Как найти угол описанного четырехугольника

Четырехугольники, вписанные в окружность. Теорема Птолемея
Как найти угол описанного четырехугольникаВписанные четырехугольники и их свойства
Как найти угол описанного четырехугольникаТеорема Птолемея
Содержание
  1. Вписанные четырёхугольники и их свойства
  2. Теорема Птолемея
  3. Вписанные и описанные четырехугольники
  4. Четырехугольник — виды и свойства с примерами решения
  5. Внутренние и внешние углы четырехугольника
  6. Сумма внутренних углов выпуклого четырёхугольника
  7. Сумма внешних углов выпуклого четырёхугольника
  8. Параллелограмм
  9. Параллелограмм и его свойства
  10. Признаки параллелограмма
  11. Прямоугольник
  12. Признак прямоугольника
  13. Ромб и квадрат
  14. Свойства ромба
  15. Трапеция
  16. Средняя линия треугольника
  17. Средняя линия трапеции
  18. Координаты середины отрезка
  19. Теорема Пифагора
  20. Справочный материал по четырёхугольнику
  21. Пример №1
  22. Признаки параллелограмма
  23. Пример №2 (признак параллелограмма).
  24. Прямоугольник
  25. Пример №3 (признак прямоугольника).
  26. Ромб. Квадрат
  27. Пример №4 (признак ромба)
  28. Теорема Фалеса. Средняя линия треугольника
  29. Пример №5
  30. Пример №6
  31. Трапеция
  32. Пример №7 (свойство равнобедренной трапеции).
  33. Центральные и вписанные углы
  34. Пример №8
  35. Вписанные и описанные четырёхугольники
  36. Пример №9
  37. Пример №10
  38. 🎦 Видео

Видео:3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Вписанные четырёхугольники и их свойства

Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .

Как найти угол описанного четырехугольника

Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .

Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .

Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.

Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).

Как найти угол описанного четырехугольника

Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.

Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.

Теорема 2 доказана.

Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Как найти угол описанного четырехугольника
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Как найти угол описанного четырехугольника

ФигураРисунокСвойство
Окружность, описанная около параллелограммаКак найти угол описанного четырехугольникаОкружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромбаКак найти угол описанного четырехугольникаОкружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапецииКак найти угол описанного четырехугольникаОкружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоидаКак найти угол описанного четырехугольникаОкружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольникКак найти угол описанного четырехугольника

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Как найти угол описанного четырехугольника
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Как найти угол описанного четырехугольника

Окружность, описанная около параллелограмма
Как найти угол описанного четырехугольникаОкружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромба
Как найти угол описанного четырехугольникаОкружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапеции
Как найти угол описанного четырехугольникаОкружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоида
Как найти угол описанного четырехугольникаОкружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольник
Как найти угол описанного четырехугольника
Окружность, описанная около параллелограмма
Как найти угол описанного четырехугольника

Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.

Окружность, описанная около ромбаКак найти угол описанного четырехугольника

Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.

Окружность, описанная около трапецииКак найти угол описанного четырехугольника

Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.

Окружность, описанная около дельтоидаКак найти угол описанного четырехугольника

Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.

Произвольный вписанный четырёхугольникКак найти угол описанного четырехугольника

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Как найти угол описанного четырехугольника

Как найти угол описанного четырехугольника

где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.

Как найти угол описанного четырехугольника

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Теорема Птолемея

Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.

Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).

Как найти угол описанного четырехугольника

Докажем, что справедливо равенство:

Как найти угол описанного четырехугольника

Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).

Как найти угол описанного четырехугольника

Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

Как найти угол описанного четырехугольника

откуда вытекает равенство:

Как найти угол описанного четырехугольника(1)

Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

Видео:Найдите углы четырёхугольникаСкачать

Найдите углы четырёхугольника

Вписанные и описанные четырехугольники

Вписанный четырехугольник — четырехугольник, все вершины которого лежат на одной окружности.
Очевидно, эта окружность будет называться описанной вокруг четырехугольника.

Описанный четырехугольник — такой, что все его стороны касаются одной окружности. В этом случае окружность вписана в четырехугольник.

На рисунке — вписанные и описанные четырехугольники и их свойства.

Как найти угол описанного четырехугольника

Ты нашел то, что искал? Поделись с друзьями!

Посмотрим, как эти свойства применяются в решении задач ЕГЭ.

. Два угла вписанного в окружность четырехугольника равны и . Найдите больший из оставшихся углов. Ответ дайте в градусах.

Как найти угол описанного четырехугольника

Сумма противоположных углов вписанного четырехугольника равна . Пусть угол равен . Тогда напротив него лежит угол в градусов. Если угол равен , то угол равен .

. Три стороны описанного около окружности четырехугольника относятся (в последовательном порядке) как . Найдите большую сторону этого четырехугольника, если известно, что его периметр равен .

Как найти угол описанного четырехугольника

Пусть сторона равна , равна , а . По свойству описанного четырехугольника, суммы противоположных сторон равны, и значит,

Получается, что равна . Тогда периметр четырехугольника равен . Мы получаем, что , а большая сторона равна .

. Около окружности описана трапеция, периметр которой равен . Найдите ее среднюю линию.

Как найти угол описанного четырехугольника

Мы помним, что средняя линия трапеции равна полусумме оснований. Пусть основания трапеции равны и , а боковые стороны — и . По свойству описанного четырехугольника,
, и значит, периметр равен .
Получаем, что , а средняя линия равна .

Еще раз повторим свойства вписанного и описанного четырехугольника.

Четырехугольник можно вписать в окружность тогда и только тогда, когда суммы его противоположных углов равны .

Четырехугольник можно описать вокруг окружности тогда и только тогда, когда суммы длин его противоположных сторон равны.

Докажите эти утверждения. Это задание особенно полезно тем, кто решает задачи второй части профильного ЕГЭ по математике.

Видео:Геометрия Найдите углы четырехугольника MNKP, вписанного в окружность, если угол MKP = 58, угол MPNСкачать

Геометрия Найдите углы четырехугольника MNKP, вписанного в окружность, если угол MKP = 58, угол MPN

Четырехугольник — виды и свойства с примерами решения

Содержание:

Четырёхугольник — это фигура, которая состоит из четырёх точек и четырёх последовательно соединяющих их отрезков. При этом, никакие три из указанных точек не должны быть расположены на одной прямой, а соединяющие их отрезки не должны пересекаться. Данные точки называются вершинами четырёхугольника, а соединяющие их отрезки — сторонами четырёхугольника.

Как найти угол описанного четырехугольника

Вершины, являющиеся концами одной стороны четырёхугольника, называются соседними, а вершины, не принадлежащие одной стороне — противолежащими. Стороны, имеющие общую вершину, называются соседними сторонами, а не имеющие общих вершин — противолежащими сторонами. Отрезки, соединяющие противолежащие вершины, называются диагоналями четырёхугольника. Точки, принадлежащие четырёхугольнику, делят плоскость q на два множества, которые образуют две области — внутреннюю и внешнюю.

Как найти угол описанного четырехугольника

Четырёхугольник называется выпуклым, если все точки, принадлежащие внутренней области, находятся в одной полуплоскости от линии, содержащей любую сторону четырёхугольника, если эти точки находятся в разных полуплоскостях, то четырёхугольник называется невыпуклым (вогнутым).

Как найти угол описанного четырехугольника

Если соединить любые две точки внутренней области выпуклого многоугольника, то отрезок, соединяющий эти точки, целиком находится во внутренней области четырёхугольника.

Диагонали выпуклого четырёхугольника находятся во внутренней области. У невыпуклого четырёхугольника одна из диагоналей находится во внешней области. Каждая из двух диагоналей выпуклого четырёхугольника делит его на два треугольника.

Как найти угол описанного четырехугольника

Видео:№369. Найдите углы A, B и C выпуклого четырехугольника ABCD, еслиСкачать

№369. Найдите углы A, B и C выпуклого четырехугольника ABCD, если

Внутренние и внешние углы четырехугольника

Угол, смежный любому углу выпуклого четырёхугольника, называется внешним углом. Из любой вершины четырёхугольника можно провести два внешних угла, которые являются вертикальными углами и соответственно равны друг другу. Поэтому, говоря о внешнем угле четырёхугольника, мы будем иметь в виду, один из них. На рисунке для внутренних углов Как найти угол описанного четырехугольникауглы Как найти угол описанного четырехугольникаявляются внешними.

Как найти угол описанного четырехугольника

Каждый внутренний угол выпуклого четырёхугольника меньше Как найти угол описанного четырехугольникаГрадусная мера внутреннего угла невыпуклого четырёхугольника может быть больше Как найти угол описанного четырехугольника

Как найти угол описанного четырехугольника

Сумма внутренних углов выпуклого четырёхугольника

Теорема. Сумма внутренних углов выпуклого четырёхугольника равна Как найти угол описанного четырехугольникаКак найти угол описанного четырехугольника

Как найти угол описанного четырехугольника

Докажите теорему, основываясь на том, что сумма внутренних углов треугольника равна Как найти угол описанного четырехугольникаДоказательство представьте в виде двухстолбчатой таблицы.

Сумма внешних углов выпуклого четырёхугольника

Теорема. Сумма внешних углов выпуклого четырёхугольника равна Как найти угол описанного четырехугольника

Как найти угол описанного четырехугольника

Докажите теорему, опираясь на то, что внешний и внутренний угол, при каждой вершине являются смежными углами.

Параллелограмм

Параллелограмм и его свойства

Параллелограммом называется четырёхугольник, у которого противоположные стороны попарно параллельны. Как найти угол описанного четырехугольника

Теорема 1. Противоположные стороны параллелограмма конгруэнтны. Как найти угол описанного четырехугольника

Теорема 2. Противоположные углы параллелограмма конгруэнтны. Как найти угол описанного четырехугольника

Теорема 3. Сумма углов, прилежащих к одной стороне параллелограмма равна Как найти угол описанного четырехугольникаКак найти угол описанного четырехугольника

Как найти угол описанного четырехугольника

Теорема 4. Диагонали параллелограмма пересекаются и делятся точкой пересечения пополам. Как найти угол описанного четырехугольника

Теорема 5. Диагонали параллелограмма делят его на два конгруэнтных треугольника. Как найти угол описанного четырехугольника

Как найти угол описанного четырехугольника

Признаки параллелограмма

Теорема 1. Четырёхугольник у которого две противоположные стороны конгруэнтный параллельны есть параллелограмм.

Теорема 2. Четырёхугольник с попарно конгруэнтными сторонами есть параллелограмм.

Теорема 3. Если диагонали четырёхугольника пересекаются и в точке пересечения делятся по полам, то этот четырёхугольник есть параллелограмм.

Прямоугольник

Параллелограмм, все углы которого прямые, называется прямоугольником.

Все свойства параллелограмма относятся к прямоугольнику.

Наряду с этим прямоугольник имеет следующее свойство:

Теорема. Диагонали прямоугольника конгруэнтны. Как найти угол описанного четырехугольника

Признак прямоугольника

Параллелограмм, у которого диагонали конгруэнтны есть прямоугольник.

Как найти угол описанного четырехугольника

Ромб и квадрат

Свойства ромба

Параллелограмм, у которого все стороны конгруэнтны, называется ромбом. Все свойства параллелограмма относятся к ромбу. Наряду с этим, ромб обладает следующими свойствами:

Теорема 1. Диагонали ромба являются биссектрисами его углов и пересекаются под прямым утлом. Как найти угол описанного четырехугольника

Теорема 2. (Обратная георема). Параллелограмм, у которого диагонали перпендикулярны, есть ромб. Если Как найти угол описанного четырехугольникато параллелограмм Как найти угол описанного четырехугольникаявляется ромбом.

Как найти угол описанного четырехугольника

Доказательство теоремы 1.

Дано: Как найти угол описанного четырехугольникаромб.

Докажите, что Как найти угол описанного четырехугольника

Доказательство (словестное): По определению ромба Как найти угол описанного четырехугольникаПри этом, так как ромб является параллелограммом, а диагонали параллелограмма делятся точкой пересечения пополам, тогда можно записать, что Как найти угол описанного четырехугольникаравнобедренный. Медиана Как найти угол описанного четырехугольника(так как Как найти угол описанного четырехугольника), является также и биссектрисой и высотой. Т.е. Как найти угол описанного четырехугольникаТак как Как найти угол описанного четырехугольникаявляется прямым углом, то Как найти угол описанного четырехугольника. Аналогичным образом можно доказать, что Как найти угол описанного четырехугольника

Если четырёхугольник является ромбом или квадратом, то справедливы следующие утверждения.

Ромб:

  • 1. Все свойства параллелограмма действительны для ромба.
  • 2. Все стороны конгруэнтны.
  • 3. Диагонали взаимно перпендикулярны.
  • 4. Диагонали ромба делят его углы пополам.

Квадрат:

  • 1. Все свойства прямоугольника и ромба действительны для квадрата.
  • 2. Все углы прямые.
  • 3. Все стороны конгруэнтны.
  • 4. Диагонали равны, взаимно перпендикулярны, делятся точкой пересечения пополам, являются биссектрисами углов квадрата.

Как найти угол описанного четырехугольника

Трапеция

Четырёхугольник, у которого только две стороны параллельны, называется трапецией.

Параллельные стороны трапеции называются основаниями, не параллельные стороны называются боковыми сторонами.

Как найти угол описанного четырехугольника

Трапеция, у которой боковые стороны равны называется равнобедренной трапецией.

Трапеция, у которой одна из боковых сторон перпендикулярна основанию называется прямоугольной трапецией.

Теорема 1. В равнобедренной трапеции углы, прилежащие к основанию конгруэнтны. Как найти угол описанного четырехугольника

Теорема 2. Диагонали равнобедренной трапеции конгруэнтны. Как найти угол описанного четырехугольника

Как найти угол описанного четырехугольника

План доказательства теоремы 2

Дано: Как найти угол описанного четырехугольникаравнобедренная трапеция. Как найти угол описанного четырехугольника

Докажите: Как найти угол описанного четырехугольника

Как найти угол описанного четырехугольника

Средняя линия треугольника

Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне конгруэнтные отрезки, то они отсекают конгруэнтные отрезки и на другой его стороне. Если Как найти угол описанного четырехугольникатогда Как найти угол описанного четырехугольникаЗапишите в тетради доказательство теоремы, заполнив пропущенные строки.

Доказательство: через точку Как найти угол описанного четырехугольникапроведем параллельную прямую к прямой Как найти угол описанного четырехугольника

Как найти угол описанного четырехугольника

Если в условии теоремы Фалеса, вместо угла взять две произвольные прямые, то результат не изменится.

Исследование: 1) В треугольнике Как найти угол описанного четырехугольникачерез точку Как найти угол описанного четырехугольника— середину стороны Как найти угол описанного четырехугольникапроведите прямую параллельную Как найти угол описанного четырехугольникаКакая фигура получилась? Является ли Как найти угол описанного четырехугольникатрапецией? Измерьте и сравните основания полученной трапеции. 2) Измерьте и сравните длины отрезков Как найти угол описанного четырехугольникаМожно ли утверждать, что Как найти угол описанного четырехугольника

Как найти угол описанного четырехугольника

Определение: Отрезок, соединяющий середины двух сторон треугольника называется средней линией этого треугольника. Теорема. Средняя линия, соединяющая середины двух сторон треугольника, параллельна третьей стороне и равна ее половине Как найти угол описанного четырехугольника

Как найти угол описанного четырехугольника

Доказательство. Пусть дан треугольник Как найти угол описанного четырехугольникаи его средняя линия Как найти угол описанного четырехугольникаПроведём через точку Как найти угол описанного четырехугольникапрямую параллельную стороне Как найти угол описанного четырехугольникаПо теореме Фалеса, она проходит через середину стороны Как найти угол описанного четырехугольникат.е. совпадает со средней линией Как найти угол описанного четырехугольникаТ.е. средняя линия Как найти угол описанного четырехугольникапараллельна стороне Как найти угол описанного четырехугольникаТеперь проведём среднюю линию Как найти угол описанного четырехугольникаТ.к. Как найти угол описанного четырехугольникато четырёхугольник Как найти угол описанного четырехугольникаявляется параллелограммом. По свойству параллелограмма Как найти угол описанного четырехугольникаПо теореме Фалеса Как найти угол описанного четырехугольникаТогда Как найти угол описанного четырехугольникаТеорема доказана.

Средняя линия трапеции

Средней линией трапеции называется отрезок, соединяющим середины боковых сторон трапеции.

Как найти угол описанного четырехугольника

Теорема. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Как найти угол описанного четырехугольника

Доказательство: Через точку Как найти угол описанного четырехугольникаи точку Как найти угол описанного четырехугольникасередину Как найти угол описанного четырехугольникапроведём прямую и обозначим точку пересечения со стороной Как найти угол описанного четырехугольникачерез Как найти угол описанного четырехугольника

Как найти угол описанного четырехугольника

Координаты середины отрезка

Исследование: Начертите числовую ось. Постройте окружность с центром в точке Как найти угол описанного четырехугольникарадиусом 3 единицы. Вычислите значение выражения Как найти угол описанного четырехугольникаЕсть ли связь между значением данного выражения и координатой точки Как найти угол описанного четырехугольника

Как найти угол описанного четырехугольника

Координаты середины отрезка

1) Пусть на числовой оси заданы точки Как найти угол описанного четырехугольникаи Как найти угол описанного четырехугольникаи точка Как найти угол описанного четырехугольникакоторая является серединой отрезка Как найти угол описанного четырехугольника

Как найти угол описанного четырехугольникато Как найти угол описанного четырехугольникаа отсюда следует, что Как найти угол описанного четырехугольника

Как найти угол описанного четырехугольника

2) По теореме Фалеса, если точка Как найти угол описанного четырехугольникаявляется серединой отрезка Как найти угол описанного четырехугольникато на оси абсцисс точка Как найти угол описанного четырехугольникаявляется соответственно координатой середины отрезка концы которого находятся в точках Как найти угол описанного четырехугольникаи Как найти угол описанного четырехугольника

Как найти угол описанного четырехугольника

3) Координаты середины отрезка Как найти угол описанного четырехугольникас концами Как найти угол описанного четырехугольникаи Как найти угол описанного четырехугольникаточки Как найти угол описанного четырехугольниканаходятся так:

Как найти угол описанного четырехугольника

Убедитесь, что данная формула верна в случае, если отрезок Как найти угол описанного четырехугольникапараллелен одной из осей координат.

Теорема Пифагора

В этом разделе вы научитесь:

  • различать рациональные и иррациональные числа;
  • упрощать выражения, содержащие квадратные корни;
  • решать задания на извлечение квадратного корня;
  • основам теоремы Пифагора;
  • решать практические задачи, применяя теорему Пифагора.

При решении таких задач как вычисления силы шторма на море, скорости автомобиля при аварии, определения места приземления при прыжке с парашютом часто приходится проводить вычисления с числами, стоящими под знаком корня.

Теорема Пифагора очень часто используется при решении геометрических задач.

Имя Пифагора ассоциируется с прямоугольным треугольником и соотношением между его сторонами. Греческий учёный Пифагор, живший в VI веке до нашей эры, является основателем школы, в которой преподавались музыка, гимнастика, философия и геометрия. Ученики школы называли себя Пифагорейцами. Они провозглашали гармонию музыки и чисел в природе и не верили в существование иррациональных чисел.

Практическая работа:

Шаг 1. Вырежьте из картона два одинаковых квадрата.

Шаг 2. На стороне одного из них отметьте отрезки Как найти угол описанного четырехугольникакак показано на рисунке и разрежьте его на два квадрата и два прямоугольника.

Как найти угол описанного четырехугольника

Шаг 3. Полученные фигуры расположите, как показано на рисунке.

Как найти угол описанного четырехугольника

Шаг 4. На сторонах другого квадрата отметьте отрезки Как найти угол описанного четырехугольникакак показано на рисунке и отрежьте четыре прямоугольных треугольника.

Как найти угол описанного четырехугольника

Шаг 5. Что вы можете сказать о конгруэнтности данных треугольников? К какому виду относится оставшаяся фигура, после того, как вы отрезали треугольники и убрали их? Чему равен каждый внутренний угол данного четырёхугольника?

Шаг 6. Расположите полученные фигуры, как показано на рисунке.

Как найти угол описанного четырехугольника

Шаг 7. Сравните результаты, которые вы получили на 3 и 6 шагах. К какому выводу вы пришли?

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Как найти угол описанного четырехугольника

Если рассмотреть площади квадратов, построенных на сторонах прямоугольного треугольника, то теорему Пифагора можно перефразировать так: в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах: Как найти угол описанного четырехугольника

Как найти угол описанного четырехугольника

Если в прямоугольном треугольнике заданы две стороны, то третью сторону можно найти по теореме Пифагора.

Пример:

Найдём длину катета на рисунке:

Как найти угол описанного четырехугольника

Как найти угол описанного четырехугольника

Историческая справка: Пифагор родился в 569 году до нашей эры на острове Самос в Греции. В истории его имя увековечено теоремой, которая называется теоремой Пифагора. Она известна своей простотой и практическим значением. Об этой теореме знали ещё задолго до Пифагора. Однако, из письменных источников следует, что впервые её доказал именно Пифагор. Помимо оригинального доказательства теоремы самим Пифагором, известны также доказательстве» Эвклида, Леонардо да Винчи, Президента Америки Джеймса Гарфилда. В 1940 году широкой публике была представлена книга, где приводилось 370 доказательств теоремы. На рисунке вы видите статую, возведённую в честь Пифагора на его родине на острове Самос.

Обратная теорема:

Если квадрат одной из сторон треугольника равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным треугольником. Если Как найти угол описанного четырехугольникато, Как найти угол описанного четырехугольника— прямоугольный.

Как найти угол описанного четырехугольника

Прямоугольные треугольники, которых выражаются натуральными числами, называются Пифагоровыми треугольниками. Самый распространённый прямоугольный треугольник имеет стороны 3; 4; 5. Древние египтяне повсеместно пользовались этим треугольником для измерений. Такой треугольник называется Египетским треугольником. Треугольники со сторонами 5,12,13; 8,15,17; 7,24,25. также являются треугольниками Пифагора. А эти числа называются Пифагоровыми тройками. Если числа Как найти угол описанного четырехугольникаявляются Пифагоровыми тройками, то и числа Как найти угол описанного четырехугольникатакже являются Пифагоровыми тройками.

Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Справочный материал по четырёхугольнику

Обозначим четыре точки, например А, В, С, D, из которых никакие три не лежат на одной прямой. Последовательно соединим их непересекающимися отрезками АВ, ВС, CD, DA. Получим четырёхугольник ABCD.

Как найти угол описанного четырехугольника(рис. 1).

Точки А, В, С, D — вершины четырёхугольника, отрезки АВ, ВС, CD, DA — его стороны. Углы DAB, ABC, BCD, CDA — это углы четырёхугольника. Их также обозначают одной буквой — Как найти угол описанного четырехугольникаКак найти угол описанного четырехугольника

Вершины, стороны и углы четырёхугольника называют его элементами. ? | Почему фигуры, изображённые на рисунках 2 и 3, не являются четырёхугольниками?

У фигуры на рисунке 2 отрезки АС и BD пересекаются, а у фигуры на рисунке 3 точки A, D, С лежат на одной прямой. Как найти угол описанного четырехугольника

Четырёхугольник обозначают, последовательно записывая его вершины, начиная с любой из них. Например, четырёхугольник на рисунке 4 можно обозначить так: ABCD, или BCDA, или CDAB и т. д. Но для данного четырёхугольника запись, например, ADBC либо CDBA — неверна.

Две вершины, два угла или две стороны четырёхугольника могут быть либо соседними, либо противоположными. Например, в четырёхугольнике ABCD (рис. 4) вершины А и D, ZA и ZD, стороны AD и АВ — соседние, а вершины А и С, Как найти угол описанного четырехугольника, стороны AD и ВС — противоположные.

Отрезки, соединяющие противоположные вершины четырёхугольника, называются его диагоналями. На рис. 4 отрезки АС и BD — диагонали четырёхугольника ABCD.

Четырёхугольники бывают выпуклыми и невыпуклыми.

Если четырёхугольник лежит по одну сторону от каждой прямой, соединяющей две его соседние вершины, то он выпуклый. На рисунке 5 четырёхугольник выпуклый, а на рисунке б — невыпуклый, поскольку он не лежит по одну сторону от прямой, проходящей через вершины М и N.

Как найти угол описанного четырехугольника

Мы будем изучать лишь выпуклые четырёхугольники. Сумма длин всех сторон четырёхугольника называется его периметром. Периметр обозначают буквой Р.

Записать, что периметр четырёхугольника ABCD равен 40 см, можно так: Как найти угол описанного четырехугольника=40 cm

Пример:

Докажите, что каждая сторона четырёхугольника меньше суммы трёх других его сторон.

Решение:

Диагональ АС четырёхугольника ABCD делит его на два треугольника ABC и ADC (рис. 7). В Как найти угол описанного четырехугольника+ CD (по неравенству треугольника). Тогда Как найти угол описанного четырехугольника. Аналогично АВ 45 и DC и секущей АС. Из равенства треугольников ABC и CD А следует: 1) АВ = DC, ВС = AD 2) Как найти угол описанного четырехугольника. Углы А и С параллелограмма равны как суммы равных углов.

Может ли в параллелограмме быть только один острый угол? Не может, так как, согласно доказанной теореме, таких углов два.

Пример №1

Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°. Докажите это.

Как найти угол описанного четырехугольника

Решение:

Как найти угол описанного четырехугольника(рис. 31) по свойству внутренних односторонних углов при параллельных прямых ВС и AD и секущей АВ. Аналогично Как найти угол описанного четырехугольника(АВ CD, ВС-секущая), Как найти угол описанного четырехугольника(ВС || AD, CD — секущая), Как найти угол описанного четырехугольника(АВ || CD, AD- секущая).

Теорема (свойство диагоналей параллелограмма).

Диагонали параллелограмма точкой их пересечения делятся пополам.

Дано: ABCD — параллелограмм (рис. 32), АС и BD — диагонали, О — точка пересечения диагоналей. Доказать: АО = ОС, ВО = OD.

Как найти угол описанного четырехугольника

Доказательство. Как найти угол описанного четырехугольникапо стороне А и прилежащим к ней углам. Из них ВС = AD как противоположные стороны параллелограмма, Как найти угол описанного четырехугольникакак внутренние накрест лежащие углы при параллельных прямых ВС и AD и секущей BD, (BC || AD, АС— секущая). Из равенства треугольников AOD и СОВ следует: АО = ОС, ВО = OD.

Для того чтобы доказать равенство отрезков (углов) в параллелограмме, докажите равенство треугольников, соответствующими элементами которых являются эти отрезки (углы).

Свойства параллелограмма приведены в таблице 3.Как найти угол описанного четырехугольника

1. Возникает вопрос: Сколько данных необходимо для построения параллелограмма ?Таких данных должно быть три, среди которых — не более одного из его углов (один угол параллелограмма определяет остальные углы).

2. Название «параллелограмм» (parallelogrammon) происходит от сочетания греческих слов: «параллелос» — идущий рядом и «грамма» — линия.

Этот термин впервые упоминается в «Началах» Евклида (III в. до н. э.). Сначала вместо термина «параллелограмм» древнегреческий учёный использовал словосочетание «образованная параллельными линиями площадь» (часть плоскости, ограниченная двумя парами параллельных прямых).

Признаки параллелограмма

Решaя задачи, иногда требуется установить, что данный четырёхугольник — параллелограмм. Для этого используют признаки параллелограмма.

Теорема (признак параллелограмма).

Если противоположные стороны четырёхугольника попарнo равны, то такой четырёхугольник — параллелограмм.

Как найти угол описанного четырехугольника

Дано: ABCD — четырёхугольник (рис. 52), АВ = DC, ВС = AD.

Доказать: ABCD— параллелограмм.

Доказательство. Проведём диагональ BD (рис. 52). Как найти угол описанного четырехугольникапо трём сторонам. У них BD— общая сторона, АВ = DC и ВС = AD по условию. Из равенства треугольников следует: Как найти угол описанного четырехугольника Как найти угол описанного четырехугольникаУглы CBD и ADB— внутренние накрест лежащие при прямых ВС и AD и секущей BD. Поэтому ВС || AD. Углы ABD и СОВ также внутренние накрест лежащие при прямых АВ и DC и секущей BD. Поэтому АВ || DC. Так как в четырёхугольнике ABCD ВС ||AD и АВ ||DC, то, по определению, этот четырёхугольник — параллелограмм.

Можно ли считать четырёхугольник параллелограммом, если в нём две противоположные стороны равны, а две другие — параллельны?

Нет, нельзя. На рисунке 53 АВ = CD, ВС || AD, но четырёхугольник ABCD — не параллелограмм. Как найти угол описанного четырехугольника

Теорема (признак параллелограмма).

Если в четырёхугольнике две противоположные стороны равны и параллельны, то такой четырёхугольник — параллелограмм.

Дано: ABCD — четырёхугольник (рис. 54), и АВ = DC, АВ || DC.

Как найти угол описанного четырехугольника

Доказать: ABCD — параллелограмм.

Доказательство. Проведём диагональ АС (рис. 54). Как найти угол описанного четырехугольникапо двум сторонам и углу между ними. У них АС — общая сторона, АВ = DC по условию, Как найти угол описанного четырехугольникакак внутренние накрест лежащие углы при параллельных прямых АВ и DC и секущей АС. Из равенства треугольников следует: Как найти угол описанного четырехугольникаНо углы DAC и ВС А — внутренние накрест лежащие при прямых ВС и AD и секущей АС. Поэтому ВС || AD. Поскольку в четырёхугольнике ABCD AD || БС(по доказанному) и АВ || DC (по условию), то, по определению, этот четырёхугольник — параллелограмм.

Пример №2 (признак параллелограмма).

Если диагонали четырёхугольника делятся точкой их пересечения пополам, то такой четырёхугольник — параллелограмм. Докажите это.

Как найти угол описанного четырехугольника

Решение:

Пусть ABCD—данный четырёхугольник, О — точка пересечения его диагоналей и ВО= OD, АО= ОС (рис. 55). Докажем, что ABCD — параллелограмм. Как найти угол описанного четырехугольникапо двум сторонам и углу между ними. У них ВО = OD, АО = ОС по условию, Как найти угол описанного четырехугольникакак вертикальные. Из равенства треугольников следует: ВС= AD и Как найти угол описанного четырехугольникаНо углы ОВС и ODA — внутренние накрест лежащие при прямых BCuADh секущей BD. Поэтому BC\AD.

Поскольку в четырёхугольнике ABCD ВС= AD и ВС || AD, то, согласно доказанному признаку, этот четырёхугольник — параллелограмм.

Чтобы установить, что четырёхугольник — параллелограмм, докажите, что в нём:

  1. либо противоположные стороны попарно параллельны (определение параллелограмма),
  2. либо противоположные стороны попарно равны (признак),
  3. либо две противоположные стороны равны и параллельны (признак),
  4. либо диагонали делятся точкой их пересечения пополам (признак).

Вам уже знакомы понятия «необходимо», «достаточно», «необходимо и достаточно». В таблице 5 рассмотрите пары утверждений А и В и выясните смысл этих понятий.

Как найти угол описанного четырехугольника

Обратите внимание, что утверждения «Л достаточно для в» и «А необходимо для В» — взаимно обратные. Их можно объединить и сформулировать следующим образом.

Для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его противоположные стороны были попарно равны.

Иногда вместо «необходимое и достаточное условие» говорят «необходимый и достаточный признак», а чаще — просто «признак». Поэтому теоремы этого параграфа называем «признаками параллелограмма».

Прямоугольник

Параллелограммы, как и —у треугольники, можно разделить на виды. Прямоугольник — один из видов параллелограмма. На рисунке 73 вы видите параллелограмм ABCD являющийся прямоугольником. Дайте определение прямоугольнику и сравните его с приведённым в учебнике. Как найти угол описанного четырехугольника

Параллелограмм, у которого все углы прямые, называется прямоугольником.

Поскольку прямоугольник — частный вид параллелограмма, то ему присущи все свойства параллелограмма:

  1. противоположные стороны равны;
  2. противоположные углы равны;
  3. диагонали делятся точкой их пересечения пополам.

Кроме этих свойств прямоугольник имеет ещё и особое свойство.

Дано: ABCD — прямоугольник, АС и BD — диагонали (рис. 74).

Как найти угол описанного четырехугольника

Доказать: АС = BD.

Доказательство. Прямоугольные треугольники ACDw DBA равны по двум катетам. При этом AD — общий катет, а катеты АВ и DC равны как противоположные стороны параллелограмма. Из равенства треугольников следует: АС = BD.

Свойства прямоугольника приведены в таблице 8.

Как найти угол описанного четырехугольникаМожно ли утверждать, что параллелограмм, в котором диагонали равны, является прямоугольником? Да, но это нужно доказать.

Пример №3 (признак прямоугольника).

Если диагонали параллелограмма равны, то такой параллелограмм — прямоугольник. Докажите это.

Решение:

Пусть ABCD — параллелограмм, в котором АС = BD (рис. в табл. 8). Докажем, что Как найти угол описанного четырехугольника. Как найти угол описанного четырехугольникапо трём сторонам. У них AD — общая сторона, АС = BD по условию, АВ = DC — как противоположные стороны параллелограмма. Из этого следует, что Как найти угол описанного четырехугольника. Поскольку в параллелограмме противоположные углы равны, то: Как найти угол описанного четырехугольника. По свойству углов четырёхугольника, Как найти угол описанного четырехугольника

Следовательно, Как найти угол описанного четырехугольника: 4 = 90°, то есть параллелограмм ABCD — прямоугольник.

Для того чтобы установить, что данный параллелограмм — прямоугольник, докажите, что у него: либо все его углы прямые (определение прямоугольника), либо диагонали равны (признак).

Можно ли утверждать, что четырёхугольник, в котором диагонали равны, — это прямоугольник? Нет, нельзя (см. рис. 75). Необходимо проверить, выполняется ли один из признаков параллелограмма. Например, делятся ли диагонали точкой их пересечения пополам.

Как найти угол описанного четырехугольника

Возникает вопрос: Можно ли сформулировать другие определения прямоугольника ?

В младших классах прямоугольником называли четырёхугольник, все углы в котором прямые. Теперь мы определили прямоугольник как частный вид параллелограмма. Возможны и такие определения прямоугольника: параллелограмм, в котором все углы равны (действительно, сумма углов параллелограмма составляет 360°, тогда каждый из них равен 90°); параллелограмм, в котором есть прямой угол (действительно, в параллелограмме сумма смежных углов составляет 180е, а противоположные углы равны. Если один из его углов прямой, то и три остальные — прямые). Эти определения прямоугольника эквивалентны.

Следовательно, существуют разные определения одного и того же понятия.

Ромб. Квадрат

Могут ли в параллелограмме все стороны быть равными? Да, могут. На рисунке 94 в параллелограмме ABCD АВ = ВС = = CD = AD. Это ещё один вид параллелограмма — ромб.

Как найти угол описанного четырехугольника

Параллелограмм, у которого все стороны равны, называется ромбом.

Можно ли утверждать, что параллелограмм является ромбом, если две его смежные стороны равны? Да, можно. Равенство всех сторон такого параллелограмма следует из свойства: противоположные стороны параллелограмма равны.

Теорема (свойства диагоналей ромба). Диагонали ромба взаимно перпендикулярны. Диагонали ромба делят его углы пополам.

Как найти угол описанного четырехугольника

Дано: ABCD — ромб (рис. 95), О— точка пересечения диагоналей АС и BD.

Доказать: Как найти угол описанного четырехугольника

Доказательство. Согласно определению ромба АВ = ВС, поэтому треугольник ABC— равнобедренный. Так как ромб ABCD— параллелограмм, то АО — ОС. Отсюда ВО— медиана равнобедренного треугольника ABC, следовательно, высота и биссектриса этого треугольника. Поэтому Как найти угол описанного четырехугольника. Как найти угол описанного четырехугольника

Аналогично доказываем, что диагональ BD делит пополам угол D, а диагональ АС— углы А и С ромба ABCD.

Свойства ромба приведены в таблице 10. Таблица 1 О

Как найти угол описанного четырехугольника

Пример №4 (признак ромба)

Докажите, что параллелограмм, диагонали которого взаимно перпендикулярны, является ромбом.

Решение:

Пусть ABCD — данный параллелограмм, в котором Как найти угол описанного четырехугольника(рис. 96). Докажем, что ABCD— ромб. Как найти угол описанного четырехугольникапо двум сторонами и углу между ними.

Как найти угол описанного четырехугольника

Так как ромб — это частный вид параллелограмма, то он имеет все свойства параллелограмма (назовите их). Кроме того, ромб обладает особыми свойствами. У них сторона АО — общая, OB = OD по свойству диагоналей параллелограмма, Как найти угол описанного четырехугольникапо условию. Из равенства треугольников следует: АВ = AD. Тогда АВ = CD и AD = ВС по свойству противоположных сторон параллелограмма. Итак, все стороны параллелограмма равны, поэтому он является ромбом.

Для того чтобы установить, что данный параллелограмм — ромб, докажите, что в нем:

  • либо все стороны равны (определение ромба),
  • либо диагонали взаимно перпендикулярны (признак).

Прямоугольник, в котором все стороны равны, называется квадратом.

На рисунке 97 вы видите квадрат ABCD.

Как найти угол описанного четырехугольника

Существуют и другие определения квадрата: ромб, в котором все углы прямые, называется квадратом; прямоугольник, в котором все стороны равны, называется квадратом; параллелограмм, в котором все стороны равны и все углы прямые, называется квадратом. Следовательно, квадрат имеет все свойства параллелограмма, прямоугольника и ромба. Перечислим свойства квадрата.

  1. Противоположные стороны и противоположные углы квадрата равны. Диагонали квадрата в точке пересечения делятся пополам (свойства параллелограмма).
  2. Диагонали квадрата равны (свойство прямоугольника).
  3. Диагонали квадрата взаимно перпендикулярны и делят его углы пополам (свойства ромба).

Квадрат является частным видом и ромба, и прямоугольника, и параллелограмма. Ромб и прямоугольник — это частные виды параллелограмма. Соотношение между видами параллелограммов показано на Как найти угол описанного четырехугольника

1. Рассмотрите таблицу классификации параллелограммов по соседним углам и смежным сторонам. Предложите собственную классификацию изученных видов параллелограмма.

Как найти угол описанного четырехугольника

2. Кроме параллелограммов есть ещё один вид четырёхугольников — дельтоид. Эту фигуру получим, если два равнобедренных треугольника ABC и ADCc равными основаниями АС приложить друг к другу так, как показано на рисунке 99.

Как найти угол описанного четырехугольника

Свойства дельтоида следуют из свойств равнобедренного треугольника. Например, диагонали взаимно перпендикулярны, одна из них делит углы пополам и другую диагональ — пополам. Сформулируйте, пользуясь рисунком, другие свойства дельтоида. Если равнобедренные треугольники, из которых образован дельтоид, равны, то такой дельтоид является ромбом. Если равнобедренные треугольники к тому же прямоугольные, то дельтоид является квадратом.

3. Слово «ромб» происходит от греческого rhombos — юла, вращение. Слово «квадрат» происходит от латинского quadratum — четырёхугольник. Квадрат был первым четырёхугольником, который рассматривался в геометрии.

Теорема Фалеса. Средняя линия треугольника

Начертите угол ABC (рис. 117).

Как найти угол описанного четырехугольника

Произвольным раствором циркуля отложите на стороне АВ угла равные отрезки Как найти угол описанного четырехугольникаи Как найти угол описанного четырехугольникаПроведите с помощью чертёжного угольника и линейки через точки Как найти угол описанного четырехугольникапараллельные прямые, которые пересекут сторону ВС этого угла в точках Как найти угол описанного четырехугольникаПри помощи циркуля сравните длины отрезков Как найти угол описанного четырехугольникаСделайте вывод.

Теорема Фалёса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Дано: Как найти угол описанного четырехугольника

Как найти угол описанного четырехугольника

Доказать: Как найти угол описанного четырехугольника

Доказательство. Проведём через точки Как найти угол описанного четырехугольникапрямые Как найти угол описанного четырехугольникапараллельные ВС. Как найти угол описанного четырехугольникапо стороне и прилежащим к ней углам. У них Как найти угол описанного четырехугольникапо условию, Как найти угол описанного четырехугольникакак соответственные углы при параллельных прямых. Из равенства этих треугольников следует, что Как найти угол описанного четырехугольникаи Как найти угол описанного четырехугольникакак противоположные стороны параллелограммов Как найти угол описанного четырехугольника

Справедлива ли теорема Фалеса, если вместо сторон угла взять две произвольные прямые? Да, справедлива. Параллельные прямые, пересекающие две заданные прямые и отсекающие на одной прямой равные отрезки, отсекают равные отрезки и на другой прямой (рис. 119).

Как найти угол описанного четырехугольника

Пример №5

Разделите данный отрезок АВ на пять равных частей.

Решение:

Проведём из точки А луч АС, не лежащий на прямой АВ (рис. 120).

Как найти угол описанного четырехугольника

Отложим на луче АС пять равных отрезков: АА,Как найти угол описанного четырехугольникаПроведём прямую Как найти угол описанного четырехугольника. Через точки Как найти угол описанного четырехугольникапроведём прямые, параллельные прямой Как найти угол описанного четырехугольника. По теореме Фалеса, эти прямые делят отрезок АВ на пять равных частей.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

На рисунке 121 отрезок MN — средняя линия Как найти угол описанного четырехугольника, так как точки М и N — середины сторон АВ и ВС.

Как найти угол описанного четырехугольника

Теорема (свойства средней линии треугольника). Средняя линия треугольника параллельна третьей его стороне и равна её половине.

Дано: Как найти угол описанного четырехугольника(рис. 122), AD = BD, СЕ= BE.

Как найти угол описанного четырехугольника

Доказать: Как найти угол описанного четырехугольника

Доказательство. 1) Пусть DE- средняя линия Как найти угол описанного четырехугольника. Проведём через точку D прямую, параллельную АС. Согласно теореме Фалеса, она пересекает отрезок ВС в его середине £, то есть содержит среднюю линию DE. Следовательно DE || АС.

2) Проведём прямую EF|| АВ. По теореме Фалеса, прямая EFделит отрезок 1

АС пополам: Как найти угол описанного четырехугольника. По построению, четырёхугольник ADEF- параллелограмм, поэтому DE= AF. Следовательно, Как найти угол описанного четырехугольника

Пример №6

Докажите, что середины сторон четырёхугольника являются вершинами параллелограмма.

Решение:

Пусть ABC— данный четырёхугольник и М, N, Р, К — середины его сторон (рис. 123). Докажем, что MNPK — параллелограмм. Проведём диагональ AC. MN— средняя линия ААВС.

Как найти угол описанного четырехугольника

Поэтому Как найти угол описанного четырехугольника. КР— средняя линия треугольника ADC. Поэтому КР || АС и Как найти угол описанного четырехугольника

Получаем: MN || АС и КР || АС, отсюда MN || КРКак найти угол описанного четырехугольника, отсюда MN= КР. Противоположные стороны MN и КР четырёхугольника MNPK равны и параллельны, следовательно, это параллелограмм.

Если по условию задачи даны середины некоторых отрезков, то можно использовать свойства средней линии треугольника.

Древнегреческого учёного Фалеса из Милета (625 — 548 гг. до н. э.) считают одним из семи мудрецов мира. Гений Фалеса нашёл воплощение в разных сферах деятельности. Он занимался инженерным делом, был государственным деятелем, математиком, астрономом. Особой заслугой Фалеса является то, что он ввёл в математику идею доказательства. Учёный доказал, что углы при основании равнобедренного треугольника равны, что диаметр делит окружность на две равные части, что прямой угол можно вписать в полуокружность и т. д. Историки полагают, что именно Фалес начал использовать основные геометрические инструменты — циркуль и линейку. Учёный измерял высоту египетских пирамид по длине их теней, впервые предсказал солнечное затемнение, наблюдавшееся в 585 г. до н. э.

Как найти угол описанного четырехугольника

Трапеция

Вы уже знаете, что четырёхугольник с попарно параллельными противоположными сторонами — параллелограмм.

На рисунке 143 изображён четырёхугольник ABCD, две стороны AD и ВС которого параллельны, а две другие — АВ и CD — непараллельны. Такой четырёхугольник — трапеция. Дайте определение трапеции и сравните его с приведённым в учебнике.

Как найти угол описанного четырехугольника

Трапецией называется четырёхугольник, в которомдве стороны параллельны, а две другие — непараллельны.

Как найти угол описанного четырехугольника

Параллельные стороны трапеции называются её основаниями, а непараллельные — боковыми сторонами. На рисунке 144 AD и ВС — основания трапеции, АВ и CD — боковые стороны.

Могут ли основания трапеции быть равными? Не могут, поскольку тогда получим параллелограмм.

Высотой трапеции называется перпендикуляр, проведённый из любой точки одного основания к другому основанию либо его продолжению (рис. 144).

Трапеция, в которой боковые стороны равны, называется равнобедренной. На рисунке 145 трапеция MNKP — равнобедренная, поскольку MN = КР.

Трапецию, один из углов которой прямой, называют прямоугольной. Трапеция ABCD (рис. 146) — прямоугольная, поскольку Как найти угол описанного четырехугольника= 90*.

Средней линией трапеции называется отрезок, соединяющий середины её боковых сторон.

На рисунке 147 отрезок EF — средняя линия трапеции ABCD, так как точки Е и F — середины боковых сторон АВ и CD.

Как найти угол описанного четырехугольника

Теорема (свойства средней линии трапеции). Средняя линия трапеции параллельна основаниям и равна их полусумме.

Дано: ABCD — трапеция с основаниями AD и ВС (рис. 148), EF— средняя линия. Доказать: Как найти угол описанного четырехугольника

Как найти угол описанного четырехугольника

Доказательство. Поскольку EF — средняя линия трапеции ABCD, то АЕ= BE, DF= CF. Через точки В и проведём прямую, пересекающую продолжение основания ADb точке Q. Как найти угол описанного четырехугольникаno стороне и прилежащим к ней углам. У них CF = FD по условию, Как найти угол описанного четырехугольникакак вертикальные, Как найти угол описанного четырехугольникавнутренние накрест лежащие углы при параллельных прямых ВС и АО и секущей CD. Из равенства треугольников следует: BF— F0, то есть средняя линия ЕF трапеции является средней линией треугольника АВО.

1) По свойству средней линии треугольника EF || АО, поэтому EF || AD. Поскольку AD || ВС, то EF\ ВС.

Пример №7 (свойство равнобедренной трапеции).

В равнобедренной трапеции углы при основании равны. Докажите это.

Решение:

Пусть в трапеции ABCD (рис. 149) АВ = CD. Докажем, что углы при основании AD равны.

Как найти угол описанного четырехугольника

Проведём СЕ || АВ. Полученный четырёхугольник АВСЕ— параллелограмм, так как его противоположные стороны попарно параллельны. По свойству параллелограмма, АВ = СЕ, а по условию — АВ = CD. Следовательно, С£= CD и Как найти угол описанного четырехугольникаравнобедренный. Поэтому Как найти угол описанного четырехугольникасоответственные углы при параллельных прямых СЕ и АВ и секущей АЁ. Отсюда

Как найти угол описанного четырехугольника

Если в условии задачи дана трапеция, то полезно такое дополнительное построение: проведите через вершину трапеции прямую, параллельную боковой стороне (рис. 149 или 150), и используйте свойства полученных параллелограмма и треугольника.

Решите предыдущую задачу, используя рисунок 150. Посмотрите на рисунок 151, где изображены изученные вами

Как найти угол описанного четырехугольника

Центральные и вписанные углы

Проведём окружность с центром О и построим угол с вершиной в центре окружности (рис. 182). Получили центральный угол в окружности.

Угол с вершиной в центре окружности называется центральным углом. Как найти угол описанного четырехугольникаКак найти угол описанного четырехугольника

Теорема (о вписанном угле). Вписанный угол измеряется половиной дуги, на которую он опирается.

Дано: Как найти угол описанного четырехугольника— вписанный в окружность с центром О (рис. 188 — 190).

Доказать: Как найти угол описанного четырехугольника

Доказательство. Рассмотрим три случая расположения центра , окружности относительно сторон данного вписанного угла.

1. Центр окружности лежит на стороне вписанного угла (рис. 188). Проведём отрезок ОД тогда центральный угол АОС является внешним углом Как найти угол описанного четырехугольника. По свойству внешнего угла треугольника, Как найти угол описанного четырехугольникаКак найти угол описанного четырехугольника— равнобедренный (ОВ= OA = R). Поэтому Как найти угол описанного четырехугольникаизмеряется дугой АС. Следовательно, вписанный угол ABC измеряется половиной дуги АС.

2. Центр окружности лежит во внутренней области вписанного угла (рис. 189). Проведём луч ВО, тогда данный угол равен сумме двух углов:Как найти угол описанного четырехугольника

Из доказанного в первом случае следует, что Как найти угол описанного четырехугольникаизмеряется половиной дуги AD, a Как найти угол описанного четырехугольника— половиной дуги DC. Поэтому Как найти угол описанного четырехугольникаизмеряется суммой полудуг AD и DC, то J есть половиной дуги АС.

3. Центр круга лежит во внешней области вписанного угла (рис. 190). Проведём луч ВО, тогда: Как найти угол описанного четырехугольника

Как найти угол описанного четырехугольника

Следствие 1.

Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 191). Действительно, каждый из них измеряется половиной одной и той же дуги.

Следствие 2.

Вписанный угол, опирающийся на диаметр, — прямой (рис. 192). Действительно, такой угол измеряется половиной полуокружности, то есть 180°: 2 = 90°. Как найти угол описанного четырехугольника

Равны ли вписанные углы, опирающиеся на равные дуги (рис. 193)? Да, так как каждый из этих углов измеряется половиной равных дуг, градусные меры которых равны.

Пример №8

Хорды окружности АВ и ВС образуют угол 30°. Найдите хорду АС, если диаметр окружности равен 10 см.

Решение:

Проведём диаметр CD и соединим точки A и D (рис. 194). Как найти угол описанного четырехугольникакак вписанные, опирающиеся на дугу АС (следствие 1). Поэтому Как найти угол описанного четырехугольника, так как опирается на диаметр окружности (следствие 2). Тогда в прямоугольном треугольнике ADC катет АС лежит против угла 30° и равен половине гипотенузы CD. Следовательно, Как найти угол описанного четырехугольника

Для того чтобы доказать равенство двух углов, покажите, что они являются вписанными в одну окружность и опираются на одну и ту же дугу либо на равные дуги данной окружности.

Рассмотрим геометрическое место точек, которое используется при решении сложных задач на построение.

Пусть АВ — некоторый отрезок прямой а, М— произвольная точка, не лежащая на прямой a, Как найти угол описанного четырехугольника(рис. 195). Тогда говорят: из точки М отрезок АВ виден под углом а.

Если описать окружность около Как найти угол описанного четырехугольника(рис. 196), то из любой точки дуги АМВ (кроме точек А и В) отрезок АВ виден под углом а (следствие 1 из теоремы о вписанном угле). Поскольку точку можно взять и с другой стороны от прямой а, то существует ещё одна дуга, например ANB(рис. 197), из каждой точки которой (кроме точек А и В) отрезок АВ виден под углом а. Поэтому геометрическим местом точек, из которых отрезок АВ виден под углом а, является фигура, состоящая из двух дуг АМВ и AN В без точек А и В. Чтобы построить одну из двух дуг этого геометрического места точек для острого угла а, необходимо: Как найти угол описанного четырехугольника

Вписанные и описанные четырёхугольники

Отметим на окружности четыре точки и соединим их хордами (рис. 222). Получили четырёхугольник, вписанный в окружность. Как найти угол описанного четырехугольника

Четырёхугольник, все вершины которого лежат на окружности, называется вписанным в эту окружность, а окружность — описанной около этого четырехугольника.

Отметим на окружности четыре точки и проведём через них отрезки касательных, как показано на рисунке 223. Получили четырёхугольник, описанный около окружности.

Как найти угол описанного четырехугольника

Четырёхугольнику все стороны которого касаются окружности, называется описанным около этой окружности, а окружность — вписанной в этот четырёхугольник.

Свойство вписанного четырёхугольника и его признак связаны с углами этого четырёхугольника.

Теорема (свойство углов вписанного четырёхугольника). Сумма противоположных углов вписанного четырёхугольника равна 180″.

Дано: четырёхугольник ABCD, вписанный в окружность (рис. 224).

Как найти угол описанного четырехугольника

Доказать: Как найти угол описанного четырехугольника

Доказательство. Углы А, В, Си D вписаны в окружность.

Из теоремы о вписанном угле следует: Как найти угол описанного четырехугольника

Тогда Как найти угол описанного четырехугольника

Сумма всех углов четырёхугольника равна 360°, а сумма углов А и С — 180°. Тогда Как найти угол описанного четырехугольника

Около каждого ли четырёхугольника можно описать окружность? В отличие от треугольника не каждый четырёхугольник — вписанный. Приведём признак вписанного четырёхугольника без доказательства.

Теорема (признак вписанного четырёхугольника). Если в четырёхугольнике сумма двух противоположных углов равна 180е, то около такого четырёхугольника можно описать окружность.

Пример №9

Докажите, что около равнобедренной трапеции можно описать окружность.

Решение:

Пусть ABCD — равнобедренная трапеция с основаниями AD и ВС (рис. 225). Как найти угол описанного четырехугольника

Докажем, что Как найти угол описанного четырехугольника. В любой трапеции сумма углов, прилежащих к одной боковой стороне, равна 180° (следует из свойства параллельных прямых).

Поэтому, Как найти угол описанного четырехугольника. По свойству равнобокой трапеции, Как найти угол описанного четырехугольника

Тогда Как найти угол описанного четырехугольникаи, согласно признаку вписанного четырёхугольника, трапеция ABCD— вписанная. Свойство описанного четырёхугольника и его признак связаны со сторонами этого четырёхугольника.

Теорема (свойство сторон описанного четырёхугольника). Суммы противоположных сторон описанного четырёхугольника равны.

Дано: четырёхугольник ABCD, описанный около окружности (рис. 226), Е, F, K и P — точки касания.

Как найти угол описанного четырехугольника

Доказать: АВ + CD = ВС + AD.

Доказательство. По свойству касательных, проведённых к окружности из одной точки: АЕ = АР; BE = BF, СК = CF, DK = DP. Сложив почленно эти равенства, получим: АЕ + BE + СК + DK = АР + BF + CF + DP, то есть АВ + CD = ВС + AD.

В каждый ли четырёхугольник можно вписать окружность? В отличие от треугольника, не в каждый четырёхугольник можно вписать окружность. Приведём признак описанного четырёхугольника без доказательства.

Теорема (признак описанного четырёхугольника). Если в четырёхугольнике суммы противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Чтобы доказать, что четырёхугольник MNKP (рис. 227) — вписанный, покажите, что: либо ے M + ے K = 180°, либо ے N + ے P= 180°. Чтобы доказать, что четырёхугольник ABCD (рис. 227) — описанный, покажите, что: AB + CD = AD + BC.

1. Кроме окружностей, вписанной и описанной около четырёхугольника, существуют ещё и вневписанные окружности.

Как найти угол описанного четырехугольника

Проведём в произвольном четырёхугольнике ABCD биссектрисы внешних углов при вершинах А, В, С и D [рис. 228). Точки их пересечения Как найти угол описанного четырехугольникацентры четырёх вневписанных окружностей. Каждая из них касается одной стороны четырёхугольника и продолжении двух других его сторон. Вневписанные окружности имеют следующее свойство: их центры являются вершинами четырёхугольника Как найти угол описанного четырехугольникавписанного в окружность. Действительно,

Как найти угол описанного четырехугольника

Следовательно, четырёхугольник Как найти угол описанного четырехугольника— вписанный в окружность.

2. Древнегреческие учёные открыли, кроме уже известных вам, другие интересные свойства вписанных и описанных четырёхугольников. Например.

Теорема Птолемея (II в.). Произведение диагоналей вписанного четырёхугольника равно сумме произведений его противоположных сторон.

Задача Архимеда (III в. до н. э.). Если диагонали вписанного четырёхугольника перпендикулярны, то сумма квадратов четырёх отрезков, на которые делятся диагонали точкой пересечения, равна квадрату диаметра описанной окружности. Позднее (IX — XIII в.) арабские учёные дополнили сведения о вписанных и описанных четырёхугольниках и способах исследования их свойств. Так, одарённый геометр Гасан ибн-Гайтем (умер в 1038 г.) предложил, способ, позволяющий установить, используя лишь циркуль, является ли данный четырёхугольник вписанным. Пусть дан четырёхугольник ABCD(рис. 229).

Как найти угол описанного четырехугольника

Продолжим сторону AD за точку D. Проведём дуги равных окружностей с центрами в точках В и D. Если KL = МО, то четырёхугольник ABCD — вписанный, так как ے ABC + ے ADC = 180° (докажите это). В иных случаях четырёхугольник не является вписанным.

4 | 3. При решении задач иногда рассматриваются окружности, не заданные в условии. На рисунке к задаче сначала находим четырёхугольник, около которого можно описать окружность либо в который можно вписать окружность, а потом используем свойства хорд, диаметров, вписанных углов, углов с вершиной внутри окружности и т. д.

Как найти угол описанного четырехугольника

Пример №10

Из произвольной точки М катета ВС прямоугольного треугольника ABC проведён перпендикуляр MD к гипотенузе АВ (рис. 230). Докажем, что ے MAD= ے MCD.

Решение:

Около четырёхугольника ADMC можно описать окружность, так как ے ACM+ ے ADM= 180°.

Тогда ے MAD= ے MCD— вписанные углы, опирающиеся на одну дугу MD.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Площади фигур в геометрии
  • Площади поверхностей геометрических тел
  • Вычисление площадей плоских фигур
  • Преобразование фигур в геометрии
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

🎦 Видео

Вписанный в окружность четырёхугольник.Скачать

Вписанный в окружность четырёхугольник.

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

вписанный и описанный четырехугольникСкачать

вписанный и описанный четырехугольник

Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Четырехугольники, вписанные в окружность. 9 класс.Скачать

Четырехугольники, вписанные в окружность. 9 класс.

свойства вписанного и описанного четырехугольника #SHORTSСкачать

свойства вписанного и описанного четырехугольника #SHORTS

Свойство и признак вписанного четырехугольникаСкачать

Свойство и признак вписанного четырехугольника

8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Только 1 может решить эту хитрую задачу ★ Найдите углы треугольника ★ Супер ЖЕСТЬСкачать

Только 1 может решить эту хитрую задачу ★ Найдите углы треугольника ★ Супер ЖЕСТЬ

№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математикеСкачать

№17 Лемма о трезубце | Вписанная и вневписанная окружности | Это будет на ЕГЭ 2024 по математике

Описанный четырехугольникСкачать

Описанный четырехугольник

Угол вписанного четырехугольника #профильнаяматематика #егэпрофиль #егэ #профиль #артуршарафиевСкачать

Угол вписанного четырехугольника #профильнаяматематика #егэпрофиль #егэ #профиль #артуршарафиев

Теперь ты будешь находить углы за секунды. Как найти внешний угол треугольника? #математика #углыСкачать

Теперь ты будешь находить углы за секунды. Как найти внешний угол треугольника? #математика #углы

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy
Поделиться или сохранить к себе: