжести сложной фигуры. Сопромат

Урок 80. Определение положения центра масс телаСкачать

Урок 80. Определение положения центра масс тела

Галилео. Эксперимент. Центр массСкачать

Галилео. Эксперимент. Центр масс

Центры тяжести прямоугольных треугольниковСкачать

Центры тяжести прямоугольных треугольников

3.3. Центр масс и закон его движения | Динамика | Александр Чирцов | ЛекториумСкачать

3.3. Центр масс и закон его движения | Динамика | Александр Чирцов | Лекториум

Найдите центр тяжестиСкачать

Найдите центр тяжести

Метод центра масс. Олимпиадная математика. Be Student SchoolСкачать

Метод центра масс. Олимпиадная математика. Be Student School

Центр тяжести трапецииСкачать

Центр тяжести трапеции

Почему точка пересечения медиан называется центром масс?Скачать

Почему точка пересечения медиан называется центром масс?

Центр массСкачать

Центр масс

Видеоурок 3. Определение центра тяжести.Скачать

Видеоурок 3. Определение центра тяжести.

Центр тяжести. ЭкспериментСкачать

Центр тяжести. Эксперимент
Поделиться или сохранить к себе: