Как найти углы в четырехугольнике

Четырехугольник — виды и свойства с примерами решения

Содержание:

Четырёхугольник — это фигура, которая состоит из четырёх точек и четырёх последовательно соединяющих их отрезков. При этом, никакие три из указанных точек не должны быть расположены на одной прямой, а соединяющие их отрезки не должны пересекаться. Данные точки называются вершинами четырёхугольника, а соединяющие их отрезки — сторонами четырёхугольника.

Как найти углы в четырехугольнике

Вершины, являющиеся концами одной стороны четырёхугольника, называются соседними, а вершины, не принадлежащие одной стороне — противолежащими. Стороны, имеющие общую вершину, называются соседними сторонами, а не имеющие общих вершин — противолежащими сторонами. Отрезки, соединяющие противолежащие вершины, называются диагоналями четырёхугольника. Точки, принадлежащие четырёхугольнику, делят плоскость q на два множества, которые образуют две области — внутреннюю и внешнюю.

Как найти углы в четырехугольнике

Четырёхугольник называется выпуклым, если все точки, принадлежащие внутренней области, находятся в одной полуплоскости от линии, содержащей любую сторону четырёхугольника, если эти точки находятся в разных полуплоскостях, то четырёхугольник называется невыпуклым (вогнутым).

Как найти углы в четырехугольнике

Если соединить любые две точки внутренней области выпуклого многоугольника, то отрезок, соединяющий эти точки, целиком находится во внутренней области четырёхугольника.

Диагонали выпуклого четырёхугольника находятся во внутренней области. У невыпуклого четырёхугольника одна из диагоналей находится во внешней области. Каждая из двух диагоналей выпуклого четырёхугольника делит его на два треугольника.

Как найти углы в четырехугольнике

Содержание
  1. Внутренние и внешние углы четырехугольника
  2. Сумма внутренних углов выпуклого четырёхугольника
  3. Сумма внешних углов выпуклого четырёхугольника
  4. Параллелограмм
  5. Параллелограмм и его свойства
  6. Признаки параллелограмма
  7. Прямоугольник
  8. Признак прямоугольника
  9. Ромб и квадрат
  10. Свойства ромба
  11. Трапеция
  12. Средняя линия треугольника
  13. Средняя линия трапеции
  14. Координаты середины отрезка
  15. Теорема Пифагора
  16. Справочный материал по четырёхугольнику
  17. Пример №1
  18. Признаки параллелограмма
  19. Пример №2 (признак параллелограмма).
  20. Прямоугольник
  21. Пример №3 (признак прямоугольника).
  22. Ромб. Квадрат
  23. Пример №4 (признак ромба)
  24. Теорема Фалеса. Средняя линия треугольника
  25. Пример №5
  26. Пример №6
  27. Трапеция
  28. Пример №7 (свойство равнобедренной трапеции).
  29. Центральные и вписанные углы
  30. Пример №8
  31. Вписанные и описанные четырёхугольники
  32. Пример №9
  33. Пример №10
  34. Сумма углов четырехугольника
  35. Свойства
  36. Четырёхугольник
  37. Что такое четырех угольник
  38. Виды четырехугольников
  39. Особые виды четырехугольников
  40. Четырехугольник и окружность
  41. Свойства длин сторон четырехугольника
  42. 📹 Видео

Видео:8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Внутренние и внешние углы четырехугольника

Угол, смежный любому углу выпуклого четырёхугольника, называется внешним углом. Из любой вершины четырёхугольника можно провести два внешних угла, которые являются вертикальными углами и соответственно равны друг другу. Поэтому, говоря о внешнем угле четырёхугольника, мы будем иметь в виду, один из них. На рисунке для внутренних углов Как найти углы в четырехугольникеуглы Как найти углы в четырехугольникеявляются внешними.

Как найти углы в четырехугольнике

Каждый внутренний угол выпуклого четырёхугольника меньше Как найти углы в четырехугольникеГрадусная мера внутреннего угла невыпуклого четырёхугольника может быть больше Как найти углы в четырехугольнике

Как найти углы в четырехугольнике

Сумма внутренних углов выпуклого четырёхугольника

Теорема. Сумма внутренних углов выпуклого четырёхугольника равна Как найти углы в четырехугольникеКак найти углы в четырехугольнике

Как найти углы в четырехугольнике

Докажите теорему, основываясь на том, что сумма внутренних углов треугольника равна Как найти углы в четырехугольникеДоказательство представьте в виде двухстолбчатой таблицы.

Сумма внешних углов выпуклого четырёхугольника

Теорема. Сумма внешних углов выпуклого четырёхугольника равна Как найти углы в четырехугольнике

Как найти углы в четырехугольнике

Докажите теорему, опираясь на то, что внешний и внутренний угол, при каждой вершине являются смежными углами.

Параллелограмм

Параллелограмм и его свойства

Параллелограммом называется четырёхугольник, у которого противоположные стороны попарно параллельны. Как найти углы в четырехугольнике

Теорема 1. Противоположные стороны параллелограмма конгруэнтны. Как найти углы в четырехугольнике

Теорема 2. Противоположные углы параллелограмма конгруэнтны. Как найти углы в четырехугольнике

Теорема 3. Сумма углов, прилежащих к одной стороне параллелограмма равна Как найти углы в четырехугольникеКак найти углы в четырехугольнике

Как найти углы в четырехугольнике

Теорема 4. Диагонали параллелограмма пересекаются и делятся точкой пересечения пополам. Как найти углы в четырехугольнике

Теорема 5. Диагонали параллелограмма делят его на два конгруэнтных треугольника. Как найти углы в четырехугольнике

Как найти углы в четырехугольнике

Признаки параллелограмма

Теорема 1. Четырёхугольник у которого две противоположные стороны конгруэнтный параллельны есть параллелограмм.

Теорема 2. Четырёхугольник с попарно конгруэнтными сторонами есть параллелограмм.

Теорема 3. Если диагонали четырёхугольника пересекаются и в точке пересечения делятся по полам, то этот четырёхугольник есть параллелограмм.

Прямоугольник

Параллелограмм, все углы которого прямые, называется прямоугольником.

Все свойства параллелограмма относятся к прямоугольнику.

Наряду с этим прямоугольник имеет следующее свойство:

Теорема. Диагонали прямоугольника конгруэнтны. Как найти углы в четырехугольнике

Признак прямоугольника

Параллелограмм, у которого диагонали конгруэнтны есть прямоугольник.

Как найти углы в четырехугольнике

Ромб и квадрат

Свойства ромба

Параллелограмм, у которого все стороны конгруэнтны, называется ромбом. Все свойства параллелограмма относятся к ромбу. Наряду с этим, ромб обладает следующими свойствами:

Теорема 1. Диагонали ромба являются биссектрисами его углов и пересекаются под прямым утлом. Как найти углы в четырехугольнике

Теорема 2. (Обратная георема). Параллелограмм, у которого диагонали перпендикулярны, есть ромб. Если Как найти углы в четырехугольникето параллелограмм Как найти углы в четырехугольникеявляется ромбом.

Как найти углы в четырехугольнике

Доказательство теоремы 1.

Дано: Как найти углы в четырехугольникеромб.

Докажите, что Как найти углы в четырехугольнике

Доказательство (словестное): По определению ромба Как найти углы в четырехугольникеПри этом, так как ромб является параллелограммом, а диагонали параллелограмма делятся точкой пересечения пополам, тогда можно записать, что Как найти углы в четырехугольникеравнобедренный. Медиана Как найти углы в четырехугольнике(так как Как найти углы в четырехугольнике), является также и биссектрисой и высотой. Т.е. Как найти углы в четырехугольникеТак как Как найти углы в четырехугольникеявляется прямым углом, то Как найти углы в четырехугольнике. Аналогичным образом можно доказать, что Как найти углы в четырехугольнике

Если четырёхугольник является ромбом или квадратом, то справедливы следующие утверждения.

Ромб:

  • 1. Все свойства параллелограмма действительны для ромба.
  • 2. Все стороны конгруэнтны.
  • 3. Диагонали взаимно перпендикулярны.
  • 4. Диагонали ромба делят его углы пополам.

Квадрат:

  • 1. Все свойства прямоугольника и ромба действительны для квадрата.
  • 2. Все углы прямые.
  • 3. Все стороны конгруэнтны.
  • 4. Диагонали равны, взаимно перпендикулярны, делятся точкой пересечения пополам, являются биссектрисами углов квадрата.

Как найти углы в четырехугольнике

Трапеция

Четырёхугольник, у которого только две стороны параллельны, называется трапецией.

Параллельные стороны трапеции называются основаниями, не параллельные стороны называются боковыми сторонами.

Как найти углы в четырехугольнике

Трапеция, у которой боковые стороны равны называется равнобедренной трапецией.

Трапеция, у которой одна из боковых сторон перпендикулярна основанию называется прямоугольной трапецией.

Теорема 1. В равнобедренной трапеции углы, прилежащие к основанию конгруэнтны. Как найти углы в четырехугольнике

Теорема 2. Диагонали равнобедренной трапеции конгруэнтны. Как найти углы в четырехугольнике

Как найти углы в четырехугольнике

План доказательства теоремы 2

Дано: Как найти углы в четырехугольникеравнобедренная трапеция. Как найти углы в четырехугольнике

Докажите: Как найти углы в четырехугольнике

Как найти углы в четырехугольнике

Средняя линия треугольника

Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне конгруэнтные отрезки, то они отсекают конгруэнтные отрезки и на другой его стороне. Если Как найти углы в четырехугольникетогда Как найти углы в четырехугольникеЗапишите в тетради доказательство теоремы, заполнив пропущенные строки.

Доказательство: через точку Как найти углы в четырехугольникепроведем параллельную прямую к прямой Как найти углы в четырехугольнике

Как найти углы в четырехугольнике

Если в условии теоремы Фалеса, вместо угла взять две произвольные прямые, то результат не изменится.

Исследование: 1) В треугольнике Как найти углы в четырехугольникечерез точку Как найти углы в четырехугольнике— середину стороны Как найти углы в четырехугольникепроведите прямую параллельную Как найти углы в четырехугольникеКакая фигура получилась? Является ли Как найти углы в четырехугольникетрапецией? Измерьте и сравните основания полученной трапеции. 2) Измерьте и сравните длины отрезков Как найти углы в четырехугольникеМожно ли утверждать, что Как найти углы в четырехугольнике

Как найти углы в четырехугольнике

Определение: Отрезок, соединяющий середины двух сторон треугольника называется средней линией этого треугольника. Теорема. Средняя линия, соединяющая середины двух сторон треугольника, параллельна третьей стороне и равна ее половине Как найти углы в четырехугольнике

Как найти углы в четырехугольнике

Доказательство. Пусть дан треугольник Как найти углы в четырехугольникеи его средняя линия Как найти углы в четырехугольникеПроведём через точку Как найти углы в четырехугольникепрямую параллельную стороне Как найти углы в четырехугольникеПо теореме Фалеса, она проходит через середину стороны Как найти углы в четырехугольникет.е. совпадает со средней линией Как найти углы в четырехугольникеТ.е. средняя линия Как найти углы в четырехугольникепараллельна стороне Как найти углы в четырехугольникеТеперь проведём среднюю линию Как найти углы в четырехугольникеТ.к. Как найти углы в четырехугольникето четырёхугольник Как найти углы в четырехугольникеявляется параллелограммом. По свойству параллелограмма Как найти углы в четырехугольникеПо теореме Фалеса Как найти углы в четырехугольникеТогда Как найти углы в четырехугольникеТеорема доказана.

Средняя линия трапеции

Средней линией трапеции называется отрезок, соединяющим середины боковых сторон трапеции.

Как найти углы в четырехугольнике

Теорема. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Как найти углы в четырехугольнике

Доказательство: Через точку Как найти углы в четырехугольникеи точку Как найти углы в четырехугольникесередину Как найти углы в четырехугольникепроведём прямую и обозначим точку пересечения со стороной Как найти углы в четырехугольникечерез Как найти углы в четырехугольнике

Как найти углы в четырехугольнике

Координаты середины отрезка

Исследование: Начертите числовую ось. Постройте окружность с центром в точке Как найти углы в четырехугольникерадиусом 3 единицы. Вычислите значение выражения Как найти углы в четырехугольникеЕсть ли связь между значением данного выражения и координатой точки Как найти углы в четырехугольнике

Как найти углы в четырехугольнике

Координаты середины отрезка

1) Пусть на числовой оси заданы точки Как найти углы в четырехугольникеи Как найти углы в четырехугольникеи точка Как найти углы в четырехугольникекоторая является серединой отрезка Как найти углы в четырехугольнике

Как найти углы в четырехугольникето Как найти углы в четырехугольникеа отсюда следует, что Как найти углы в четырехугольнике

Как найти углы в четырехугольнике

2) По теореме Фалеса, если точка Как найти углы в четырехугольникеявляется серединой отрезка Как найти углы в четырехугольникето на оси абсцисс точка Как найти углы в четырехугольникеявляется соответственно координатой середины отрезка концы которого находятся в точках Как найти углы в четырехугольникеи Как найти углы в четырехугольнике

Как найти углы в четырехугольнике

3) Координаты середины отрезка Как найти углы в четырехугольникес концами Как найти углы в четырехугольникеи Как найти углы в четырехугольникеточки Как найти углы в четырехугольникенаходятся так:

Как найти углы в четырехугольнике

Убедитесь, что данная формула верна в случае, если отрезок Как найти углы в четырехугольникепараллелен одной из осей координат.

Теорема Пифагора

В этом разделе вы научитесь:

  • различать рациональные и иррациональные числа;
  • упрощать выражения, содержащие квадратные корни;
  • решать задания на извлечение квадратного корня;
  • основам теоремы Пифагора;
  • решать практические задачи, применяя теорему Пифагора.

При решении таких задач как вычисления силы шторма на море, скорости автомобиля при аварии, определения места приземления при прыжке с парашютом часто приходится проводить вычисления с числами, стоящими под знаком корня.

Теорема Пифагора очень часто используется при решении геометрических задач.

Имя Пифагора ассоциируется с прямоугольным треугольником и соотношением между его сторонами. Греческий учёный Пифагор, живший в VI веке до нашей эры, является основателем школы, в которой преподавались музыка, гимнастика, философия и геометрия. Ученики школы называли себя Пифагорейцами. Они провозглашали гармонию музыки и чисел в природе и не верили в существование иррациональных чисел.

Практическая работа:

Шаг 1. Вырежьте из картона два одинаковых квадрата.

Шаг 2. На стороне одного из них отметьте отрезки Как найти углы в четырехугольникекак показано на рисунке и разрежьте его на два квадрата и два прямоугольника.

Как найти углы в четырехугольнике

Шаг 3. Полученные фигуры расположите, как показано на рисунке.

Как найти углы в четырехугольнике

Шаг 4. На сторонах другого квадрата отметьте отрезки Как найти углы в четырехугольникекак показано на рисунке и отрежьте четыре прямоугольных треугольника.

Как найти углы в четырехугольнике

Шаг 5. Что вы можете сказать о конгруэнтности данных треугольников? К какому виду относится оставшаяся фигура, после того, как вы отрезали треугольники и убрали их? Чему равен каждый внутренний угол данного четырёхугольника?

Шаг 6. Расположите полученные фигуры, как показано на рисунке.

Как найти углы в четырехугольнике

Шаг 7. Сравните результаты, которые вы получили на 3 и 6 шагах. К какому выводу вы пришли?

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Как найти углы в четырехугольнике

Если рассмотреть площади квадратов, построенных на сторонах прямоугольного треугольника, то теорему Пифагора можно перефразировать так: в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах: Как найти углы в четырехугольнике

Как найти углы в четырехугольнике

Если в прямоугольном треугольнике заданы две стороны, то третью сторону можно найти по теореме Пифагора.

Пример:

Найдём длину катета на рисунке:

Как найти углы в четырехугольнике

Как найти углы в четырехугольнике

Историческая справка: Пифагор родился в 569 году до нашей эры на острове Самос в Греции. В истории его имя увековечено теоремой, которая называется теоремой Пифагора. Она известна своей простотой и практическим значением. Об этой теореме знали ещё задолго до Пифагора. Однако, из письменных источников следует, что впервые её доказал именно Пифагор. Помимо оригинального доказательства теоремы самим Пифагором, известны также доказательстве» Эвклида, Леонардо да Винчи, Президента Америки Джеймса Гарфилда. В 1940 году широкой публике была представлена книга, где приводилось 370 доказательств теоремы. На рисунке вы видите статую, возведённую в честь Пифагора на его родине на острове Самос.

Обратная теорема:

Если квадрат одной из сторон треугольника равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным треугольником. Если Как найти углы в четырехугольникето, Как найти углы в четырехугольнике— прямоугольный.

Как найти углы в четырехугольнике

Прямоугольные треугольники, которых выражаются натуральными числами, называются Пифагоровыми треугольниками. Самый распространённый прямоугольный треугольник имеет стороны 3; 4; 5. Древние египтяне повсеместно пользовались этим треугольником для измерений. Такой треугольник называется Египетским треугольником. Треугольники со сторонами 5,12,13; 8,15,17; 7,24,25. также являются треугольниками Пифагора. А эти числа называются Пифагоровыми тройками. Если числа Как найти углы в четырехугольникеявляются Пифагоровыми тройками, то и числа Как найти углы в четырехугольникетакже являются Пифагоровыми тройками.

Видео:Найдите углы четырёхугольникаСкачать

Найдите углы четырёхугольника

Справочный материал по четырёхугольнику

Обозначим четыре точки, например А, В, С, D, из которых никакие три не лежат на одной прямой. Последовательно соединим их непересекающимися отрезками АВ, ВС, CD, DA. Получим четырёхугольник ABCD.

Как найти углы в четырехугольнике(рис. 1).

Точки А, В, С, D — вершины четырёхугольника, отрезки АВ, ВС, CD, DA — его стороны. Углы DAB, ABC, BCD, CDA — это углы четырёхугольника. Их также обозначают одной буквой — Как найти углы в четырехугольникеКак найти углы в четырехугольнике

Вершины, стороны и углы четырёхугольника называют его элементами. ? | Почему фигуры, изображённые на рисунках 2 и 3, не являются четырёхугольниками?

У фигуры на рисунке 2 отрезки АС и BD пересекаются, а у фигуры на рисунке 3 точки A, D, С лежат на одной прямой. Как найти углы в четырехугольнике

Четырёхугольник обозначают, последовательно записывая его вершины, начиная с любой из них. Например, четырёхугольник на рисунке 4 можно обозначить так: ABCD, или BCDA, или CDAB и т. д. Но для данного четырёхугольника запись, например, ADBC либо CDBA — неверна.

Две вершины, два угла или две стороны четырёхугольника могут быть либо соседними, либо противоположными. Например, в четырёхугольнике ABCD (рис. 4) вершины А и D, ZA и ZD, стороны AD и АВ — соседние, а вершины А и С, Как найти углы в четырехугольнике, стороны AD и ВС — противоположные.

Отрезки, соединяющие противоположные вершины четырёхугольника, называются его диагоналями. На рис. 4 отрезки АС и BD — диагонали четырёхугольника ABCD.

Четырёхугольники бывают выпуклыми и невыпуклыми.

Если четырёхугольник лежит по одну сторону от каждой прямой, соединяющей две его соседние вершины, то он выпуклый. На рисунке 5 четырёхугольник выпуклый, а на рисунке б — невыпуклый, поскольку он не лежит по одну сторону от прямой, проходящей через вершины М и N.

Как найти углы в четырехугольнике

Мы будем изучать лишь выпуклые четырёхугольники. Сумма длин всех сторон четырёхугольника называется его периметром. Периметр обозначают буквой Р.

Записать, что периметр четырёхугольника ABCD равен 40 см, можно так: Как найти углы в четырехугольнике=40 cm

Пример:

Докажите, что каждая сторона четырёхугольника меньше суммы трёх других его сторон.

Решение:

Диагональ АС четырёхугольника ABCD делит его на два треугольника ABC и ADC (рис. 7). В Как найти углы в четырехугольнике+ CD (по неравенству треугольника). Тогда Как найти углы в четырехугольнике. Аналогично АВ 45 и DC и секущей АС. Из равенства треугольников ABC и CD А следует: 1) АВ = DC, ВС = AD 2) Как найти углы в четырехугольнике. Углы А и С параллелограмма равны как суммы равных углов.

Может ли в параллелограмме быть только один острый угол? Не может, так как, согласно доказанной теореме, таких углов два.

Пример №1

Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°. Докажите это.

Как найти углы в четырехугольнике

Решение:

Как найти углы в четырехугольнике(рис. 31) по свойству внутренних односторонних углов при параллельных прямых ВС и AD и секущей АВ. Аналогично Как найти углы в четырехугольнике(АВ CD, ВС-секущая), Как найти углы в четырехугольнике(ВС || AD, CD — секущая), Как найти углы в четырехугольнике(АВ || CD, AD- секущая).

Теорема (свойство диагоналей параллелограмма).

Диагонали параллелограмма точкой их пересечения делятся пополам.

Дано: ABCD — параллелограмм (рис. 32), АС и BD — диагонали, О — точка пересечения диагоналей. Доказать: АО = ОС, ВО = OD.

Как найти углы в четырехугольнике

Доказательство. Как найти углы в четырехугольникепо стороне А и прилежащим к ней углам. Из них ВС = AD как противоположные стороны параллелограмма, Как найти углы в четырехугольникекак внутренние накрест лежащие углы при параллельных прямых ВС и AD и секущей BD, (BC || AD, АС— секущая). Из равенства треугольников AOD и СОВ следует: АО = ОС, ВО = OD.

Для того чтобы доказать равенство отрезков (углов) в параллелограмме, докажите равенство треугольников, соответствующими элементами которых являются эти отрезки (углы).

Свойства параллелограмма приведены в таблице 3.Как найти углы в четырехугольнике

1. Возникает вопрос: Сколько данных необходимо для построения параллелограмма ?Таких данных должно быть три, среди которых — не более одного из его углов (один угол параллелограмма определяет остальные углы).

2. Название «параллелограмм» (parallelogrammon) происходит от сочетания греческих слов: «параллелос» — идущий рядом и «грамма» — линия.

Этот термин впервые упоминается в «Началах» Евклида (III в. до н. э.). Сначала вместо термина «параллелограмм» древнегреческий учёный использовал словосочетание «образованная параллельными линиями площадь» (часть плоскости, ограниченная двумя парами параллельных прямых).

Признаки параллелограмма

Решaя задачи, иногда требуется установить, что данный четырёхугольник — параллелограмм. Для этого используют признаки параллелограмма.

Теорема (признак параллелограмма).

Если противоположные стороны четырёхугольника попарнo равны, то такой четырёхугольник — параллелограмм.

Как найти углы в четырехугольнике

Дано: ABCD — четырёхугольник (рис. 52), АВ = DC, ВС = AD.

Доказать: ABCD— параллелограмм.

Доказательство. Проведём диагональ BD (рис. 52). Как найти углы в четырехугольникепо трём сторонам. У них BD— общая сторона, АВ = DC и ВС = AD по условию. Из равенства треугольников следует: Как найти углы в четырехугольнике Как найти углы в четырехугольникеУглы CBD и ADB— внутренние накрест лежащие при прямых ВС и AD и секущей BD. Поэтому ВС || AD. Углы ABD и СОВ также внутренние накрест лежащие при прямых АВ и DC и секущей BD. Поэтому АВ || DC. Так как в четырёхугольнике ABCD ВС ||AD и АВ ||DC, то, по определению, этот четырёхугольник — параллелограмм.

Можно ли считать четырёхугольник параллелограммом, если в нём две противоположные стороны равны, а две другие — параллельны?

Нет, нельзя. На рисунке 53 АВ = CD, ВС || AD, но четырёхугольник ABCD — не параллелограмм. Как найти углы в четырехугольнике

Теорема (признак параллелограмма).

Если в четырёхугольнике две противоположные стороны равны и параллельны, то такой четырёхугольник — параллелограмм.

Дано: ABCD — четырёхугольник (рис. 54), и АВ = DC, АВ || DC.

Как найти углы в четырехугольнике

Доказать: ABCD — параллелограмм.

Доказательство. Проведём диагональ АС (рис. 54). Как найти углы в четырехугольникепо двум сторонам и углу между ними. У них АС — общая сторона, АВ = DC по условию, Как найти углы в четырехугольникекак внутренние накрест лежащие углы при параллельных прямых АВ и DC и секущей АС. Из равенства треугольников следует: Как найти углы в четырехугольникеНо углы DAC и ВС А — внутренние накрест лежащие при прямых ВС и AD и секущей АС. Поэтому ВС || AD. Поскольку в четырёхугольнике ABCD AD || БС(по доказанному) и АВ || DC (по условию), то, по определению, этот четырёхугольник — параллелограмм.

Пример №2 (признак параллелограмма).

Если диагонали четырёхугольника делятся точкой их пересечения пополам, то такой четырёхугольник — параллелограмм. Докажите это.

Как найти углы в четырехугольнике

Решение:

Пусть ABCD—данный четырёхугольник, О — точка пересечения его диагоналей и ВО= OD, АО= ОС (рис. 55). Докажем, что ABCD — параллелограмм. Как найти углы в четырехугольникепо двум сторонам и углу между ними. У них ВО = OD, АО = ОС по условию, Как найти углы в четырехугольникекак вертикальные. Из равенства треугольников следует: ВС= AD и Как найти углы в четырехугольникеНо углы ОВС и ODA — внутренние накрест лежащие при прямых BCuADh секущей BD. Поэтому BC\AD.

Поскольку в четырёхугольнике ABCD ВС= AD и ВС || AD, то, согласно доказанному признаку, этот четырёхугольник — параллелограмм.

Чтобы установить, что четырёхугольник — параллелограмм, докажите, что в нём:

  1. либо противоположные стороны попарно параллельны (определение параллелограмма),
  2. либо противоположные стороны попарно равны (признак),
  3. либо две противоположные стороны равны и параллельны (признак),
  4. либо диагонали делятся точкой их пересечения пополам (признак).

Вам уже знакомы понятия «необходимо», «достаточно», «необходимо и достаточно». В таблице 5 рассмотрите пары утверждений А и В и выясните смысл этих понятий.

Как найти углы в четырехугольнике

Обратите внимание, что утверждения «Л достаточно для в» и «А необходимо для В» — взаимно обратные. Их можно объединить и сформулировать следующим образом.

Для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его противоположные стороны были попарно равны.

Иногда вместо «необходимое и достаточное условие» говорят «необходимый и достаточный признак», а чаще — просто «признак». Поэтому теоремы этого параграфа называем «признаками параллелограмма».

Прямоугольник

Параллелограммы, как и —у треугольники, можно разделить на виды. Прямоугольник — один из видов параллелограмма. На рисунке 73 вы видите параллелограмм ABCD являющийся прямоугольником. Дайте определение прямоугольнику и сравните его с приведённым в учебнике. Как найти углы в четырехугольнике

Параллелограмм, у которого все углы прямые, называется прямоугольником.

Поскольку прямоугольник — частный вид параллелограмма, то ему присущи все свойства параллелограмма:

  1. противоположные стороны равны;
  2. противоположные углы равны;
  3. диагонали делятся точкой их пересечения пополам.

Кроме этих свойств прямоугольник имеет ещё и особое свойство.

Дано: ABCD — прямоугольник, АС и BD — диагонали (рис. 74).

Как найти углы в четырехугольнике

Доказать: АС = BD.

Доказательство. Прямоугольные треугольники ACDw DBA равны по двум катетам. При этом AD — общий катет, а катеты АВ и DC равны как противоположные стороны параллелограмма. Из равенства треугольников следует: АС = BD.

Свойства прямоугольника приведены в таблице 8.

Как найти углы в четырехугольникеМожно ли утверждать, что параллелограмм, в котором диагонали равны, является прямоугольником? Да, но это нужно доказать.

Пример №3 (признак прямоугольника).

Если диагонали параллелограмма равны, то такой параллелограмм — прямоугольник. Докажите это.

Решение:

Пусть ABCD — параллелограмм, в котором АС = BD (рис. в табл. 8). Докажем, что Как найти углы в четырехугольнике. Как найти углы в четырехугольникепо трём сторонам. У них AD — общая сторона, АС = BD по условию, АВ = DC — как противоположные стороны параллелограмма. Из этого следует, что Как найти углы в четырехугольнике. Поскольку в параллелограмме противоположные углы равны, то: Как найти углы в четырехугольнике. По свойству углов четырёхугольника, Как найти углы в четырехугольнике

Следовательно, Как найти углы в четырехугольнике: 4 = 90°, то есть параллелограмм ABCD — прямоугольник.

Для того чтобы установить, что данный параллелограмм — прямоугольник, докажите, что у него: либо все его углы прямые (определение прямоугольника), либо диагонали равны (признак).

Можно ли утверждать, что четырёхугольник, в котором диагонали равны, — это прямоугольник? Нет, нельзя (см. рис. 75). Необходимо проверить, выполняется ли один из признаков параллелограмма. Например, делятся ли диагонали точкой их пересечения пополам.

Как найти углы в четырехугольнике

Возникает вопрос: Можно ли сформулировать другие определения прямоугольника ?

В младших классах прямоугольником называли четырёхугольник, все углы в котором прямые. Теперь мы определили прямоугольник как частный вид параллелограмма. Возможны и такие определения прямоугольника: параллелограмм, в котором все углы равны (действительно, сумма углов параллелограмма составляет 360°, тогда каждый из них равен 90°); параллелограмм, в котором есть прямой угол (действительно, в параллелограмме сумма смежных углов составляет 180е, а противоположные углы равны. Если один из его углов прямой, то и три остальные — прямые). Эти определения прямоугольника эквивалентны.

Следовательно, существуют разные определения одного и того же понятия.

Ромб. Квадрат

Могут ли в параллелограмме все стороны быть равными? Да, могут. На рисунке 94 в параллелограмме ABCD АВ = ВС = = CD = AD. Это ещё один вид параллелограмма — ромб.

Как найти углы в четырехугольнике

Параллелограмм, у которого все стороны равны, называется ромбом.

Можно ли утверждать, что параллелограмм является ромбом, если две его смежные стороны равны? Да, можно. Равенство всех сторон такого параллелограмма следует из свойства: противоположные стороны параллелограмма равны.

Теорема (свойства диагоналей ромба). Диагонали ромба взаимно перпендикулярны. Диагонали ромба делят его углы пополам.

Как найти углы в четырехугольнике

Дано: ABCD — ромб (рис. 95), О— точка пересечения диагоналей АС и BD.

Доказать: Как найти углы в четырехугольнике

Доказательство. Согласно определению ромба АВ = ВС, поэтому треугольник ABC— равнобедренный. Так как ромб ABCD— параллелограмм, то АО — ОС. Отсюда ВО— медиана равнобедренного треугольника ABC, следовательно, высота и биссектриса этого треугольника. Поэтому Как найти углы в четырехугольнике. Как найти углы в четырехугольнике

Аналогично доказываем, что диагональ BD делит пополам угол D, а диагональ АС— углы А и С ромба ABCD.

Свойства ромба приведены в таблице 10. Таблица 1 О

Как найти углы в четырехугольнике

Пример №4 (признак ромба)

Докажите, что параллелограмм, диагонали которого взаимно перпендикулярны, является ромбом.

Решение:

Пусть ABCD — данный параллелограмм, в котором Как найти углы в четырехугольнике(рис. 96). Докажем, что ABCD— ромб. Как найти углы в четырехугольникепо двум сторонами и углу между ними.

Как найти углы в четырехугольнике

Так как ромб — это частный вид параллелограмма, то он имеет все свойства параллелограмма (назовите их). Кроме того, ромб обладает особыми свойствами. У них сторона АО — общая, OB = OD по свойству диагоналей параллелограмма, Как найти углы в четырехугольникепо условию. Из равенства треугольников следует: АВ = AD. Тогда АВ = CD и AD = ВС по свойству противоположных сторон параллелограмма. Итак, все стороны параллелограмма равны, поэтому он является ромбом.

Для того чтобы установить, что данный параллелограмм — ромб, докажите, что в нем:

  • либо все стороны равны (определение ромба),
  • либо диагонали взаимно перпендикулярны (признак).

Прямоугольник, в котором все стороны равны, называется квадратом.

На рисунке 97 вы видите квадрат ABCD.

Как найти углы в четырехугольнике

Существуют и другие определения квадрата: ромб, в котором все углы прямые, называется квадратом; прямоугольник, в котором все стороны равны, называется квадратом; параллелограмм, в котором все стороны равны и все углы прямые, называется квадратом. Следовательно, квадрат имеет все свойства параллелограмма, прямоугольника и ромба. Перечислим свойства квадрата.

  1. Противоположные стороны и противоположные углы квадрата равны. Диагонали квадрата в точке пересечения делятся пополам (свойства параллелограмма).
  2. Диагонали квадрата равны (свойство прямоугольника).
  3. Диагонали квадрата взаимно перпендикулярны и делят его углы пополам (свойства ромба).

Квадрат является частным видом и ромба, и прямоугольника, и параллелограмма. Ромб и прямоугольник — это частные виды параллелограмма. Соотношение между видами параллелограммов показано на Как найти углы в четырехугольнике

1. Рассмотрите таблицу классификации параллелограммов по соседним углам и смежным сторонам. Предложите собственную классификацию изученных видов параллелограмма.

Как найти углы в четырехугольнике

2. Кроме параллелограммов есть ещё один вид четырёхугольников — дельтоид. Эту фигуру получим, если два равнобедренных треугольника ABC и ADCc равными основаниями АС приложить друг к другу так, как показано на рисунке 99.

Как найти углы в четырехугольнике

Свойства дельтоида следуют из свойств равнобедренного треугольника. Например, диагонали взаимно перпендикулярны, одна из них делит углы пополам и другую диагональ — пополам. Сформулируйте, пользуясь рисунком, другие свойства дельтоида. Если равнобедренные треугольники, из которых образован дельтоид, равны, то такой дельтоид является ромбом. Если равнобедренные треугольники к тому же прямоугольные, то дельтоид является квадратом.

3. Слово «ромб» происходит от греческого rhombos — юла, вращение. Слово «квадрат» происходит от латинского quadratum — четырёхугольник. Квадрат был первым четырёхугольником, который рассматривался в геометрии.

Теорема Фалеса. Средняя линия треугольника

Начертите угол ABC (рис. 117).

Как найти углы в четырехугольнике

Произвольным раствором циркуля отложите на стороне АВ угла равные отрезки Как найти углы в четырехугольникеи Как найти углы в четырехугольникеПроведите с помощью чертёжного угольника и линейки через точки Как найти углы в четырехугольникепараллельные прямые, которые пересекут сторону ВС этого угла в точках Как найти углы в четырехугольникеПри помощи циркуля сравните длины отрезков Как найти углы в четырехугольникеСделайте вывод.

Теорема Фалёса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Дано: Как найти углы в четырехугольнике

Как найти углы в четырехугольнике

Доказать: Как найти углы в четырехугольнике

Доказательство. Проведём через точки Как найти углы в четырехугольникепрямые Как найти углы в четырехугольникепараллельные ВС. Как найти углы в четырехугольникепо стороне и прилежащим к ней углам. У них Как найти углы в четырехугольникепо условию, Как найти углы в четырехугольникекак соответственные углы при параллельных прямых. Из равенства этих треугольников следует, что Как найти углы в четырехугольникеи Как найти углы в четырехугольникекак противоположные стороны параллелограммов Как найти углы в четырехугольнике

Справедлива ли теорема Фалеса, если вместо сторон угла взять две произвольные прямые? Да, справедлива. Параллельные прямые, пересекающие две заданные прямые и отсекающие на одной прямой равные отрезки, отсекают равные отрезки и на другой прямой (рис. 119).

Как найти углы в четырехугольнике

Пример №5

Разделите данный отрезок АВ на пять равных частей.

Решение:

Проведём из точки А луч АС, не лежащий на прямой АВ (рис. 120).

Как найти углы в четырехугольнике

Отложим на луче АС пять равных отрезков: АА,Как найти углы в четырехугольникеПроведём прямую Как найти углы в четырехугольнике. Через точки Как найти углы в четырехугольникепроведём прямые, параллельные прямой Как найти углы в четырехугольнике. По теореме Фалеса, эти прямые делят отрезок АВ на пять равных частей.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

На рисунке 121 отрезок MN — средняя линия Как найти углы в четырехугольнике, так как точки М и N — середины сторон АВ и ВС.

Как найти углы в четырехугольнике

Теорема (свойства средней линии треугольника). Средняя линия треугольника параллельна третьей его стороне и равна её половине.

Дано: Как найти углы в четырехугольнике(рис. 122), AD = BD, СЕ= BE.

Как найти углы в четырехугольнике

Доказать: Как найти углы в четырехугольнике

Доказательство. 1) Пусть DE- средняя линия Как найти углы в четырехугольнике. Проведём через точку D прямую, параллельную АС. Согласно теореме Фалеса, она пересекает отрезок ВС в его середине £, то есть содержит среднюю линию DE. Следовательно DE || АС.

2) Проведём прямую EF|| АВ. По теореме Фалеса, прямая EFделит отрезок 1

АС пополам: Как найти углы в четырехугольнике. По построению, четырёхугольник ADEF- параллелограмм, поэтому DE= AF. Следовательно, Как найти углы в четырехугольнике

Пример №6

Докажите, что середины сторон четырёхугольника являются вершинами параллелограмма.

Решение:

Пусть ABC— данный четырёхугольник и М, N, Р, К — середины его сторон (рис. 123). Докажем, что MNPK — параллелограмм. Проведём диагональ AC. MN— средняя линия ААВС.

Как найти углы в четырехугольнике

Поэтому Как найти углы в четырехугольнике. КР— средняя линия треугольника ADC. Поэтому КР || АС и Как найти углы в четырехугольнике

Получаем: MN || АС и КР || АС, отсюда MN || КРКак найти углы в четырехугольнике, отсюда MN= КР. Противоположные стороны MN и КР четырёхугольника MNPK равны и параллельны, следовательно, это параллелограмм.

Если по условию задачи даны середины некоторых отрезков, то можно использовать свойства средней линии треугольника.

Древнегреческого учёного Фалеса из Милета (625 — 548 гг. до н. э.) считают одним из семи мудрецов мира. Гений Фалеса нашёл воплощение в разных сферах деятельности. Он занимался инженерным делом, был государственным деятелем, математиком, астрономом. Особой заслугой Фалеса является то, что он ввёл в математику идею доказательства. Учёный доказал, что углы при основании равнобедренного треугольника равны, что диаметр делит окружность на две равные части, что прямой угол можно вписать в полуокружность и т. д. Историки полагают, что именно Фалес начал использовать основные геометрические инструменты — циркуль и линейку. Учёный измерял высоту египетских пирамид по длине их теней, впервые предсказал солнечное затемнение, наблюдавшееся в 585 г. до н. э.

Как найти углы в четырехугольнике

Трапеция

Вы уже знаете, что четырёхугольник с попарно параллельными противоположными сторонами — параллелограмм.

На рисунке 143 изображён четырёхугольник ABCD, две стороны AD и ВС которого параллельны, а две другие — АВ и CD — непараллельны. Такой четырёхугольник — трапеция. Дайте определение трапеции и сравните его с приведённым в учебнике.

Как найти углы в четырехугольнике

Трапецией называется четырёхугольник, в которомдве стороны параллельны, а две другие — непараллельны.

Как найти углы в четырехугольнике

Параллельные стороны трапеции называются её основаниями, а непараллельные — боковыми сторонами. На рисунке 144 AD и ВС — основания трапеции, АВ и CD — боковые стороны.

Могут ли основания трапеции быть равными? Не могут, поскольку тогда получим параллелограмм.

Высотой трапеции называется перпендикуляр, проведённый из любой точки одного основания к другому основанию либо его продолжению (рис. 144).

Трапеция, в которой боковые стороны равны, называется равнобедренной. На рисунке 145 трапеция MNKP — равнобедренная, поскольку MN = КР.

Трапецию, один из углов которой прямой, называют прямоугольной. Трапеция ABCD (рис. 146) — прямоугольная, поскольку Как найти углы в четырехугольнике= 90*.

Средней линией трапеции называется отрезок, соединяющий середины её боковых сторон.

На рисунке 147 отрезок EF — средняя линия трапеции ABCD, так как точки Е и F — середины боковых сторон АВ и CD.

Как найти углы в четырехугольнике

Теорема (свойства средней линии трапеции). Средняя линия трапеции параллельна основаниям и равна их полусумме.

Дано: ABCD — трапеция с основаниями AD и ВС (рис. 148), EF— средняя линия. Доказать: Как найти углы в четырехугольнике

Как найти углы в четырехугольнике

Доказательство. Поскольку EF — средняя линия трапеции ABCD, то АЕ= BE, DF= CF. Через точки В и проведём прямую, пересекающую продолжение основания ADb точке Q. Как найти углы в четырехугольникеno стороне и прилежащим к ней углам. У них CF = FD по условию, Как найти углы в четырехугольникекак вертикальные, Как найти углы в четырехугольникевнутренние накрест лежащие углы при параллельных прямых ВС и АО и секущей CD. Из равенства треугольников следует: BF— F0, то есть средняя линия ЕF трапеции является средней линией треугольника АВО.

1) По свойству средней линии треугольника EF || АО, поэтому EF || AD. Поскольку AD || ВС, то EF\ ВС.

Пример №7 (свойство равнобедренной трапеции).

В равнобедренной трапеции углы при основании равны. Докажите это.

Решение:

Пусть в трапеции ABCD (рис. 149) АВ = CD. Докажем, что углы при основании AD равны.

Как найти углы в четырехугольнике

Проведём СЕ || АВ. Полученный четырёхугольник АВСЕ— параллелограмм, так как его противоположные стороны попарно параллельны. По свойству параллелограмма, АВ = СЕ, а по условию — АВ = CD. Следовательно, С£= CD и Как найти углы в четырехугольникеравнобедренный. Поэтому Как найти углы в четырехугольникесоответственные углы при параллельных прямых СЕ и АВ и секущей АЁ. Отсюда

Как найти углы в четырехугольнике

Если в условии задачи дана трапеция, то полезно такое дополнительное построение: проведите через вершину трапеции прямую, параллельную боковой стороне (рис. 149 или 150), и используйте свойства полученных параллелограмма и треугольника.

Решите предыдущую задачу, используя рисунок 150. Посмотрите на рисунок 151, где изображены изученные вами

Как найти углы в четырехугольнике

Центральные и вписанные углы

Проведём окружность с центром О и построим угол с вершиной в центре окружности (рис. 182). Получили центральный угол в окружности.

Угол с вершиной в центре окружности называется центральным углом. Как найти углы в четырехугольникеКак найти углы в четырехугольнике

Теорема (о вписанном угле). Вписанный угол измеряется половиной дуги, на которую он опирается.

Дано: Как найти углы в четырехугольнике— вписанный в окружность с центром О (рис. 188 — 190).

Доказать: Как найти углы в четырехугольнике

Доказательство. Рассмотрим три случая расположения центра , окружности относительно сторон данного вписанного угла.

1. Центр окружности лежит на стороне вписанного угла (рис. 188). Проведём отрезок ОД тогда центральный угол АОС является внешним углом Как найти углы в четырехугольнике. По свойству внешнего угла треугольника, Как найти углы в четырехугольникеКак найти углы в четырехугольнике— равнобедренный (ОВ= OA = R). Поэтому Как найти углы в четырехугольникеизмеряется дугой АС. Следовательно, вписанный угол ABC измеряется половиной дуги АС.

2. Центр окружности лежит во внутренней области вписанного угла (рис. 189). Проведём луч ВО, тогда данный угол равен сумме двух углов:Как найти углы в четырехугольнике

Из доказанного в первом случае следует, что Как найти углы в четырехугольникеизмеряется половиной дуги AD, a Как найти углы в четырехугольнике— половиной дуги DC. Поэтому Как найти углы в четырехугольникеизмеряется суммой полудуг AD и DC, то J есть половиной дуги АС.

3. Центр круга лежит во внешней области вписанного угла (рис. 190). Проведём луч ВО, тогда: Как найти углы в четырехугольнике

Как найти углы в четырехугольнике

Следствие 1.

Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 191). Действительно, каждый из них измеряется половиной одной и той же дуги.

Следствие 2.

Вписанный угол, опирающийся на диаметр, — прямой (рис. 192). Действительно, такой угол измеряется половиной полуокружности, то есть 180°: 2 = 90°. Как найти углы в четырехугольнике

Равны ли вписанные углы, опирающиеся на равные дуги (рис. 193)? Да, так как каждый из этих углов измеряется половиной равных дуг, градусные меры которых равны.

Пример №8

Хорды окружности АВ и ВС образуют угол 30°. Найдите хорду АС, если диаметр окружности равен 10 см.

Решение:

Проведём диаметр CD и соединим точки A и D (рис. 194). Как найти углы в четырехугольникекак вписанные, опирающиеся на дугу АС (следствие 1). Поэтому Как найти углы в четырехугольнике, так как опирается на диаметр окружности (следствие 2). Тогда в прямоугольном треугольнике ADC катет АС лежит против угла 30° и равен половине гипотенузы CD. Следовательно, Как найти углы в четырехугольнике

Для того чтобы доказать равенство двух углов, покажите, что они являются вписанными в одну окружность и опираются на одну и ту же дугу либо на равные дуги данной окружности.

Рассмотрим геометрическое место точек, которое используется при решении сложных задач на построение.

Пусть АВ — некоторый отрезок прямой а, М— произвольная точка, не лежащая на прямой a, Как найти углы в четырехугольнике(рис. 195). Тогда говорят: из точки М отрезок АВ виден под углом а.

Если описать окружность около Как найти углы в четырехугольнике(рис. 196), то из любой точки дуги АМВ (кроме точек А и В) отрезок АВ виден под углом а (следствие 1 из теоремы о вписанном угле). Поскольку точку можно взять и с другой стороны от прямой а, то существует ещё одна дуга, например ANB(рис. 197), из каждой точки которой (кроме точек А и В) отрезок АВ виден под углом а. Поэтому геометрическим местом точек, из которых отрезок АВ виден под углом а, является фигура, состоящая из двух дуг АМВ и AN В без точек А и В. Чтобы построить одну из двух дуг этого геометрического места точек для острого угла а, необходимо: Как найти углы в четырехугольнике

Вписанные и описанные четырёхугольники

Отметим на окружности четыре точки и соединим их хордами (рис. 222). Получили четырёхугольник, вписанный в окружность. Как найти углы в четырехугольнике

Четырёхугольник, все вершины которого лежат на окружности, называется вписанным в эту окружность, а окружность — описанной около этого четырехугольника.

Отметим на окружности четыре точки и проведём через них отрезки касательных, как показано на рисунке 223. Получили четырёхугольник, описанный около окружности.

Как найти углы в четырехугольнике

Четырёхугольнику все стороны которого касаются окружности, называется описанным около этой окружности, а окружность — вписанной в этот четырёхугольник.

Свойство вписанного четырёхугольника и его признак связаны с углами этого четырёхугольника.

Теорема (свойство углов вписанного четырёхугольника). Сумма противоположных углов вписанного четырёхугольника равна 180″.

Дано: четырёхугольник ABCD, вписанный в окружность (рис. 224).

Как найти углы в четырехугольнике

Доказать: Как найти углы в четырехугольнике

Доказательство. Углы А, В, Си D вписаны в окружность.

Из теоремы о вписанном угле следует: Как найти углы в четырехугольнике

Тогда Как найти углы в четырехугольнике

Сумма всех углов четырёхугольника равна 360°, а сумма углов А и С — 180°. Тогда Как найти углы в четырехугольнике

Около каждого ли четырёхугольника можно описать окружность? В отличие от треугольника не каждый четырёхугольник — вписанный. Приведём признак вписанного четырёхугольника без доказательства.

Теорема (признак вписанного четырёхугольника). Если в четырёхугольнике сумма двух противоположных углов равна 180е, то около такого четырёхугольника можно описать окружность.

Пример №9

Докажите, что около равнобедренной трапеции можно описать окружность.

Решение:

Пусть ABCD — равнобедренная трапеция с основаниями AD и ВС (рис. 225). Как найти углы в четырехугольнике

Докажем, что Как найти углы в четырехугольнике. В любой трапеции сумма углов, прилежащих к одной боковой стороне, равна 180° (следует из свойства параллельных прямых).

Поэтому, Как найти углы в четырехугольнике. По свойству равнобокой трапеции, Как найти углы в четырехугольнике

Тогда Как найти углы в четырехугольникеи, согласно признаку вписанного четырёхугольника, трапеция ABCD— вписанная. Свойство описанного четырёхугольника и его признак связаны со сторонами этого четырёхугольника.

Теорема (свойство сторон описанного четырёхугольника). Суммы противоположных сторон описанного четырёхугольника равны.

Дано: четырёхугольник ABCD, описанный около окружности (рис. 226), Е, F, K и P — точки касания.

Как найти углы в четырехугольнике

Доказать: АВ + CD = ВС + AD.

Доказательство. По свойству касательных, проведённых к окружности из одной точки: АЕ = АР; BE = BF, СК = CF, DK = DP. Сложив почленно эти равенства, получим: АЕ + BE + СК + DK = АР + BF + CF + DP, то есть АВ + CD = ВС + AD.

В каждый ли четырёхугольник можно вписать окружность? В отличие от треугольника, не в каждый четырёхугольник можно вписать окружность. Приведём признак описанного четырёхугольника без доказательства.

Теорема (признак описанного четырёхугольника). Если в четырёхугольнике суммы противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Чтобы доказать, что четырёхугольник MNKP (рис. 227) — вписанный, покажите, что: либо ے M + ے K = 180°, либо ے N + ے P= 180°. Чтобы доказать, что четырёхугольник ABCD (рис. 227) — описанный, покажите, что: AB + CD = AD + BC.

1. Кроме окружностей, вписанной и описанной около четырёхугольника, существуют ещё и вневписанные окружности.

Как найти углы в четырехугольнике

Проведём в произвольном четырёхугольнике ABCD биссектрисы внешних углов при вершинах А, В, С и D [рис. 228). Точки их пересечения Как найти углы в четырехугольникецентры четырёх вневписанных окружностей. Каждая из них касается одной стороны четырёхугольника и продолжении двух других его сторон. Вневписанные окружности имеют следующее свойство: их центры являются вершинами четырёхугольника Как найти углы в четырехугольникевписанного в окружность. Действительно,

Как найти углы в четырехугольнике

Следовательно, четырёхугольник Как найти углы в четырехугольнике— вписанный в окружность.

2. Древнегреческие учёные открыли, кроме уже известных вам, другие интересные свойства вписанных и описанных четырёхугольников. Например.

Теорема Птолемея (II в.). Произведение диагоналей вписанного четырёхугольника равно сумме произведений его противоположных сторон.

Задача Архимеда (III в. до н. э.). Если диагонали вписанного четырёхугольника перпендикулярны, то сумма квадратов четырёх отрезков, на которые делятся диагонали точкой пересечения, равна квадрату диаметра описанной окружности. Позднее (IX — XIII в.) арабские учёные дополнили сведения о вписанных и описанных четырёхугольниках и способах исследования их свойств. Так, одарённый геометр Гасан ибн-Гайтем (умер в 1038 г.) предложил, способ, позволяющий установить, используя лишь циркуль, является ли данный четырёхугольник вписанным. Пусть дан четырёхугольник ABCD(рис. 229).

Как найти углы в четырехугольнике

Продолжим сторону AD за точку D. Проведём дуги равных окружностей с центрами в точках В и D. Если KL = МО, то четырёхугольник ABCD — вписанный, так как ے ABC + ے ADC = 180° (докажите это). В иных случаях четырёхугольник не является вписанным.

4 | 3. При решении задач иногда рассматриваются окружности, не заданные в условии. На рисунке к задаче сначала находим четырёхугольник, около которого можно описать окружность либо в который можно вписать окружность, а потом используем свойства хорд, диаметров, вписанных углов, углов с вершиной внутри окружности и т. д.

Как найти углы в четырехугольнике

Пример №10

Из произвольной точки М катета ВС прямоугольного треугольника ABC проведён перпендикуляр MD к гипотенузе АВ (рис. 230). Докажем, что ے MAD= ے MCD.

Решение:

Около четырёхугольника ADMC можно описать окружность, так как ے ACM+ ے ADM= 180°.

Тогда ے MAD= ے MCD— вписанные углы, опирающиеся на одну дугу MD.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Площади фигур в геометрии
  • Площади поверхностей геометрических тел
  • Вычисление площадей плоских фигур
  • Преобразование фигур в геометрии
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Красивая задача про углы четырехугольникаСкачать

Красивая задача про углы четырехугольника

Сумма углов четырехугольника

Свойства

  1. Сумма углов четырехугольника равна 360°.
    ∠A + ∠B + ∠C + ∠D = 360°.
    Как найти углы в четырехугольнике
  2. Если четырехугольник правильный, то каждый угол по 90°
    и этот четырехугольник является квадратом.
    ∠A = ∠B = ∠C = ∠D, ⇒ ∠A = ∠B = ∠C = ∠D = 90°,
    ABCD — квадрат.
    Как найти углы в четырехугольнике
  3. Сумма противоположных углов четырехугольника равна 180°,
    если около четырехугольника описана окружность.
    ∠A + ∠С = ∠В + ∠D = 180°.
    Как найти углы в четырехугольнике

Такие четырехугольники называют вписанными.

Это все виды четырехугольников,
которые изучаются в школьном
курсе по геометрии.

Видео:№369. Найдите углы A, B и C выпуклого четырехугольника ABCD, еслиСкачать

№369. Найдите углы A, B и C выпуклого четырехугольника ABCD, если

Четырёхугольник

Сегодня рассмотрим геометрическую фигуру — четырехугольник. Из названия этой фигуры уже становится понятно, что у этой фигуры есть четыре угла. А вот остальные характеристики и свойства этой фигуры мы рассмотрим ниже.

Видео:№368. Найдите углы выпуклого четырехугольника, если они равны друг другу.Скачать

№368. Найдите углы выпуклого четырехугольника, если они равны друг другу.

Что такое четырех угольник

Четырёхугольник — многоугольник, состоящий из четырех точек (вершин) и четырёх отрезков (сторон), попарно соединяющих эти точки. Площадь четырехугольника равна полупроизведению его диагоналей и угла между ними.

Четырехугольник — это многоугольник с четырьмя вершинами, три из которых не лежат на одной прямой.

Четырехугольник — это геометрическая фигура, состоящая из четырех точек, три из которых не лежат на одной прямой, последовательно соединенная отрезками.

Как найти углы в четырехугольнике

Видео:Что такое угол? Виды углов: прямой, острый, тупой, развернутый уголСкачать

Что такое угол? Виды углов: прямой, острый, тупой,  развернутый угол

Виды четырехугольников

  • Четырехугольник, у которого противоположные стороны попарно параллельны, называется параллелограммом.
  • Четырехугольник, у которого две противоположные стороны параллельны, а две другие − нет, называется трапецией.
  • Четырехугольник, у которого все углы прямые, является прямоугольником.
  • Четырехугольник, у которого все стороны равны, является ромбом.
  • Четырехугольник, у которого все стороны равны и все углы прямые, называется квадратом.
Четырехугольник может быть:

Как найти углы в четырехугольнике

Как найти углы в четырехугольнике

Как найти углы в четырехугольнике

Самопересекающийся четырехугольник — это четырехугольник, у которого любые из его сторон имеют точку пересечения (на рисунке синим цветом).

Невыпуклый четырехугольник — это четырехугольник, в котором один из внутренних углов более 180 градусов (на рисунке обозначен оранжевым цветом).

Сумма углов любого четырехугольника, который не является самоперсекающимся всегда равна 360 градусов.

Видео:Уроки геометрии. Чему равна сумма углов четырехугольника?Скачать

Уроки геометрии. Чему равна сумма углов четырехугольника?

Особые виды четырехугольников

Четырехугольники могут обладать дополнительными свойствами, образуя особые виды геометрических фигур:

  • Параллелограмм
  • Ромб
  • Прямоугольник
  • Квадрат
  • Трапеция
  • Дельтоид
  • Контрпараллелограмм

Видео:Домашняя работа №8. Углы в четырехугольнике (один найти совсем просто)Скачать

Домашняя работа №8. Углы в четырехугольнике (один найти совсем просто)

Четырехугольник и окружность

Четырехугольник, описанный вокруг окружности (окружность, вписанная в четырехугольник).

Главное свойство описанного четырехугольника:

Четырехугольник можно описать вокруг окружности тогда и только тогда, когда суммы длин противоположных сторон равны.

Четырехугольник, вписанный в окружность (окружность, описанная вокруг четырехугольника)

Главное свойство вписанного четырехугольника:

Четырехугольник можно вписать в окружность тогда и только тогда, когда суммы противоположных углов равны 180 градусов.

Видео:№370. Найдите углы выпуклого четырехугольника, если они пропорциональны числам 1, 2, 4, 5.Скачать

№370. Найдите углы выпуклого четырехугольника, если они пропорциональны числам 1, 2, 4, 5.

Свойства длин сторон четырехугольника

Модуль разности любых двух сторон четырёхугольника не превосходит суммы двух других его сторон.

Важно. Неравенство верно для любой комбинации сторон четырехугольника. Рисунок приведен исключительно для облегчения восприятия.

В любом четырёхугольнике сумма длин трёх его сторон не меньше длины четвёртой стороны.

Важно. При решении задач в пределах школьной программы можно использовать строгое неравенство (

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

📹 Видео

Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Как выводить углы шпатлёвкой! ЛУЧШИЙ СПОСОБ!Скачать

Как выводить углы шпатлёвкой! ЛУЧШИЙ СПОСОБ!

Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnlineСкачать

SOS-ГЕОМЕТРИЯ! Отрезки и углы, смежные и вертикальные углы | Математика TutorOnline

Вычисляем угол через координаты вершинСкачать

Вычисляем угол через координаты вершин

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

Как только вы УЗНАЕТЕ, как мыслить в четырех измерениях, вы сможете УВИДЕТЬ НЕВИДИМОЕСкачать

Как только вы УЗНАЕТЕ, как мыслить в четырех измерениях, вы сможете УВИДЕТЬ НЕВИДИМОЕ

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Математика 2 класс (Урок№33 - Угол. Виды углов: прямой, острый, тупой.)Скачать

Математика 2 класс (Урок№33 - Угол. Виды углов: прямой, острый, тупой.)

Только 1 может решить эту хитрую задачу ★ Найдите углы треугольника ★ Супер ЖЕСТЬСкачать

Только 1 может решить эту хитрую задачу ★ Найдите углы треугольника ★ Супер ЖЕСТЬ

Измерение угла с помощью транспортираСкачать

Измерение угла с помощью транспортира
Поделиться или сохранить к себе: